cMetS Based on Z-Scores as an Accurate and Efficient Scoring System to Determine Metabolic Syndrome in Spanish Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Physical Measurements
2.3. Blood Sampling
2.4. Metabolic Syndrome Criteria According to the International Diabetes Federation (IDF)
2.5. Calculation of cMetS Score
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flemming, G.M.C.; Bussler, S.; Körner, A.; Kiess, W. Definition and early diagnosis of metabolic syndrome in children. J. Pediatr. Endocrinol. Metab. 2020, 33, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef] [PubMed]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; de Henauw, S.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38 (Suppl. S2), S4–S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafson, J.K.; Yanoff, L.B.; Easter, B.D.; Brady, S.M.; Keil, M.F.; Roberts, M.D.; Sebring, N.G.; Han, J.C.; Yanovski, S.Z.; Hubbard, V.S.; et al. The Stability of Metabolic Syndrome in Children and Adolescents. J. Clin. Endocrinol. Metab. 2009, 94, 4828–4834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M. The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heshmat, R.; Heidari, M.; Ejtahed, H.S.; Motlagh, M.E.; Mahdavi-Gorab, A.; Ziaodini, H.; Taheri, M.; Shafiee, G.; Beshtar, S.; Qorbani, M.; et al. Validity of a continuous metabolic syndrome score as an index for modeling metabolic syndrome in children and adolescents: The CASPIAN-V study. Diabetol. Metab. Syndr. 2017, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Vizcaíno, V.; Martínez, M.S.; Aguilar, F.S.; Martínez, S.S.; Gutiérrez, R.F.; López, M.S.; Martínez, P.M.; Rodríguez-Artalejo, F. Validity of a single-factor model underlying the metabolic syndrome in children: A confirmatory factor analysis. Diabetes Care 2010, 33, 1370–1372. [Google Scholar] [CrossRef] [Green Version]
- Pladevall, M.; Singal, B.; Williams, L.K.; Brotons, C.; Guyer, H.; Sadurni, J.; Falces, C.; Serrano-Rios, M.; Gabriel, R.; Shaw, J.E.; et al. A single factor underlies the metabolic syndrome: A confirmatory factor analysis. Diabetes Care 2006, 29, 113–122. [Google Scholar] [CrossRef]
- Eisenmann, J.C.; Laurson, K.R.; DuBose, K.D.; Smith, B.K.; Donnelly, J.E. Construct validity of a continuous metabolic syndrome score in children. Diabetol. Metab. Syndr. 2010, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- de Souza, S.; de Castro Silveira, J.F.; Marques, K.C.; Gaya, A.R.; Franke, S.I.R.; Renner, J.D.P.; Hobkirk, J.P.; Carroll, S.; Reuter, C.P. Metabolic risk is associated with sociodemographic characteristics in adolescents from both rural and urban regions from southern Brazil. BMC Pediatr. 2022, 22, 324. [Google Scholar] [CrossRef]
- Hur, Y.I.; Park, H.; Kang, J.H.; Lee, H.A.; Song, H.J.; Lee, H.J.; Kim, O.H. Associations between Sugar Intake from Different Food Sources and Adiposity or Cardio-Metabolic Risk in Childhood and Adolescence: The Korean Child-Adolescent Cohort Study. Nutrients 2016, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshhali, M.; Heshmat, R.; Esmaeil Motlagh, M.; Ziaodini, H.; Hadian, M.; Aminaei, T.; Qorbani, M.; Kelishadi, R. Comparing the validity of continuous metabolic syndrome risk scores for predicting pediatric metabolic syndrome: The CASPIAN-V study. J. Pediatr. Endocrinol. Metab. 2019, 32, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.G.; Cheriyan, S.; Sabin, M.A.; Juonala, M.; Koskinen, J.; Thomson, R.; Skilton, M.R.; Kähönen, M.; Laitinen, T.; Taittonen, L.; et al. Continuous and Dichotomous Metabolic Syndrome Definitions in Youth Predict Adult Type 2 Diabetes and Carotid Artery Intima Media Thickness: The Cardiovascular Risk in Young Finns Study. J. Pediatr. 2016, 171, 97–103.e3. [Google Scholar] [CrossRef]
- Pandit, D.; Chiplonkar, S.; Khadilkar, A.; Kinare, A.; Khadilkar, V. Efficacy of a continuous metabolic syndrome score in Indian children for detecting subclinical atherosclerotic risk. Int. J. Obes. 2011, 35, 1318–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, P.; Goodson, J.M.; Hartman, M.L.; Hasturk, H.; Yaskell, T.; Vargas, J.; Cugini, M.; Barake, R.; Alsmadi, O.; Al-Mutawa, S.; et al. Continuous Metabolic Syndrome Scores for Children Using Salivary Biomarkers. PLoS ONE 2015, 10, e0138979. [Google Scholar] [CrossRef]
- Formisano, A.; Bammann, K.; Fraterman, A.; Hadjigeorgiou, C.; Herrmann, D.; Iacoviello, L.; Marild, S.; Moreno, L.A.; Nagy, P.; van den Bussche, K.; et al. Efficacy of neck circumference to identify metabolic syndrome in 3–10-year-old European children: Results from IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 510–516. [Google Scholar] [CrossRef]
- Meaney, E.; Alva, F.; Moguel, R.; Meaney, A.; Alva, J.; Webel, R. Formula and nomogram for the sphygmomanometric calculation of the mean arterial pressure. Heart 2000, 84, 64. [Google Scholar] [CrossRef] [Green Version]
- McNamara, J.R.; Schaefer, E.J. Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin. Chim. Acta 1987, 166, 1–8. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syn-drome in children and adolescents: An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, J.C. Aerobic fitness, fatness and the metabolic syndrome in children and adolescents. Acta Paediatr. 2007, 96, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome a new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 September 2022).
