Common Methylenetetrahydrofolate Reductase Polymorphism MTHFR 677C>T (rs1801133), Plasma Homocysteine, and Non-Valvular Atrial Fibrillation in Overweight/Obese Patients: Causality Indicated by Mediation and One-Sample Mendelian Randomization Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Biochemistry
2.3. Genotyping
2.4. Data Analysis
3. Results
3.1. Patient Characteristics
3.2. Conventional Case–Control Analysis
3.3. Effect of MTHFR 677C>T on Plasma tHcy
3.4. Principal Components Analysis for the Purpose of Mediation and MR/IV Analysis
3.5. Mediation Analysis (Details in Supplementary Material E, Table S10 and Figure S5)
3.6. One-Sample MR/IV Analysis
4. Discussion
4.1. Effect of tHcy on NVAF
4.2. MTHFR 677C>T Variant Allele Associates with NVAF
4.3. MTHFR 677C>T Modifies the Effect of tHcy on NVAF
4.4. Hypothesis: In MTHFR 677C>T Variant Carriers, tHcy Might Increase and Decrease the Risk of NVAF
4.5. Other Findings
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| tHcy | homocysteine |
| AF | atrial fibrillation |
| NVAF | non-valvular AF |
| MR | Mendelian randomization |
| NTproBNP | N-terminal pro-B-type natriuretic peptide |
| GWAS | genome-wide association studies |
| MTHFR | methylenetetrahydrofolate reductase |
| SNPs | single nucleotide polymorphisms |
| IKs | slowly activating delayed rectifying potassium current |
| BMI | body mass index |
| DNA | deoxyribonucleic acid |
| PCR | polymerase chain reaction |
| MR/IV | Mendelian randomization/instrumental variable |
| CRP | C-reactive protein |
| LDL-C | low-density lipoprotein cholesterol |
| PCA | principal components analysis |
| OR | odds ratios |
| RR | relative risks |
| HWE | Hardy-Weinberg equilibrium |
| BP | blood pressure |
| MSCT | multislice computed tomography |
| BNP | brain natriuretic peptide |
| Ln | natural logarithm of a number |
| Renal-BNP | creatinine, urea, NT-proBNP |
| Lipid | LDL-C, triglycerides |
| BMI-CRP | body mass index category, CRP and current smoking |
| GMR | geometric means ratios |
| PNIE | pure natural indirect effect |
| TNIE | pure total indirect effect |
| PNDE | pure natural direct effect |
| TNDE | total natural direct effect |
| CAD | coronary artery disease |
| RCTs | randomized trials |
| CVD | cardio/cerebrovascular disease |
| NIE | natural indirect effect |
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Vinter, N.; Cordsen, P.; Johnsen, S.P.; Staerk, L.; Benjamin, E.J.; Frost, L.; Trinquart, L. Temporal trends in lifetime risks of atrial fibrillation and its complications between 2000 and 2022: Danish, nationwide, population based cohort study. BMJ 2024, 385, e077209. [Google Scholar] [CrossRef]
- Wang, N.; Yu, Y.; Sun, Y.; Zhang, H.; Wang, Y.; Chen, C.; Tan, X.; Wang, B.; Lu, Y. Acquired risk factor and incident atrial fibrillation according to age and genetic predisposition. Eur. Heart J. 2021, 44, 4982–4993. [Google Scholar] [CrossRef] [PubMed]
- Borschel, C.S.; Ohlrogge, A.H.; Geelhoed, B.; Niiranen, T.; Havulinna, A.S.; Palosaari, T.; Jousilahti, P.; Rienstra, M.; van der Harst, P.; Blankenberg, S.; et al. Risk prediction of atrial fibrillation in the community combining biomarkers and genetics. Europace 2021, 23, 674–681. [Google Scholar] [CrossRef]
- Roselli, C.; Chaffin, M.D.; Weng, L.C.; Aeschbacher, S.; Ahlberg, G.; Albert, C.M.; Almgren, P.; Alonso, A.; Anderson, C.D.; Aragam, K.G.; et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 2018, 50, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Thorolfsdottir, R.B.; Fritsche, L.G.; Zhou, W.; Skov, M.W.; Graham, S.E.; Herron, T.J.; McCarthy, S.; Schmidt, E.M.; Sveinbjornsson, G.; et al. Biobank-driven genomic discovery yields new insights into atrial fibrillation biology. Nat. Genet. 2018, 50, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.A.; Bonde, A.; Sillesen, M. Genetic risk factors for postoperative atrial fibrillation—A nationwide genome-wide association study (GWAS). Front. Cardiovasc. Med. 2023, 10, 1040757. [Google Scholar] [CrossRef]
