Lung Elastance and Microvascularization as Quantitative Non-Invasive Biomarkers for the Aetiological Diagnosis of Lung Consolidations in Children (ELASMIC Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Group 1: BP
- Group 2: Atelectasis
2.2. Outcomes
- Determine normal values for the imaging biomarkers (elastance and microvascularization) in healthy lung parenchyma and within different healthy areas.
- Determine the values for the imaging biomarkers (elastance and microvascularization) in lung consolidation.
- Evaluate differences between the imaging biomarker values on healthy lung vs. consolidated lung.
- Evaluate differences between the imaging biomarker values of group 1 (BP) vs. group 2 (atelectasis). This would allow the establishment of a cut-off point for the etiological differentiation of lung consolidations.
2.3. Inclusion and Exclusion Criteria
2.4. Imaging Acquisition Protocol
2.4.1. Lung Ultrasound Imaging Acquisition
- Disruption of the pleural line
- Hypoechoic consolidation with dynamic and arborizing air bronchogram
- Perilesional B-line enhancements.
- Hypoechoic consolidation with non-dynamic and parallel air bronchogram
- Possible loss of pleural movement adjacent to the consolidation.
2.4.2. Lung Shear Wave Elastography Acquisition
2.4.3. Superb Microvascular Imaging Acquisition
2.5. Variables
2.6. Ethical Considerations and Data Collection
2.7. Statistical Analysis and Sample Size
3. Limitations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koh, J.W.J.C.; Wong, J.J.-M.; Sultana, R.; Wong, P.P.C.; Mok, Y.H.; Lee, J.H. Risk Factors for Mortality in Children with Pneumonia Admitted to the Pediatric Intensive Care Unit: Risk Factors for Mortality in Pediatric Pneumonia. Pediatr. Pulmonol. 2017, 52, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Unicef. Committing to Child Survival: A Promise Renewed: Progress Report 2015; Unicef: New York, NY, USA, 2015; ISBN 978-92-806-4815-7. [Google Scholar]
- Shah, S.N.; Bachur, R.G.; Simel, D.L.; Neuman, M.I. Does This Child Have Pneumonia?: The Rational Clinical Examination Systematic Review. JAMA 2017, 318, 462. [Google Scholar] [CrossRef]
- Harris, M.; Clark, J.; Coote, N.; Fletcher, P.; Harnden, A.; McKean, M.; Thomson, A.; On behalf of the British Thoracic Society Standards of Care Committee. British Thoracic Society Guidelines for the Management of Community Acquired Pneumonia in Children: Update 2011. Thorax 2011, 66, ii1–ii23. [Google Scholar] [CrossRef] [PubMed]
- Iosifidis, E.; Pitsava, G.; Roilides, E. Ventilator-Associated Pneumonia in Neonates and Children: A Systematic Analysis of Diagnostic Methods and Prevention. Future Microbiol. 2018, 13, 1431–1446. [Google Scholar] [CrossRef]
- National Healthcare Safety Network—CDC. Pneumonia (Ventilator-Associated [VAP] and Non-Ventilator- Associated Pneumonia [PNEU]) Event. Device-Associated Module CDC; 2025. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/6pscvapcurrent.pdf (accessed on 19 March 2025).
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H.; Moore, M.R.; et al. The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Breiman, R.F.; Mandell, L.A.; File, T.M., Jr. Community-Acquired Pneumonia in Adults: Guidelines for Management. Clin. Infect. Dis. 1998, 26, 811–838. [Google Scholar] [CrossRef] [PubMed]
- Serigstad, S.; Knoop, S.T.; Markussen, D.L.; Ulvestad, E.; Bjørneklett, R.O.; Ebbesen, M.H.; Kommedal, Ø.; Grewal, H.M.S. Diagnostic Utility of Oropharyngeal Swabs as an Alternative to Lower Respiratory Tract Samples for PCR-Based Syndromic Testing in Patients with Community-Acquired Pneumonia. J. Clin. Microbiol. 2023, 61, e00505-23. [Google Scholar] [CrossRef]
- Demars, Y.; Brahier, T.; Rotzinger, D.C.; Brouillet, R.; Jaton, K.; Opota, O.; Boillat-Blanco, N. Utility of Polymerase Chain Reaction in Nasopharyngeal Swabs for Identifying Respiratory Bacteria Causing Community-Acquired Pneumonia. Microbiol. Spectr. 2022, 10, e00379-22. [Google Scholar] [CrossRef]