- Sharma, R. Continuous Metabolic Syndrome Score in Children: How Useful is it? Indian J. Pediatr. 2019, 86, 881–882. [Google Scholar] [CrossRef] [Green Version]
- Sawant, S.P.; Amin, A.S. Use of Continuous Metabolic Syndrome Score in Overweight and Obese Children. Indian J. Pediatr. 2019, 86, 909–914. [Google Scholar] [CrossRef]
- Eisenmann, J.C. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc. Diabetol. 2008, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Khazdouz, M.; Hasani, M.; Mehranfar, S.; Ejtahed, H.S.; Djalalinia, S.; Gorabi, A.M.; Esmaeili-Abdar, M.; Saleh, S.K.; Arzaghi, S.M.; Zahedi, H.; et al. Validity of continuous metabolic syndrome score for predicting metabolic syndrome; a systematic review and meta-analysis. J. Diabetes Metab. Disord. 2021, 20, 497–510. [Google Scholar] [CrossRef]
- Guseman, E.H.; Eisenmann, J.C.; Laurson, K.R.; Cook, S.R.; Stratbucker, W. Calculating a continuous metabolic syndrome score using nationally representative reference values. Acad. Pediatr. 2018, 18, 589–592. [Google Scholar] [CrossRef]
- Vukovic, R.; Milenkovic, T.; Stojan, G.; Vukovic, A.; Mitrovic, K.; Todorovic, S.; Soldatovic, I. Pediatric siMS score: A new, simple and accurate continuous metabolic syndrome score for everyday use in pediatrics. PLoS ONE 2017, 12, e0189232. [Google Scholar] [CrossRef] [PubMed]
- Soldatovic, I.; Vukovic, R.; Culafic, D.; Gajic, M.; Dimitrijevic-Sreckovic, V. siMS Score: Simple Method for Quantifying Metabolic Syndrome. PLoS ONE 2016, 11, e0146143. [Google Scholar] [CrossRef] [PubMed]
- Okosun, I.S.; Lyn, R.; Davis-Smith, M.; Eriksen, M.; Seale, P. Validity of a continuous metabolic risk score as an index for modeling metabolic syndrome in adolescents. Ann. Epidemiol. 2010, 20, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Seo, M.Y.; Kim, S.H.; Park, M.J. Validity of the pediatric simple metabolic syndrome score. Obes. Res. Clin. Pract. 2020, 14, 508–513. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean (SD) | p-Value a | ||
---|---|---|---|---|
Total | Girls (n = 525) | Boys (n = 456) | ||
Age, years | 13.2 (1.2) | 13.3 (1.2) | 13.2 (1.2) | 0.282 |
Weight, kg | 54.9 (12.7) | 53.1 (11.0) | 57.1 (14.1) | <0.001 |
Height, cm | 160.1 (8.9) | 158.2 (6.9) | 162.4 (10.4) | <0.001 |
WC, cm | 72.4 (10.8) | 71.3 (9.6) | 73.7 (11.8) | <0.001 |
BMI, kg/m2 | 21.3 (3.8) | 21.1 (3.6) | 21.5 (4.0) | 0.140 |
FBG, mmol/L | 4.8 (1.7) | 4.7 (1.6) | 4.8 (1.7) | 0.613 |
TG, mmol/L | 1.4 (0.6) | 1.4 (0.5) | 1.5 (0.7) | 0.221 |
HDL, mmol/L | 1.0 (0.1) | 1.0 (0.1) | 1.0 (0.1) | 0.707 |
SBP, mmHG | 118.2 (15.5) | 116.9 (15.1) | 119.6 (15.7) | 0.006 |
DBP, mmHG | 64.2 (9.0) | 63.9 (8.8) | 64.5 (9.3) | 0.291 |
MAP, mmHG | 82.2 (10.3) | 81.6 (9.9) | 82.9 (10.7) | 0.046 |
Variables | Number of MetS Components | p-Value a | |||
---|---|---|---|---|---|
Mean (SD) | |||||
0 (n = 239) | 1 (n = 463) | 2 (n = 165) | ≥3 (n = 114) | ||