- Assum, I.; Krause, J.; Scheinhardt, M.O.; Müller, C.; Hammer, E.; Börschel, C.S.; Völker, U.; Conradi, L.; Geelhoed, B.; Zeller, T.; et al. Tissue-specific multi-omics analysis of atrial fibrillation. Nat. Commun. 2022, 13, 441. [Google Scholar] [CrossRef]
- Kany, S.; Reissmann, B.; Metzner, A.; Kirchhof, P.; Darbar, D.; Schnabel, R.B. Genetics of atrial fibrillation—Practical applications for clinical management: If not now, when and how? Cardiovasc. Res. 2021, 117, 1718–1731. [Google Scholar] [CrossRef]
- Wang, X.; Huang, T.; Jia, J. Proteome-wide Mendelian randomization analysis identified potential drug targets for atrial fibrillation. J. Am. Heart Assoc. 2023, 12, e029003. [Google Scholar] [CrossRef]
- McCaddon, A.; Miller, J.W. Homocysteine—A retrospective and prospective appraisal. Front. Nutr. 2023, 10, 1179807. [Google Scholar] [CrossRef] [PubMed]
- Charalampidis, P.; Teperikidis, E.; Boulmpou, A.; Papadopoulos, C.E.; Potoupni, V.; Tsioni, K.; Rakitzi, P.; Karamitsos, T.; Vassilikos, V. Homocysteine as a predictor of paroxysmal atrial fibrillation-related events: A scoping review of the literature. Diagnostics 2022, 12, 2192. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Alonso, A.; Heckbert, S.R.; Norby, F.L.; Folsom, A.R. Homocysteine and incident atrial fibrillation: The atherosclerosis risk in communities study and the multi-ethnic study of atherosclerosis. Heart Lung Circ. 2019, 28, 615–622. [Google Scholar] [CrossRef]
- Svenningsson, M.M.; Svingen, G.F.T.; Lysne, V.; Ueland, P.M.; Tell, G.S.; Pedersen, E.R.; Dhar, I.; Nilsen, D.W.; Nygård, O. Transsulfuration metabolites and the association with incident atrial fibrillation—An observational cohort study among Norwegian patients with stable angina pectoris. Int. J. Cardiol. 2020, 317, 75–80. [Google Scholar] [CrossRef]
- Wang, S.; Wei, Y.; Hidru, T.H.; Li, D.; Wang, N.; Yang, Y.; Wang, Y.; Yang, X.; Xia, Y. Combined effect of homocysteine and uric acid to identify patients with high risk for subclinical atrial fibrillation. J. Am. Heart Assoc. 2022, 11, e021997. [Google Scholar] [CrossRef]
- Giusti, B.; Gori, A.M.; Marcucci, R.; Sestini, I.; Saracini, C.; Sticchi, E.; Gensini, F.; Fatini, C.; Abbate, R.; Gensini, G.F. Role of C677T and A1298C MTHFR, A2756G MTR and -786 C/T eNOS gene polymorphisms in atrial fibrillation susceptibility. PloSOne 2007, 6, e495. [Google Scholar] [CrossRef]
- van Meurs, J.B.J.; Pare, G.; Schwartz, S.M.; Hazra, A.; Tanaka, T.; Vermeulen, S.H.; Cotlarciuc, I.; Yuan, X.; Mälarstig, A.; Bandinelli, S.; et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am. J. Clin. Nutr. 2013, 98, 668–676. [Google Scholar] [CrossRef]
- Rozen, R. Genetic predisposition to hyperhomocysteinemia: Deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb. Haemost. 1997, 78, 523–526. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Y.; Wang, Z.; Wang, Q.; Zheng, L. No causal association between plasma homocysteine levels and atrial fibrillation: A Mendelian randomization study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 587–591. [Google Scholar] [CrossRef]
- Homocysteine Lowering Trialists Collaboration. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomized trials. BMJ 1998, 316, 894–898. [Google Scholar] [CrossRef]
- Swanson, S.A.; Tiemeier, H.; Ikram, M.A.; Hernan, M.A. Nature as a trialist? Deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology 2017, 28, 653–659. [Google Scholar] [CrossRef]