- Haaksma, M.E.; Smit, J.M.; Heldeweg, M.L.; Nooitgedacht, J.S.; De Grooth, H.J.; Jonkman, A.H.; Girbes, A.R.; Heunks, L.; Tuinman, P.R. Extended Lung Ultrasound to Differentiate Between Pneumonia and Atelectasis in Critically Ill Patients: A Diagnostic Accuracy Study. Crit. Care Med. 2022, 50, 750–759. [Google Scholar] [CrossRef]
- Jones, B.P.; Tay, E.T.; Elikashvili, I.; Sanders, J.E.; Paul, A.Z.; Nelson, B.P.; Spina, L.A.; Tsung, J.W. Feasibility and Safety of Substituting Lung Ultrasonography for Chest Radiography When Diagnosing Pneumonia in Children. Chest 2016, 150, 131–138. [Google Scholar] [CrossRef]
- Guitart, C.; Bobillo-Perez, S.; Rodríguez-Fanjul, J.; Carrasco, J.L.; Brotons, P.; López-Ramos, M.G.; Cambra, F.J.; Balaguer, M.; Jordan, I. Lung Ultrasound and Procalcitonin, Improving Antibiotic Management and Avoiding Radiation Exposure in Pediatric Critical Patients with Bacterial Pneumonia: A Randomized Clinical Trial. Eur. J. Med. Res. 2024, 29, 222. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Musolino, A.; Ferro, V.; De Rose, C.; Morello, R.; Ventola, C.; Liotti, F.M.; De Sanctis, R.; Chiaretti, A.; Biasucci, D.G.; et al. Role of Lung Ultrasound for the Etiological Diagnosis of Acute Lower Respiratory Tract Infection (ALRTI) in Children: A Prospective Study. J. Ultrasound 2022, 25, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Varshney, T.; Mok, E.; Shapiro, A.J.; Li, P.; Dubrovsky, A.S. Point-of-Care Lung Ultrasound in Young Children with Respiratory Tract Infections and Wheeze. Emerg. Med. J. 2016, 33, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.P.; Tunik, M.G.; Tsung, J.W. Prospective Evaluation of Point-of-Care Ultrasonography for the Diagnosis of Pneumonia in Children and Young Adults. JAMA Pediatr. 2013, 167, 119. [Google Scholar] [CrossRef]
- Yan, J.-H.; Yu, N.; Wang, Y.-H.; Gao, Y.-B.; Pan, L. Lung Ultrasound vs. Chest Radiography in the Diagnosis of Children Pneumonia: Systematic Evidence. Medicine 2020, 99, e23671. [Google Scholar] [CrossRef]
- Martínez-Molina, J.-A.; Martínez-González, M.A.; Vives Santacana, M.; González Delgado, A.D.; Reviejo Jaka, K.; Monedero, P. Diagnostic comparison of bedside lung ultrasound and chest radiography in the intensive care unit. An. Sist. Sanit. Navar. 2024, 47, e1088. [Google Scholar] [CrossRef]
- Rodríguez-Fanjul, J.; Guitart, C.; Bobillo-Perez, S.; Balaguer, M.; Jordan, I. Procalcitonin and Lung Ultrasound Algorithm to Diagnose Severe Pneumonia in Critical Paediatric Patients (PROLUSP Study). A Randomised Clinical Trial. Respir. Res. 2020, 21, 255. [Google Scholar] [CrossRef]
- Alejandre, C.; Balaguer, M.; Guitart, C.; Torrús, I.; Felipe, A.; Launes, C.; Cambra, F.J.; Jordan, I. Procalcitonin-guided Protocol Decreased the Antibiotic Use in Paediatric Patients with Severe Bronchiolitis. Acta Paediatr. 2020, 109, 1190–1195. [Google Scholar] [CrossRef]
- Huerta-Calpe, S.; Salas, B.; Inarejos Clemente, E.J.; Guitart, C.; Balaguer, M.; Jordan, I. Sono-Elastography: An Ultrasound Quantitative Non-Invasive Measurement to Guide Bacterial Pneumonia Diagnosis in Children. Children 2023, 10, 1335. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Lim, C.-K.; Chung, C.-L.; Lin, Y.-T.; Chang, C.-H.; Lai, Y.-C.; Wang, H.-C.; Yu, C.-J. Transthoracic Ultrasound Elastography in Pulmonary Lesions and Diseases. Ultrasound Med. Biol. 2017, 43, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.; Maggini, E.; Mancuso, E.; Lodise, P.; Cantisani, V.; Catalano, C. Clinical Application of Breast Elastography: State of the Art. Eur. J. Radiol. 2014, 83, 429–437. [Google Scholar] [CrossRef]
- Correas, J.-M.; Tissier, A.-M.; Khairoune, A.; Vassiliu, V.; Méjean, A.; Hélénon, O.; Memo, R.; Barr, R.G. Prostate Cancer: Diagnostic Performance of Real-Time Shear-Wave Elastography. Radiology 2015, 275, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Asteria, C.; Giovanardi, A.; Pizzocaro, A.; Cozzaglio, L.; Morabito, A.; Somalvico, F.; Zoppo, A. US-Elastography in the Differential Diagnosis of Benign and Malignant Thyroid Nodules. Thyroid 2008, 18, 523–531. [Google Scholar] [CrossRef]
