Grip Strength Trajectories and Cognition in English and Chilean Older Adults: A Cross-Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Sample
2.2. Variables
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.1.1. Physical Functioning Outcomes
3.1.2. Linear Mixed Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Leisman, G.; Moustafa, A.; Shafir, T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health 2016, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clouston, S.A.P.; Brewster, P.; Kuh, D.; Richards, M.; Cooper, R.; Hardy, R.; Rubin, M.S.; Hofer, S.M. The Dynamic Relationship between Physical Function and Cognition in Longitudinal Aging Cohorts. Epidemiol. Rev. 2013, 35, 33–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auyeung, T.W.; Kwok, T.; Lee, J.; Leung, P.C.; Leung, J.; Woo, J. Functional Decline in Cognitive Impairment-The Relationship between Physical and Cognitive Function. Neuroepidemiology 2008, 31, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stijntjes, M.; Aartsen, M.J.; Taekema, D.G.; Gussekloo, J.; Huisman, M.; Meskers, C.G.M.; De Craen, A.J.M.; Maier, A.B. Temporal Relationship between Cognitive and Physical Performance in Middle-Aged to Oldest Old People. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2017, 72, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Montero-Odasso, M.; Oteng-Amoako, A.; Speechley, M.; Gopaul, K.; Beauchet, O.; Annweiler, C.; Muir-Hunter, S.W. The Motor Signature of Mild Cognitive Impairment: Results from the Gait and Brain Study. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2014, 69, 1415–1421. [Google Scholar] [CrossRef]
- Kueper, J.K.; Speechley, M.; Lingum, N.R.; Montero-Odasso, M. Motor Function and Incident Dementia: A Systematic Review and Meta-Analysis. Age Ageing 2017, 46, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Yang, L.; Smith, L.; Loprinzi, P.D.; Veronese, N.; Yao, J.; Zhang, Z.; Yu, J.J. Correlation Between Cognition and Balance Among Middle-Aged and Older Adults Observed Through a Tai Chi Intervention Program. Front. Psychol. 2020, 11, 668. [Google Scholar] [CrossRef]
- Gale, C.R.; Allerhand, M.; Sayer, A.A.; Cooper, C.; Deary, I.J. The Dynamic Relationship between Cognitive Function and Walking Speed: The English Longitudinal Study of Ageing. Age 2014, 36, 9682. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W. Hand-Grip Dynamometry Predicts Future Outcomes in Aging Adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle Strength: Clinical and Prognostic Value of Hand-Grip Dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Chainani, V.; Shaharyar, S.; Dave, K.; Choksi, V.; Ravindranathan, S.; Hanno, R.; Jamal, O.; Abdo, A.; Rafeh, N.A. Objective Measures of the Frailty Syndrome (Hand Grip Strength and Gait Speed) and Cardiovascular Mortality: A Systematic Review. Int. J. Cardiol. 2016, 215, 487–493. [Google Scholar] [CrossRef]
- Rijk, J.M.; Roos, P.R.K.M.; Deckx, L.; Van den Akker, M.; Buntinx, F. Prognostic Value of Handgrip Strength in People Aged 60 Years and Older: A Systematic Review and Meta-Analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Adamo, D.E.; Anderson, T.; Koochaki, M.; Fritz, N.E. Declines in Grip Strength May Indicate Early Changes in Cognition in Healthy Middle-Aged Adults. PLoS ONE 2020, 15, e0232021. [Google Scholar] [CrossRef]