- Holmes, M.V.; Ala-Korpela, M.; Davey Smith, G. Mendelian randomization in cardiometabolic disease: Challenges in evaluating causality. Nat. Rev. Cardiol. 2017, 14, 577–590. [Google Scholar] [CrossRef]
- Calderon-Larranaga, A.; Saadeh, M.; Hooshmand, B.; Refsum, H.; Smith, A.D.; Marengoni, A.; Vetrano, D.L. Association of homocysteine, methionine, and MTHFR 677C>T polymorphism with rate of cardiovascular multimorbidity development in older adults in Sweden. JAMA Netw. Open 2020, 3, e205316. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Author Correction: Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023, 20, 429. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, L.; Li, Q.; Guo, J.; Cai, B.; Zhou, F.; Chang, D. Central obesity as a potential causal risk factor for atrial fibrillation: Evidence from Mendelian randomization study. Europace 2024, 26, euae061. [Google Scholar] [CrossRef]
- Sha, R.; Baines, O.; Hayes, A.; Tompkins, K.; Kalla, A.M.; Holmes, A.P.; O’Shea, C.; Pavlovic, D. Impact of obesity on atrial fibrillation pathogenesis and treatment options. J. Am. Heart Assoc. 2024, 13, e032277. [Google Scholar] [CrossRef]
- Weng, L.C.; Lunetta, K.L.; Muller-Nurasyid, M.; Smith, A.V.; Thériault, S.; Weeke, P.E.; Barnard, J.; Bis, J.C.; Lyytikäinen, L.-P.; Kleber, M.E.; et al. Genetic interactions with age, sex, body mass index and hypertension in relation to atrial fibrillations: The AFGen consortium. Sci. Rep. 2017, 7, 11303. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Arnar, D.O.; Helgadottir, A.; Gretarsdottir, S.; Holm, H.; Sigurdsson, A.; Jonasdottir, A.; Baker, A.; Thorleifsson, G.; Kristjansson, K.; et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 2007, 448, 353–357. [Google Scholar] [CrossRef]
- Putra, R.M.; Dharmadjati, B.B.; Pikir, B.S.; Maghfirah, I.; Isaridha, I.A.; Arnindita, J.N. Five single-nucleotide polymorphisms in the PITX2 gene as risk factor for atrial fibrillation. Folia Medica Indones. 2023, 59, 85–91. [Google Scholar] [CrossRef]
- Olesen, M.S.; Nielsen, M.W.; Haunso, S.; Svendsen, J.H. Atrial fibrillation: The role of common and rare genetic variants. Eur. J. Human. Genet. 2014, 22, 297–306. [Google Scholar] [CrossRef]
- Andersen, J.H.; Andreasen, L.; Olesen, M.S. Atrial fibrillation—A complex polygenetic disease. Eur. J. Human. Genet. 2021, 29, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Steimle, J.D.; Grisanti Canozo, F.J.; Park, M.; Kadow, Z.A.; Samee, M.A.H.; Martin, J.F. Decoding the PITX2-controlled genetic network in atrial fibrillation. JCI Insight 2022, 7, e158895. [Google Scholar] [CrossRef]
- Olesen, M.S.; Bentzen, B.H.; Nielsen, J.B.; Steffensen, A.B.; David, J.-P.; Jabbari, J.; Jensen, H.K.; Haunsø, S.; Svendsen, J.H.; Schmitt, N. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation. BMC Med. Genet. 2012, 13, 24. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Chen, M.; Zhang, N.N.; Yang, H.-J.; Xu, L.-B.; Rui, Q.; Sun, S.-J.; Yao, J.-L.; Zhou, Y.-F. Association between KCNE1 G38S gene polymorphism and risk of atrial fibrillation. Medicine 2017, 96, e7253. [Google Scholar] [CrossRef]
- Fatini, C.; Sticchi, E.; Genuardi, M.; Sofi, F.; Gensini, F.; Gori, A.M.; Lenti, M.; Michelucci, A.; Abbate, R.; Gensini, G.F. Analysis of mink and eNOS genes as candidate loci for predisposition to non-valvular atrial fibrillation. Eur. Heart J. 2006, 27, 1712–1718. [Google Scholar] [CrossRef]
- Prystupa, A.; Dzida, G.; Myslinski, W.; Malaj, G.; Lorenc, T. MinK gene polymorphism in the pathogenesis of lone atrial fibrillation. Kardiol. Pol. 2006, 64, 1205–1211. [Google Scholar]