- Huerta-Calpe, S.; Guitart, C.; Salas, B.; Cambra, F.J.; Jordan, I.; Balaguer, M. Use of Non-Invasive Elastographic and Microvascularization Biomarkers in the Diagnosis and Follow-Up of Children with Severe Bacterial Pneumonia. SciBase Clin. Med. Case Rep. 2024, 2, 1022. [Google Scholar] [CrossRef]
- Feng, J.; Lu, J.; Jin, C.; Chen, Y.; Chen, S.; Guo, G.; Gong, X. Diagnostic Value of Superb Microvascular Imaging in Differentiating Benign and Malignant Breast Tumors: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2648. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Wang, C.; Jin, X. Superb Microvascular Imaging for Distinguishing Thyroid Nodules: A Meta-Analysis (PRISMA). Medicine 2022, 101, e29505. [Google Scholar] [CrossRef] [PubMed]
- Faulkenberry, G.D.; Weeks, D.L. Sample Size Determination for Tolerance Limits. Technometrics 1968, 10, 343–348. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Taylor and Francis: Hoboken, NJ, USA, 2013; ISBN 978-0-8058-0283-2. [Google Scholar]
- Zhang, X.; Qiang, B.; Hubmayr, R.D.; Urban, M.W.; Kinnick, R.; Greenleaf, J.F. Noninvasive Ultrasound Image Guided Surface Wave Method for Measuring the Wave Speed and Estimating the Elasticity of Lungs: A Feasibility Study. Ultrasonics 2011, 51, 289–295. [Google Scholar] [CrossRef]
- Zhang, X.; Osborn, T.; Zhou, B.; Meixner, D.; Kinnick, R.R.; Bartholmai, B.; Greenleaf, J.F.; Kalra, S. Lung Ultrasound Surface Wave Elastography: A Pilot Clinical Study. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2017, 64, 1298–1304. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Y.; Shen, H.; Liu, X. Clinical Applications of Superb Microvascular Imaging in the Liver, Breast, Thyroid, Skeletal Muscle, and Carotid Plaques. J. Ultrasound Med. 2019, 38, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
CXR | LUS | SWE | SMI | |
---|---|---|---|---|
Irradiation | Yes | No | No | No |
Bedside | No | Yes | Yes | Yes |
Reproducibility | Not operator-dependent | Operator-dependent | Operator-dependent | Operator-dependent |
Quantitative data | No | No | Yes | Yes |
Type of information it provides | Anatomy overview and possible pulmonary pathologies | Pleural effusions, pneumothorax, or superficial lung consolidations | Elasticity of the lung tissue | Lung microvascularization, (perfusion and small blood vessels) |
Variables | |
---|---|
Anthropometric and Demographic |
|
Clinical and analytical |
|
Respiratory |
|
Ultrasound |
|
SWE |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Calpe, S.; Guitart, C.; Carrasco, J.L.; Salas, B.; Cambra, F.J.; Jordan, I.; Balaguer, M. Lung Elastance and Microvascularization as Quantitative Non-Invasive Biomarkers for the Aetiological Diagnosis of Lung Consolidations in Children (ELASMIC Study). Diagnostics 2025, 15, 910. https://doi.org/10.3390/diagnostics15070910
Huerta-Calpe S, Guitart C, Carrasco JL, Salas B, Cambra FJ, Jordan I, Balaguer M. Lung Elastance and Microvascularization as Quantitative Non-Invasive Biomarkers for the Aetiological Diagnosis of Lung Consolidations in Children (ELASMIC Study). Diagnostics. 2025; 15(7):910. https://doi.org/10.3390/diagnostics15070910
Chicago/Turabian StyleHuerta-Calpe, Sergi, Carmina Guitart, Josep Lluis Carrasco, Bárbara Salas, Francisco José Cambra, Iolanda Jordan, and Mònica Balaguer. 2025. "Lung Elastance and Microvascularization as Quantitative Non-Invasive Biomarkers for the Aetiological Diagnosis of Lung Consolidations in Children (ELASMIC Study)" Diagnostics 15, no. 7: 910. https://doi.org/10.3390/diagnostics15070910
APA StyleHuerta-Calpe, S., Guitart, C., Carrasco, J. L., Salas, B., Cambra, F. J., Jordan, I., & Balaguer, M. (2025). Lung Elastance and Microvascularization as Quantitative Non-Invasive Biomarkers for the Aetiological Diagnosis of Lung Consolidations in Children (ELASMIC Study). Diagnostics, 15(7), 910. https://doi.org/10.3390/diagnostics15070910