- Vaz-Patto, M.; Bueno, B.; Ribeiro, Ó.; Teixeira, L.; Afonso, R.M. Association between Handgrip Strength, Walking, Age-Related Illnesses and Cognitive Status in a Sample of Portuguese Centenarians. Eur. Rev. Aging Phys. Act. 2017, 14, 1–7. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kim, J. Association between Handgrip Strength and Cognitive Impairment in Elderly Koreans: A Population-Based Cross-Sectional Study. J. Phys. Ther. Sci. 2015, 27, 3911–3915. [Google Scholar] [CrossRef] [Green Version]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Leach, S.; Pasco, J.A. Muscle Strength and Gait Speed Rather than Lean Mass Are Better Indicators for Poor Cognitive Function in Older Men. Sci. Rep. 2020, 10367. [Google Scholar] [CrossRef]
- Chang, K.V.; Hsu, T.H.; Wu, W.T.; Huang, K.C.; Han, D.S. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1164.e7–1164.e15. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Firth, J.; Smith, L.; Swinnen, N.; Koyanagi, A. Associations between Handgrip Strength and Mild Cognitive Impairment in Middle-Aged and Older Adults in Six Low-and Middle-Income Countries. Int. J. Geriatr. Psychiatry 2019, 34, 609–616. [Google Scholar] [CrossRef]
- Wang, L.; Larson, E.B.; Bowen, J.D.; Van Belle, G. Performance-Based Physical Function and Future Dementia in Older People. Arch. Intern. Med. 2006, 166, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Acha, A.; Al Snih, S.; Raji, M.A.; Kuo, Y.F.; Markides, K.S.; Ottenbacher, K.J. Handgrip Strength and Cognitive Decline in Older Mexican Americans. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2006, 61, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Boyle, P.A.; Buchman, A.S.; Wilson, R.S.; Leurgans, S.E.; Bennett, D.A. Physical Frailty Is Associated with Incident Mild Cognitive Impairment in Community-Based Older Persons. J. Am. Geriatr. Soc. 2010, 58, 248–255. [Google Scholar] [CrossRef]
- Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Tang, Y.; Bennett, D.A. Frailty Is Associated with Incident Alzheimer’s Disease and Cognitive Decline in the Elderly. Psychosom. Med. 2007, 69, 483–489. [Google Scholar] [CrossRef]
- Buchman, A.S.; Wilson, R.S.; Boyle, P.A.; Bienias, J.L.; Bennett, D.A. Grip Strength and the Risk of Incident Alzheimer’s Disease. Neuroepidemiology 2007, 29, 66–73. [Google Scholar] [CrossRef]
- Gallucci, M.; Mazzuco, S.; Ongaro, F.; Di Giorgi, E.; Mecocci, P.; Cesari, M.; Albani, D.; Forloni, G.L.; Durante, E.; Gajo, G.B.; et al. Body Mass Index, Lifestyles, Physical Performance and Cognitive Decline: The “Treviso Longeva (Trelong)” Study. J. Nutr. Health Aging 2013, 17, 378–384. [Google Scholar] [CrossRef]
- Taekema, D.G.; Gussekloo, J.; Maier, A.B.; Westendorp, R.G.J.; de Craen, A.J.M. Handgrip Strength as a Predictor of Functional, Psychological and Social Health. A Prospective Population-Based Study among the Oldest Old. Age Ageing 2010, 39, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, H.H.; Rapp, S.R.; Williamson, J.D.; Lovato, J.; Absher, J.R.; Gass, M.; Henderson, V.W.; Johnson, K.C.; Kostis, J.B.; Sink, K.M.; et al. The Relationship between Cognitive Function and Physical Performance in Older Women: Results from the Women’s Health Initiative Memory Study. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2010, 65 A, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Farina, N.; Tabet, N.; Rusted, J. The Relationship between Habitual Physical Activity Status and Executive Function in Individuals with Alzheimer’s Disease: A Longitudinal, Cross-Lagged Panel Analysis. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2016, 23, 234–252. [Google Scholar] [CrossRef]