- Voudris, K.V.; Apostolakis, S.; Karyofillis, P.; Doukas, K.; Zaravinos, A.; Androutsopoulos, V.P.; Michalis, V.A.; Voudris, V.; Spandidos, D.A. Genetic diversity of the KCNE1 gene and susceptibility to postoperative atrial fibrillation. Am. Heart J. 2014, 167, 274–280.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, C.; Li, S.; Wang, Z.; Wang, Y.; Lai, Y.; Wang, Z.; Lv, W.; Bai, Y.; Yang, Z.; et al. Systolic blood pressure time in target range and incident atrial fibrillation in patients with hypertension: Insight from the SPRINT trial. Hypertension 2023, 80, 2306–2314. [Google Scholar] [CrossRef]
- Young, L.J.; Antwi-Boasiako, S.; Ferrall, J.; Wold, L.E.; Mohler, P.J.; El Refaey, M. Genetic and non-genetic risk factors associated with atrial fibrillation. Life Sci. 2022, 299, 120529. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.B.; Larson, M.G.; Yamamoto, J.F.; Sullivan, L.M.; Pencina, M.J.; Meigs, J.B.; Tofler, G.H.; Selhub, J.; Jacques, P.F.; Wolf, P.A.; et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation 2010, 121, 200–207. [Google Scholar] [CrossRef]
- Staerk, L.; Wang, B.; Preis, S.R.; Larson, M.G.; Lubitz, S.A.; Ellinor, P.T.; McManus, D.D.; Ko, D.; Weng, L.-C.; Lunetta, K.L.; et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: Cohort study based on longitudinal data from the Framingham Heart Study. BMJ 2018, 361, k1453. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta, J.R. Stable weights that balance covariates for estimation with incomplete outcome data. J. Am. Stat. Assoc. 2015, 110, 910–922. [Google Scholar] [CrossRef]
- Wang, Y.; Zubizarreta, J.R. Minimal dispersion approximately balancing weights: Asymptotic properties and practical considerations. Biometrika 2020, 107, 93–105. [Google Scholar] [CrossRef]
- Greifer, N. WeightIt: Weighting for Covariate Balance in Observational Studies. R Package Version 1.4.0.9001. 2025. Available online: https://ngreifer.github.io/WeightIt/ (accessed on 6 November 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for statistical computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 6 November 2025).
- Kiers, H.A. Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. Psychometrika 1991, 56, 197–212. [Google Scholar] [CrossRef]
- Chavent, M.; Kuentz, V.; Labenne, A.; Saracco, J. Multivariate analysis of mixed data. The R package PCAmixdata. arXiv 2022, arXiv:1411.4911. [Google Scholar]
- VanderWeele, T.J.; Ding, P. Sensitivity analysis in observational research: Introducing the E-value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef]
- Fox, M.P.; MacLehose, R.F.; Lash, T.L. Applying Quantitative bias Analysis to Epidemiologic Data, 2nd ed.Springer: Cham, Switzerland, 2021. [Google Scholar]
- Haine, D. R Package, version 1.3.0; The Episensr Package: Basic Sensitivity Analysis of Epidemiological Results; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- VanderWeele, T. Optimal approximate conversions of odds ratios and hazard ratios to risk ratios. Biometrics 2020, 76, 746–752. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Explanation in Causal Inference: Methods for Mediation and Interaction; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Shi, B.; Choirat, C.; Coull, B.A.; VanderWeele, T.J.; Valeri, L. CMAverse: A suite of functions for reproducible causal mediation analysis. Epidemiology 2021, 32, e20–e22. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis; The Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Kutalik, Z.; Holmes, M.V.; Minelli, C.; et al. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 2023, 4, 186. [Google Scholar] [CrossRef]
- Palmer, T.; Spiller, W.; Sanderson, E. OneSampleMR: One Sample Mendelian Randomization and Instrumental Variable Analyses MRC Integrative Epidemiology Unit; University of Bristol: Bristol, UK, 2023; Available online: https://remlapmot.github.io/OneSampleMR/ (accessed on 6 November 2025).