SiMS score 1 | 4.27 (0.15) | 4.33 (0.19) | 4.70 (0.32) | 5.56 (1.14) | <0.001 |
SiMS score 2 | 4.27 (0.15) | 4.18 (0.25) | 4.57 (0.37) | 5.42 (1.20) | <0.001 |
SiMS score 3 | 4.27 (0.16) | 4.33 (0.19) | 4.69 (0.32) | 5.55 (1.15) | <0.001 |
Z-scores | −2.06 (1.17) | −0.98 (1.57) | 1.87 (2.04) | 5.60 (4.42) | <0.001 |
First PCA | −0.44 (0.64) | −0.30 (0.79) | 0.71 (0.89) | 1.13 (1.12) | <0.001 |
Sum of PCA | −0.09 (0.82) | 0.03 (0.87) | 0.13 (1.41) | −0.11 (1.10) | 0.077 |
CFA | −0.84 (0.65) | −0.50 (0.84) | 0.93 (0.91) | 2.44 (1.60) | <0.001 |
Variables | siMS Score 1 | siMS Score 2 | siMS Score 3 | Z Score | First PCA | Sum of PCA | CFA |
---|---|---|---|---|---|---|---|
siMS score 1 | 1 | ||||||
siMS score 2 | 0.98 ** | 1 | |||||
siMS score 3 | 0.99 ** | 0.98 ** | 1 | ||||
Z-scores | 0.91 ** | 0.89 ** | 0.90 ** | 1 | |||
First PCA | 0.34 ** | 0.35 ** | 0.34 ** | 0.55 ** | 1 | ||
Sum of PCA | −0.059 | −0.066 * | −0.060 | −0.020 | 0.000 | 1 | |
CFA | 0.85 ** | 0.84 ** | 0.84 ** | 0.97 ** | 0.71 ** | −0.018 | 1 |
CMetS | AUC | 95% CI | Optimal Cutoffs | Sensitivity % | Specificity % |
---|---|---|---|---|---|
siMS score 1 | 0.733 | 0.702–0.765 | 4.414 | 85.4 | 53.0 |
siMS score 2 | 0.534 | 0.499–0.569 | 4.499 | 93.7 | 30.5 |
siMS score 3 | 0.745 | 0.713–0.776 | 4.381 | 80.3 | 57.7 |
Z-scores | 0.811 | 0.784–0.838 | −0.891 | 86.6 | 64.4 |
First PCA | 0.661 | 0.626–0.696 | 0.546 | 96.2 | 33.0 |
Sum of PCA | 0.547 | 0.507–0.587 | 0.044 | 63.6 | 51.1 |
CFA | 0.750 | 0.719–0.780 | −0.028 | 91.6 | 50.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Aparicio, Á.; Perona, J.S.; Schmidt-RioValle, J.; Montero-Alonso, M.A.; Navarro-Pérez, C.F.; González-Jiménez, E. cMetS Based on Z-Scores as an Accurate and Efficient Scoring System to Determine Metabolic Syndrome in Spanish Adolescents. J. Pers. Med. 2023, 13, 10. https://doi.org/10.3390/jpm13010010
Fernández-Aparicio Á, Perona JS, Schmidt-RioValle J, Montero-Alonso MA, Navarro-Pérez CF, González-Jiménez E. cMetS Based on Z-Scores as an Accurate and Efficient Scoring System to Determine Metabolic Syndrome in Spanish Adolescents. Journal of Personalized Medicine. 2023; 13(1):10. https://doi.org/10.3390/jpm13010010
Chicago/Turabian StyleFernández-Aparicio, Ángel, Javier S. Perona, Jacqueline Schmidt-RioValle, Miguel A. Montero-Alonso, Carmen Flores Navarro-Pérez, and Emilio González-Jiménez. 2023. "cMetS Based on Z-Scores as an Accurate and Efficient Scoring System to Determine Metabolic Syndrome in Spanish Adolescents" Journal of Personalized Medicine 13, no. 1: 10. https://doi.org/10.3390/jpm13010010
APA StyleFernández-Aparicio, Á., Perona, J. S., Schmidt-RioValle, J., Montero-Alonso, M. A., Navarro-Pérez, C. F., & González-Jiménez, E. (2023). cMetS Based on Z-Scores as an Accurate and Efficient Scoring System to Determine Metabolic Syndrome in Spanish Adolescents. Journal of Personalized Medicine, 13(1), 10. https://doi.org/10.3390/jpm13010010