- Raji, M.A.; Kuo, Y.F.; Al Snih, S.; Markides, K.S.; Peek, M.K.; Ottenbacher, K.J. Cognitive Status, Muscle Strength, and Subsequent Disability in Older Mexican Americans. J. Am. Geriatr. Soc. 2005, 53, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Mcgrath, R.; Robinson-Lane, S.G.; Cook, S.; Clark, B.C.; Herrmann, S.; O’connor, M.L.; Hackney, K.J. Handgrip Strength Is Associated with Poorer Cognitive Functioning in Aging Americans. J. Alzheimer’s Dis. 2019, 70, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Korten, A.E.; Mackinnon, A.J.; Jorm, A.F.; Hendersona, A.S.; Rodgers, B. Are Changes in Sensory Disability, Reaction Time, and Grip Strength Associated with Changes in Memory and Crystallized Intelligence? A Longitudinal Analysis in an Elderly Community Sample. Gerontology 2000, 46, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Sternäng, O.; Reynolds, C.A.; Finkel, D.; Ernsth-Bravell, M.; Pedersen, N.L.; Dahl Aslan, A.K. Grip Strength and Cognitive Abilities: Associations in Old Age. J. Gerontol.-Ser. B Psychol. Sci. Soc. Sci. 2016, 71, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Deary, I.J.; Johnson, W.; Gow, A.J.; Pattie, A.; Brett, C.E.; Bates, T.C.; Starr, J.M. Losing One’s Grip: A Bivariate Growth Curve Model of Grip Strength and Nonverbal Reasoning from Age 79 to 87 Years in the Lothian Birth Cohort 1921. J. Gerontol.-Ser. B Psychol. Sci. Soc. Sci. 2011, 66 B, 699–707. [Google Scholar] [CrossRef]
- Ritchie, S.J.; Tucker-Drob, E.M.; Starr, J.M.; Deary, I.J. Do Cognitive and Physical Functions Age in Concert from Age 70 to 76? Evidence from the Lothian Birth Cohort 1936. Span. J. Psychol. 2016, 19, e90. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Park, S.K.; Lee, D.R.; Lee, J. The Relationship between Handgrip Strength and Cognitive Function in Elderly Koreans over 8 Years: A Prospective Population-Based Study Using Korean Longitudinal Study of Ageing. Korean J. Fam. Med. 2019, 40, 9–15. [Google Scholar] [CrossRef]
- Sattler, C.; Erickson, K.I.; Toro, P.; Schröder, J. Physical Fitness as a Protective Factor for Cognitive Impairment in a Prospective Population-Based Study in Germany. J. Alzheimer’s Dis. 2011, 26, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Camargo, E.C.; Weinstein, G.; Beiser, A.S.; Tan, Z.S.; Decarli, C.; Kelly-Hayes, M.; Kase, C.; Murabito, J.M.; Seshadri, S. Association of Physical Function with Clinical and Subclinical Brain Disease: The Framingham Offspring Study. J. Alzheimer’s Dis. 2016, 53, 1597–1608. [Google Scholar] [CrossRef]
- Moon, J.H.; Moon, J.H.; Kim, K.M.; Choi, S.H.; Lim, S.; Park, K.S.; Kim, K.W.; Jang, H.C. Sarcopenia as a Predictor of Future Cognitive Impairment in Older Adults. J. Nutr. Health Aging 2016, 20, 496–502. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Trevisan, C.; Bolzetta, F.; De Rui, M.; Solmi, M.; Sartori, L.; Musacchio, E.; Zambon, S.; Perissinotto, E.; et al. What Physical Performance Measures Predict Incident Cognitive Decline among Intact Older Adults? A 4.4 Year Follow up Study. Exp. Gerontol. 2016, 81, 110–118. [Google Scholar] [CrossRef]