- Gail, M.M.; Haneuse, S. Power and sample size for case-control studies. In Handbook of Statistical Methods for Case-Control Studies; Borgan, O., Breslow, N.E., Chatterjee, N., Gail, M.H., Scott, A., Wild, C.J., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 163–188. [Google Scholar]
- Warnes, G.R. The genetics package. R News 2003, 3, 9–13. [Google Scholar]
- Park, S.P.; Lee, S.; Kim, Y.; Cho, S.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; Lee, J.P.; Joo, K.W.; et al. Causal effects of homocysteine, folate and cobalamin on kidney function: A Mendelian randomization study. Nutrients 2021, 13, 906. [Google Scholar] [CrossRef]
- Gueant Rodriguez, R.M.; Spada, R.; Pooya, S.; Jeannesson, E.; Moreno Garcia, M.A.; Anello, G.; Bosco, P.; Elia, M.; Romano, A.; Alberto, J.M.; et al. Homocysteine predicts increased NT-proBNP through impaired fatty acid oxidation. Int. J. Cardiol. 2013, 167, 768–775. [Google Scholar] [CrossRef]
- Tan, X.; Tang, F.; Tian, W.; Zhang, Y.; Fang, S.; Yang, S.; Wang, S.; Yu, B. Homocysteine metabolism, subclinical myocardial injury, and cardiovascular mortality in the general population. J. Am. Coll. Cardiol. Asia 2024, 4, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Rijnhart, J.J.M.; Valente, M.J.; Smyth, H.L.; MacKinnon, D.P. Statistical mediation analysis with a binary mediator and a binary outcome: The differences between causal and traditional mediation analysis. Prev. Sci. 2023, 24, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Rutten-Jacobs, L.C.A.; Traylor, M.; Adib-Samii, P.; Thijs, V.; Sudlow, C.; Rothwell, P.M. Association of MTHFR C677T genotype with ischemic stroke is confined to cerebral small vessel disease subtype. Stroke 2016, 47, 646–651. [Google Scholar] [CrossRef]
- Wang, M.; Daghlas, I.; Zhang, Z.; Gill, D.; Liu, D. MTFHR polymorphisms, homocysteine elevation, and ischemic stroke susceptibility in East Asian and European populations. Neurology 2025, 104, e210245. [Google Scholar] [CrossRef]
- Carter, A.R.; Sanderson, E.; Hammerton, G.; Richmond, R.C.; Davey Smith, G.; Heron, J.; Taylor, A.E.; Davies, N.M.; Howe, L.D. Mendelian randomization for mediation analysis: Current methods and challenges for implementation. Eur. J. Epidemiol. 2021, 36, 465–478. [Google Scholar] [CrossRef]
- Vansteelandt, S.; Daniel, R.M. Interventional effect for mediation analysis with multiple mediators. Epidemiology 2017, 28, 258–265. [Google Scholar] [CrossRef]
- Mehlig, K.; Leander, K.; de Faire, U.; Nyberg, F.; Berg, C.; Rosengren, A.; Björck, L.; Zetterberg, H.; Blennow, K.; Tognon, G.; et al. The association between plasma homocysteine and coronary heart disease is modified by the MTHFR 677C>T polymorphism. Heart 2013, 99, 1761–1765. [Google Scholar] [CrossRef]
- Miller, E.I.I.I.; Juraschek, S.; Pastor-Barriuso, R.; Bazzano, L.A.; Appel, L.J.; Guallar, E. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. Am. J. Cardiol. 2010, 106, 517–527. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Z.; Chi, X.; Fan, F.; Li, S.; Song, Y.; Zhang, Y.; Qin, X.; Sun, N.; Wang, X.; et al. Folic acid supplementation for stroke prevention: A systematic review and meta-analysis of 21 randomized clinical trial worldwide. Clin. Nutr. 2024, 43, 1706–1716. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.; Zheng, Y.; Muka, T.; Troup, J.; Hu, F.B. Folic acid supplementation and the risk of cardiovascular diseases: A meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2016, 5, e003768. [Google Scholar] [CrossRef]
- Jenkins, D.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.-I.; Josse, R.; Vieth, R.; Blanco Mejia, S.; Viguiliouk, E.; Nishi, S.; Sahye-Pudaruth, S.; et al. Supplemental vitamins and minerals for CVD prevention and treatment. J. Am. Coll. Cardiol. 2018, 71, 2570–2584. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J.; Greenland, S.; Lash, T.L. (Eds.) Case-control studies. In Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; pp. 113–127. [Google Scholar]
- Rothman, K.J.; Greenland, S.; Lash, T.L. (Eds.) Design strategies to improve study accuracy. In Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; pp. 168–182. [Google Scholar]
- GWAS Catalog. The NHGRI-EBI Catalog of Human Genome-Wide Association Studies. Available online: https://www.ebi.ac.uk/gwas/variants/rs1801133 (accessed on 21 May 2025).
- Meng, H.; Huang, S.; Yang, Y.; He, X.; Fei, L.; Xing, Y. Association between MTHFR polymorphisms and the risk of essential hypertension: An updated meta-analysis. Front. Genet. 2021, 12, 698590. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.C.; Hartwig, F.P.; Oliveira, I.O.; Horta, B.L. Is there a causal role of homocysteine in blood pressure? A Mendelian randomization study. Am. J. Clin. Nutr. 2016, 103, 39–49. [Google Scholar] [CrossRef] [PubMed]

| All | Cases | Controls | d | |
|---|---|---|---|---|
| N | 359 | 180 | 179 | --- |
| Age (years) | 59 (21–87) | 65 (59–79) | 47 (39–59) | 1.393 |
| Men | 182 (50.7) | 119 (66.1) | 63 (35.2) | 0.650 |
| Hypertension | 247 (68.8) | 165 (91.7) | 82 (45.8) | 1.138 |
| 3 × sitting office systolic BP (mmHg) | 130 (120–150) | 145 (130–160) | 130 (120–130) | 1.232 |
| 3 × sitting office diastolic BP (mmHg) | 80 (75–90) | 90 (80–95) | 80 (70–80) | 1.058 |
| Ln[N-terminal proBNP (ng/L)] | 117.7 (185) | 249.3 (185) | 55.3 (65.1) | 1.569 |
| Ln[Creatinine (μmol/L)] | 79.7 (23.8) | 87.2 (23.3) | 72.8 (20.6) | 0.825 |
| Ln[Urea (mmol/L)] | 5.53 (29.2) | 6.20 (30.2) | 4.92 (22.6) | 0.887 |
| Ln[C-reactive protein (mg/L)] | 1.9 (89.5) | 2.2 (108) | 1.7 (66.8) | 0.354 |
| LDL-C (mmol/L) | 3.4 ± 1.0 | 3.2 ± 1.1 | 3.6 ± 0.8 | −0.416 |
| Ln[Triglycerides (mmol/L)] | 1.44 (50.7) | 1.37 (49.1) | 1.52 (51.8) | −0.226 |
| Diabetes mellitus | 63 (17.6) | 38 (21.1) | 25 (14.0) | 0.189 |
| Body mass index (kg/m2) | 29.4 (25.0–57.4) | 29.7 (27.5–32.0) | 29.4 (26.6–32.7) | −0.134 |
| Overweight | 198 (55.2) | 96 (53.3) | 102 (57.0) | −0.073 |
| Obese | 161 (44.8) | 84 (46.7) | 77 (43.0) | 0.073 |
| Current smokers | 63 (17.6) | 35 (19.4) | 28 (15.6) | 0.100 |
| Fully abstain from alcohol | 315 (87.7) | 139 (77.2) | 176 (98.3) | −0.680 |
| Coronary disease excluded by the following: | ||||
| History, examination and no risk factors | 78 (21.7) | 0 | 78 (43.6) | --- |
| Treadmill stress test | 222 (61.8) | 128 (71.1) | 94 (52.5) | --- |
| MSCT angiography | 24 (6.7) | 19 (10.6) | 5 (2.8) | --- |
| Coronarography | 35 (9.7) | 33 (18.3) | 2 (1.1) | --- |
| Polymorphisms and metabolites of interest | ||||
| MTHFR 677C>T (rs1801133) 1 | ||||
| CC | 160 (44.6) | 77 (42.7) | 83 (46.4) | −0.072 |
| CT | 155 (43.2) | 82 (45.5) | 73 (40.8) | 0.097 |
| TT | 44 (12.2) | 21 (11.7) | 23 (12.8) | −0.036 |
| Variant carriers | 199 (55.4) | 103 (57.2) | 96 (53.6) | 0.072 |
| Variant allele frequency | 0.338 | 0.289 | 0.332 | --- |
| Ln[Homocysteine (μmol/L)] | 10.5 (31.1) | 11.6 (27.1) | 9.5 (31.8) | 0.665 |
| Ln[Folate(nmol/L)] | 14.8 (39.5) | 15.9 (34.8) | 13.9 (42.7) | 0.358 |
| KCNE1 c.112 A>G (rs1805127) 1 | ||||
| AA | 79 (22.0) | 44 (24.4) | 35 (19.6) | 0.118 |
| AG | 171 (47.6) | 78 (43.3) | 93 (52.0) | −0.173 |
| GG | 109 (30.4) | 58 (32.2) | 51 (28.5) | 0.081 |
| Variant carriers | 280 (78.0) | 136 (75.6) | 144 (80.4) | −0.118 |
| Variant allele frequency | 0.458 | 0.461 | 0.454 | --- |