- Hooghiemstra, A.M.; Ramakers, I.H.G.B.; Sistermans, N.; Pijnenburg, Y.A.L.; Aalten, P.; Hamel, R.E.G.; Melis, R.J.F.; Verhey, F.R.J.; Olde Rikkert, M.G.M.; Scheltens, P.; et al. Gait Speed and Grip Strength Reflect Cognitive Impairment and Are Modestly Related to Incident Cognitive Decline in Memory Clinic Patients With Subjective Cognitive Decline and Mild Cognitive Impairment: Findings from the 4C Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Heward, J.; Stone, L.; Paddick, S.M.; Mkenda, S.; Gray, W.K.; Dotchin, C.L.; Kissima, J.; Collingwood, C.; Swai, B.; Walker, R.W. A Longitudinal Study of Cognitive Decline in Rural Tanzania: Rates and Potentially Modifiable Risk Factors. Int. Psychogeriatrics 2018, 30, 1333–1343. [Google Scholar] [CrossRef]
- Jeong, S.M.; Choi, S.; Kim, K.; Kim, S.M.; Kim, S.; Park, S.M. Association among Handgrip Strength, Body Mass Index and Decline in Cognitive Function among the Elderly Women. BMC Geriatr. 2018, 18, 225. [Google Scholar] [CrossRef]
- Praetorius Bjork, M.; Johansson, B.; Hassing, L.B. I Forgot When I Lost My Grip-Strong Associations between Cognition and Grip Strength in Level of Performance and Change across Time in Relation to Impending Death. Neurobiol. Aging 2016, 38, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.J.; Kurita, S.; Hotta, R.; Shimada, H. Physical Performance Predictors for Incident Dementia among Japanese Community-Dwelling Older Adults. Phys. Ther. 2019, 99, 1132–1140. [Google Scholar] [CrossRef]
- Sibbett, R.A.; Russ, T.C.; Allerhand, M.; Deary, I.J.; Starr, J.M. Physical Fitness and Dementia Risk in the Very Old: A Study of the Lothian Birth Cohort 1921. BMC Psychiatry 2018, 18, 285. [Google Scholar] [CrossRef] [Green Version]
- Hatabe, Y.; Shibata, M.; Ohara, T.; Oishi, E.; Yoshida, D.; Honda, T.; Hata, J.; Kanba, S.; Kitazono, T.; Ninomiya, T. Decline in Handgrip Strength from Midlife to Late-Life Is Associated with Dementia in a Japanese Community: The Hisayama Study. J. Epidemiol. 2020, 30, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Kim, J. Prospective Association of Handgrip Strength with Risk of New-Onset Cognitive Dysfunction in Korean Adults: A 6-Year National Cohort Study. Tohoku J. Exp. Med. 2018, 244, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.Y.; Nishita, Y.; Nakagawa, T.; Tange, C.; Tomida, M.; Shimokata, H.; Otsuka, R.; Chen, L.K.; Arai, H. Role of Gait Speed and Grip Strength in Predicting 10-Year Cognitive Decline among Community-Dwelling Older People. BMC Geriatr. 2019, 19, 186. [Google Scholar] [CrossRef]
- Gray, S.L.; Anderson, M.L.; Hubbard, R.A.; Lacroix, A.; Crane, P.K.; McCormick, W.; Bowen, J.D.; McCurry, S.M.; Larson, E.B. Frailty and Incident Dementia. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2013, 68, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.W.S.; DeCarlo, C.A.; Dixon, R.A. Linking Biological and Cognitive Aging: Toward Improving Characterizations of Developmental Time. J. Gerontol. B Psychol. Sci. Soc. Sci. 2011, 66 (Suppl. 1), i59–i70. [Google Scholar] [CrossRef] [PubMed]
- Taekema, D.G.; Ling, C.H.Y.; Kurrle, S.E.; Cameron, I.D.; Meskers, C.G.M.; Blauw, G.J.; Westendorp, R.G.J.; De craen, A.J.M.; Maier, A.B. Temporal Relationship between Handgrip Strength and Cognitive Performance in Oldest Old People. Age Ageing 2012, 41, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auyeung, T.W.; Lee, J.S.W.; Kwok, T.; Woo, J. Physical Frailty Predicts Future Cognitive Decline—A Four-Year Prospective Study in 2737 Cognitively Normal Older Adults. J. Nutr. Health Aging 2011, 15, 690–694. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; García-Hermoso, A.; Cano, C.A.; Izquierdo, M. Reference Values for Handgrip Strength and Their Association with Intrinsic Capacity Domains among Older Adults. J. Cachexia. Sarcopenia Muscle 2019, 10, 278–286. [Google Scholar] [CrossRef]
- Sternäng, O.; Reynolds, C.A.; Finkel, D.; Ernsth-bravell, M.; Pedersen, N.L.; Dahl aslan, A.K. Factors Associated with Grip Strength Decline in Older Adults. Age Ageing 2015, 44, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Swan, G.E.; Lessov-Schlaggar, C.N. The Effects of Tobacco Smoke and Nicotine on Cognition and the Brain. Neuropsychol. Rev. 2007, 17, 259–273. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.M. Factors Affecting Cognitive Function According to Gender in Community-Dwelling Elderly Individuals. Epidemiol. Health 2017, 39, e2017054. [Google Scholar] [CrossRef] [Green Version]
- Langlois, F.; Vu, T.T.M.; Chassé, K.; Dupuis, G.; Kergoat, M.J.; Bherer, L. Benefits of Physical Exercise Training on Cognition and Quality of Life in Frail Older Adults. J. Gerontol.-Ser. B Psychol. Sci. Soc. Sci. 2013, 68, 400–404. [Google Scholar] [CrossRef]
- Stenholm, S.; Tiainen, K.; Rantanen, T.; Sainio, P.; Heliövaara, M.; Impivaara, O.; Koskinen, S. Long-Term Determinants of Muscle Strength Decline: Prospective Evidence from the 22-Year Mini-Finland Follow-up Survey. J. Am. Geriatr. Soc. 2012, 60, 77–85. [Google Scholar] [CrossRef]
- Prakash, R.S.; Voss, M.W.; Erickson, K.I.; Kramer, A.F. Physical Activity and Cognitive Vitality. Annu. Rev. Psychol. 2015, 66, 769–797. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhang, S.; Liu, Y.; Gang, X.; Wang, G. Grip Strength and the Risk of Cognitive Decline and Dementia: A Systematic Review and Meta-Analysis of Longitudinal Cohort Studies. Front. Aging Neurosci. 2021, 13, 625551. [Google Scholar] [CrossRef]
- Zammit, A.R.; Robitaille, A.; Piccinin, A.M.; Muniz-Terrera, G.; Hofer, S.M. Associations between Aging-Related Changes in Grip Strength and Cognitive Function in Older Adults: A Systematic Review. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2019, 74, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Fritz, N.E.; McCarthy, C.J.; Adamo, D.E. Handgrip Strength as a Means of Monitoring Progression of Cognitive Decline—A Scoping Review. Ageing Res. Rev. 2017, 35, 112–123. [Google Scholar] [CrossRef]
- Steptoe, A.; Breeze, E.; Banks, J.; Nazroo, J. Cohort Profile: The English Longitudinal Study of Ageing. Int. J. Epidemiol. 2013, 42, 1640–1648. [Google Scholar] [CrossRef] [Green Version]
- Albala, C.; Sánchez, H.; Lera, L.; Angel, B.; Cea, X. Socioeconomic Inequalities in Active Life Expectancy and Disability Related to Obesity among Older People]. Rev. Med. Chil. 2011, 139, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Volume II: Demographic Profiles (ST/ESA/SER.A/427); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Manor, O.; Matthews, S.; Power, C. Self-Rated Health and Limiting Longstanding Illness: Inter-Relationships with Morbidity in Early Adulthood. Int. J. Epidemiol. 2001, 30, 600–607. [Google Scholar] [CrossRef] [Green Version]