| PITX2 C>T (2200733) 1 | ||||
| CC | 228 (63.5) | 101 (56.1) | 127 (71.0) | −0.321 |
| CT | 115 (32.0) | 69 (38.3) | 46 (25.7) | 0.273 |
| TT | 16 (4.5) | 10 (5.6) | 6 (3.3) | 0.107 |
| Variant carriers | 131 (36.5) | 79 (43.9) | 52 (29.0) | 0.312 |
| Variant allele frequency | 0.205 | 0.247 | 0.161 | --- |
| Unadjusted | Partially Adjusted 1 | Fully Adjusted 2 | |||||
| OR (95%CI) | RR (95%CI) | OR (95%CI) | RR (95%CI) | OR (95%CI) | RR (95%CI) | E-value 3 | |
| MTHFR 677 C>T variant | 1.16 (0.76–1.75) | 1.08 (0.87–1.32) | 1.01 (0.65–1.56) | 1.00 (0.81–1.25) | 0.98 (0.49–1.97) | 0.99 (0.70–1.40) | --- |
| tHcy (by 33% higher) | 1.98 (1.52–2.59) | 1.41 (1.23–1.61) | 1.75 (1.26–2.42) | 1.32 (1.12–1.56) | 1.00 (0.69–1.45) | 1.00 (0.83–1.20) | --- |
| PITX2 C>T variant | 1.91 (1.23–2.96) | 1.38 (1.11–1.72) | 2.11 (1.31–3.38) | 1.45 (1.14–1.84) | 2.39 (1.13–5.07) | 1.55 (1.06–2.25) | 2.31 |
| KCNE1 C.112A>G variant | 0.75 (0.45–1.24) | 0.87 (0.67–1.11) | 0.64 (0.37–1.09) | 0.80 (0.61–1.04) | 0.77 (0.37–1.59) | 0.88 (0.61–1.26) | --- |
| Cases | Controls | |||||
| Adj. R2 | ΔR2 | GMR (95%CI) | Adj. R2 | ΔR2 | GMR (95%CI) | |
| Model 1 | 0.063 | 0.063 | 0.193 | 0.193 | ||
| Age (5 years) | 1.04 (1.02–1.06) | 1.04 (1.02–1.06) | ||||
| Male sex | 1.06 (0.98–1.15) | 1.21 (1.11–1.32) | ||||
| Model 2 | 0.066 | 0.003 | 0.195 | 0.002 | ||
| Age (5 years) | 1.04 (1.02–1.06) | 1.05 (1.04–1.06) | ||||
| Male sex | 1.05 (0.97–1.14) | 1.21 (1.11–1.32) | ||||
| Current smoker | 1.06 (0.96–1.17) | 1.07 (0.96–1.20) | ||||
| Model 3 | 0.109 | 0.043 | 0.333 | 0.138 | ||
| Age (5 years) | 1.04 (1.02–1.06) | 1.05 (1.04–1.06) | ||||
| Male sex | 1.04 (0.96–1.13) | 1.20 (1.11–1.30) | ||||
| Current smoker | 1.06 (0.96–1.16) | 1.05 (0.94–1.16) | ||||
| Ln(folate) | 0.84 (0.76–0.94) | 0.75 (0.69–0.82) | ||||
| Model 4 | 0.104 | −0.005 | 0.358 | 0.025 | ||
| Age (5 years) | 1.04 (1.02–1.06) | 1.05 (1.03–1.06) | ||||
| Male sex | 1.04 (0.96–1.13) | 1.19 (1.10–1.28) | ||||
| Current smoker | 1.06 (0.96–1.16) | 1.05 (0.95–1.17) | ||||
| Ln(folate) | 0.84 (0.76–0.94) | 0.76 (0.69–0.83) | ||||
| MTHFR variant | 1.00 (0.93–1.08) | 1.11 (1.03–1.20) | ||||
| RR/OR (95%CI) | E-Value | Corrected | |
|---|---|---|---|
| Model 1 ‡ (causal): MTHFR—tHcy—NVAF (Renal-BNP included as a confounder) | |||
| Pure natural direct effect (PNDE) | 1.008 (0.805–1.255) | --- | 1.021 |
| Total natural direct effect (TNDE) | 0.927 (0.798–1.156) | --- | 0.933 |
| Pure natural indirect effect (PNIE) | 1.074 (1.025–1.116) | 1.335 | 1.080 |
| Total natural indirect effect (TNIE) | 0.988 (0.968–1.000) | --- | 0.987 |
| Total effect | 0.995 (0.802–1.254) | --- | 1.008 |
| Model 2 ‡ (causal): MTHFR—tHcy—NVAF (Renal-BNP not in the model) | |||
| Pure natural direct effect (PNDE) | 1.063 (0.850–1.243) | --- | 1.042 |
| Total natural direct effect (TNDE) | 0.965 (0.829–1.154) | --- | 0.945 |
| Pure natural indirect effect (PNIE) | 1.100 (1.042–1.146) | 1.431 | 1.102 |