- Turvey, C.L.; Wallace, R.B.; Herzog, R. A Revised CES-D Measure of Depressive Symptoms and a DSM-Based Measure of Major Depressive Episodes in the Elderly. Int. Psychogeriatrics 1999, 11, 139–148. [Google Scholar] [CrossRef]
- Hamer, M.; Batty, G.D.; Kivimaki, M. Risk of Future Depression in People Who Are Obese but Metabolically Healthy: The English Longitudinal Study of Ageing. Mol. Psychiatry 2012, 17, 940–945. [Google Scholar] [CrossRef] [Green Version]
- Zaninotto, P.; Batty, G.D.; Allerhand, M.; Deary, I.J. Cognitive Function Trajectories and Their Determinants in Older People: 8 Years of Follow-up in the English Longitudinal Study of Ageing. J. Epidemiol. Community Health 2018, 72, 685–694. [Google Scholar] [CrossRef]
- Jackson, S.E.; Brown, J.; Ussher, M.; Shahab, L.; Steptoe, A.; Smith, L. Combined Health Risks of Cigarette Smoking and Low Levels of Physical Activity: A Prospective Cohort Study in England with 12-Year Follow-Up. BMJ Open 2019, 9, e032852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Molloy, G.J.; de Oliveira, C.; Demakakos, P. Leisure Time Physical Activity, Risk of Depressive Symptoms, and Inflammatory Mediators: The English Longitudinal Study of Ageing. Psychoneuroendocrinology 2009, 34, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.I.; Yesavage, J.A. 9/Geriatric Depression Scale (Gds) Recent Evidence and Development of a Shorter Version. Clin. Gerontol. 1986, 5, 165–173. [Google Scholar] [CrossRef]
- Diehr, P.H.; Thielke, S.M.; Newman, A.B.; Hirsch, C.; Tracy, R. Decline in Health for Older Adults: Five-Year Change in 13 Key Measures of Standardized Health. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2013, 68, 1059–1067. [Google Scholar] [CrossRef] [Green Version]
- Bendayan, R.; Piccinin, A.M.; Hofer, S.M.; Muniz, G. Are Changes in Self-Rated Health Associated With Memory Decline in Older Adults? J. Aging Health 2017, 29, 1410–1423. [Google Scholar] [CrossRef]
- Kristjansson, S.D.; Kircher, J.C.; Webb, A.K. Multilevel Models for Repeated Measures Research Designs in Psychophysiology: An Introduction to Growth Curve Modeling. Psychophysiology 2007, 44, 728–736. [Google Scholar] [CrossRef]
- Mallinckrodt, C.H.; Clark, W.S.; David, S.R. Accounting for Dropout Bias Using Mixed-Effects Models. J. Biopharm. Stat. 2001, 11, 9–21. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Donders, R.A.R.T.; Stijnen, T.; Harrell, F.E. Using the Outcome for Imputation of Missing Predictor Values Was Preferred. J. Clin. Epidemiol. 2006, 59, 1092–1101. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. Missforest-Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Inzitari, M.; Newman, A.B.; Yaffe, K.; Boudreau, R.; De Rekeneire, N.; Shorr, R.; Harris, T.B.; Rosano, C. Gait Speed Predicts Decline in Attention and Psychomotor Speed in Older Adults: The Health Aging and Body Composition Study. Neuroepidemiology 2008, 29, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Montero-Odasso, M.; Hachinski, V. Preludes to Brain Failure: Executive Dysfunction and Gait Disturbances. Neurol. Sci. 2014, 35, 601–604. [Google Scholar] [CrossRef]
- Verghese, J.; Wang, C.; Lipton, R.B.; Holtzer, R.; Xue, X. Quantitative Gait Dysfunction and Risk of Cognitive Decline and Dementia. J. Neurol. Neurosurg. Psychiatry 2007, 78, 929–935. [Google Scholar] [CrossRef]
- Hsu, C.L.; Liang, C.K.; Liao, M.C.; Chou, M.Y.; Lin, Y. Te Slow Gait Speed as a Predictor of 1-Year Cognitive Decline in a Veterans’ Retirement Community in Southern Taiwan. Geriatr. Gerontol. Int. 2017, 17, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Hofer, S.M.; Piccinin, A.M. Integrative Data Analysis Through Coordination of Measurement and Analysis Protocol Across Independent Longitudinal Studies. Psychol. Methods 2009, 14, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Hofer, S.M.; Sliwinski, M.J. Design and Analysis of Longitudinal Studies on Aging. In Handbook of the Psychology of Aging; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 15–37. ISBN 9780121012649. [Google Scholar]
ELSA Cohort | ALEXANDROS Cohort | |||||||
---|---|---|---|---|---|---|---|---|
Total | Non-Impaired | Declined | Impaired | Total | Non-Impaired | Declined | Impaired | |
n = 7486 | n = 5180 | n = 608 | n = 1698 | n = 1363 | n = 1161 | n = 118 | n = 84 | |
Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | |
Socio-demographic characteristics | ||||||||
Age (years) | 66.5 (9.7) * | 64.1 (8.5) | 68.2 (9.6) ab | 73.0 (9.9) ab | 66.9 (4.7) * | 66.7 (4.5) | 68.5 (5.4) a | 68.6 (6.2) a |
Sex (male) | 3397 (45.4) ** | 2246 (43.4) | 301 (49.5) a | 850 (50.1) a | 402 (29.5) | 356 (30.7) | 25(21.2) | 21 (25.0) |
Education (years) | 13.4 (3.7) * | 14.0 (3.8) | 12.6 (3.5) ab | 11.8 (3.1) ab | 8.0 (4.7) * | 8.5 (4.6) | 5.4 (3.9) ab | 4.1 (3.6) ab |
Comorbid health issues | ||||||||
Poor self-rated health | 1986 (26.5) ** | 1114 (21.5) | 195 (32.1) ab | 677 (39.9) ab | 136 (10.0) *** | 126 (10.9) | 7 (5.9) a | 3 (3.6) a |
BMI (kg) | 27.9 (4.8) | 27.9 (4.8) | 28.1 (4.5) | 27.7 (4.8) | 28.8 (4.9) | 28.8 (4.8) | 29.2 (5.4) | 28.7 (4.6) |
ADL (≥1) | 1457 (19.5) ** | 838 (16.2) | 137 (22.5) ab | 482 (28.4) ab | 59 (4.3) ** | 31 (2.67) | 6 (5.1) | 22 (26.5) a |
Depression (score ≥ 5) | 1095 (14.8) ** | 646 (12.6) | 99 (16.3) ab | 350 (21.0) ab | 115 (10.2) ** | 82 (8.5) | 18 (17.5) | 15 (22.4) |
Behavioral outcomes | ||||||||
Currently a smoker | 1078 (14.4) | 748 (14.4) | 82 (13.5) | 248 (14.6) | 125 (9.5) *** | 108 (9.6) | 13 (11.1) | 4 (5.1) |
Physical activity | ** | ** | ||||||
High | 1141 (20.6) | 881 (22.2) | 94 (21.3) | 166 (14.6) | 90 (6.7) | 85 (7.3) | 2 (1.7) | 3 (3.6) |
Moderate | 2930 (52.9) | 2170 (54.8) | 224 (50.8) | 536 (47.1) | 87 (6.4) | 84 (6.9) | 1 (0) | 4 (4.8) |
Low | 1468 (26.5) | 909 (22.9) | 123 (27.9) b | 436 (28.3) ab | 1178 (86.9) | 1048 (86.6) | 116 (98.3) a | 76 (91.6) |
ELSA (n = 7486) | ||||
---|---|---|---|---|
Wave 2 * | Wave 4 * | Wave 6 * | Wave 8 ** | |
Grip Strength | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) |
Total Sample (n = 7486) | 29.2 (11.5) | 28.1 (11.3) | 26.8 (10.6) | 26.5 (10.3) |
Non-Impaired (n = 5180) | 30.3 (11.4) | 28.8 (11.3) | 27.4 (10.6) | 26.8 (10.3) |
Declined (n = 608) | 28.9 (11.8) | 27.7 (11.6) | 26.0 (11.0) | 26.4 (11.1) |
Impaired (n = 1698) | 25.9 (11.2) | 25.2 (10.9) | 24.2 (10.2) | 24.4 (9.9) |
ALEXANDROS (n = 1363) | |||
---|---|---|---|
Wave 1 * | Wave 2 * | Wave 3 * | |
Grip Strength | Mean (SD)/n (%) | Mean (SD)/n (%) | Mean (SD)/n (%) |
Total Sample (n = 1363) | 23.7 (9.5) | 24.2(9.4) | 22.9 (8.5) |
Non-Impaired (n = 1161) | 24.3 (9.6) | 24.7 (9.3) | 23.7 (8.6) |
Declined (n = 118) | 20.5 (7.5) ** | 19.9 (9.1) | 19.2 (6.6) * |
Impaired (n = 84) | 20.8 (8.8) ** | 21.3 (9.7) | 20.3 (8.3) * |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
ELSA Cohort | β | 95%CI | p-Value | β | 95%CI | p-Value | β | 95%CI | p-Value |
Baseline | |||||||||
Non-Impaired | - | - | - | - | - | - | - | - | - |
Declined | −1.45 | −2.40–−0.50 | 0.003 | −0.07 | −0.71–0.57 | 0.826 | 0.15 | −0.49–0.79 | 0.639 |
Impaired | −3.83 | −4.47–−3.19 | <0.001 | −1.06 | −1.53–−0.60 | <0.001 | −0.54 | −1.01–−0.08 | 0.022 |
Rate of change | |||||||||
Non-Impaired | - | - | - | - | - | - | - | - | - |
Declined | −0.17 | −0.27–−0.07 | 0.001 | −0.09 | −0.20–0.01 | 0.087 | −0.10 | −0.21–0.01 | 0.075 |
Impaired | −0.17 | −0.30–−0.04 | 0.010 | −0.10 | −0.23–0.04 | 0.167 | −0.12 | −0.25–0.02 | 0.095 |
BIC | 129,159.80 | 103,165.00 | 96,695.58 | ||||||
-LL(model) | −64,530.64 | −51,485.56 | −48,184.00 | ||||||
Variance a | |||||||||
Within-person | 0.19 | 0.14–0.27 | 0.13 | 0.08–0.22 | 0.11 | 0.06–0.20 | |||
In initial status | 113.68 | 109.66–117.86 | 33.94 | 32.24–35.73 | 30.14 | 28.54–31.84 | |||
In rate of change | −2.06 | −2.47–−1.64 | −0.47 | −0.75–−0.20 | −0.32 | −0.59–−0.06 | |||
ALEXANDROS cohort Baseline | |||||||||
Non-Impaired | - | - | - | - | - | - | - | - | - |
Declined | −3.93 | −5.69–−2.18 | <0.001 | −1.53 | −2.78–−0.29 | 0.016 | −1.69 | −2.96–−0.42 | 0.009 |
Impaired | −3.43 | −5.54–−1.32 | <0.001 | −1.02 | −2.54–0.49 | 0.185 | −1.44 | −3.11–0.24 | 0.093 |
Rate of change | |||||||||
Non-Impaired | - | - | - | - | - | - | - | - | - |
Declined | −0.16 | −0.30–−0.02 | 0.024 | −0.16 | −0.30–−0.01 | 0.030 | −0.15 | −0.29–−0.004 | 0.044 |
Impaired | −0.04 | −0.22–0.15 | 0.683 | −0.08 | −0.27–0.11 | 0.421 | −0.04 | −0.25–0.17 | 0.682 |
BIC | 21,082.31 | 19,470.85 | 18,403.59 | ||||||
-LL(model) | −10,500.94 | −9719.427 | −9172.794 | ||||||
Variance a | |||||||||
Within-person | 0.04 | 0.01–0.21 | 0.04 | 0.01–0.19 | 0.03 | 0.003–0.28 | |||
In initial status | 67.39 | 61.02–74.41 | 22.07 | 18.91–25.77 | 21.30 | 18.04–25.16 | |||
In rate of change | −0.77 | −1.26–−0.29 | −0.57 | −0.93–−0.20 | −0.51 | −0.90–−0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angel, B.; Ajnakina, O.; Albala, C.; Lera, L.; Márquez, C.; Leipold, L.; Bilovich, A.; Dobson, R.; Bendayan, R. Grip Strength Trajectories and Cognition in English and Chilean Older Adults: A Cross-Cohort Study. J. Pers. Med. 2022, 12, 1230. https://doi.org/10.3390/jpm12081230
Angel B, Ajnakina O, Albala C, Lera L, Márquez C, Leipold L, Bilovich A, Dobson R, Bendayan R. Grip Strength Trajectories and Cognition in English and Chilean Older Adults: A Cross-Cohort Study. Journal of Personalized Medicine. 2022; 12(8):1230. https://doi.org/10.3390/jpm12081230
Chicago/Turabian StyleAngel, Bárbara, Olesya Ajnakina, Cecilia Albala, Lydia Lera, Carlos Márquez, Leona Leipold, Avri Bilovich, Richard Dobson, and Rebecca Bendayan. 2022. "Grip Strength Trajectories and Cognition in English and Chilean Older Adults: A Cross-Cohort Study" Journal of Personalized Medicine 12, no. 8: 1230. https://doi.org/10.3390/jpm12081230