| Total natural indirect effect (TNIE) | 0.998 (0.972–1.019) | --- | 0.999 |
| Total effect | 1.062 (0.845–1.264) | --- | 1.041 |
| Model 3 ‡ (traditional): MTHFR—tHcy-RenalBNP-NVAF | |||
| Direct effect | 1.127 (0.538–2.359) | --- | --- |
| Indirect effect | 1.032 (1.016–1.093) | 1.140 | --- |
| Total effect | 1.129 (0.888–1.477) | --- | --- |
| RR (95%CI) | E-Value | Corrected | |
|---|---|---|---|
| Model 1 ‡: All patients (N = 359) | |||
| Pure natural direct effect (PNDE) | 1.174 (0.639–1.578) | --- | 1.185 |
| Total natural direct effect (TNDE) | 1.171 (0.687–1.579) | --- | 1.151 |
| Pure natural indirect effect (PNIE) | 1.233 (1.077–1.588) | 1.770 | 1.245 |
| Total natural indirect effect (TNIE) | 1.120 (1.006–1.646) | 1.690 | 1.210 |
| Total effect | 1.406 (0.832–2.019) | --- | 1.434 |
| Model 2 ‡: MTHFR 677C>T wild-type subjects (n = 160) | |||
| Pure natural direct effect (PNDE) | 3.929 (1.466–5.834) | 7.322 | 4.616 |
| Total natural direct effect (TNDE) | 4.683 (1.186–7.777) | 8.838 | 5.472 |
| Pure natural indirect effect (PNIE) | 1.215 (0.843–1.441) | --- | 1.246 |
| Total natural indirect effect (TNIE) | 1.448 (0.663–2.062) | --- | 1.477 |
| Total effect | 5.691 (1.503–10.20) | 10.86 | 6.817 |
| Model 3 ‡: MTHFR 677C>T variant carriers (n = 199) | |||
| Pure natural direct effect (PNDE) | 0.807 (0.673–1.111) | --- | 0.789 |
| Total natural direct effect (TNDE) | 0.838 (0.718–1.310) | --- | 0.823 |
| Pure natural indirect effect (PNIE) | 1.189 (1.050–1.413) | 1.664 | 1.208 |
| Total natural indirect effect (TNIE) | 1.235 (1.085–1.755) | 1.773 | 1.261 |
| Total effect | 0.997 (0.754–1.434) | --- | 0.995 |
| GMR (95%CI) | E-Value | Corrected | |
|---|---|---|---|
| Model 1 ‡ (Renal-BNP as confounder) | |||
| Pure natural direct effect (PNDE) | 1.003 (0.965, 1.044) | --- | 1.002 |
| Total natural direct effect (TNDE) | 1.006 (0.973, 1.058) | --- | 1.005 |
| Pure natural indirect effect (PNIE) | 1.003 (0.998, 1.014) | --- | 1.002 |
| Total natural indirect effect (TNIE) | 1.006 (0.998, 1.021) | --- | 1.005 |
| Total effect | 1.009 (0.979, 1.068) | --- | 1.007 |
| Model 2 ‡ (Renal-BNP not in the model) | |||
| Pure natural direct effect (PNDE) | 1.002 (0.867–1.170) | --- | 1.002 |
| Total natural direct effect (TNDE) | 1.004 (0.997–1.026) | --- | 1.004 |
| Pure natural indirect effect (PNIE) | 1.006 (0.998–1.026) | --- | 1.007 |
| Total natural indirect effect (TNIE) | 1.008 (0.998–1.027) | --- | 1.008 |
| Total effect | 1.010 (0.980–1.074) | --- | 1.010 |
| Effect (RR or GMR) | E-Value | |
|---|---|---|
| Model 1: Forward association tHcy-NVAF (MTHFR 677C>T instrument, tHcy exposure, and NVAF outcome) | ||
| Effect of exposure on outcome | ||
| Ln(total plasma homocysteine) | 2.333 (1.063–5.120) | 4.100 |
| Effects of covariates (confounders) on outcome | ||
| PITX2 C>T variant allele | 1.492 (1.158–1.920) | 2.350 |
| Male sex | 1.890 (1.454–2.457) | 3.190 |
| “Lipid” (from principal components analysis) | 0.867 (0.780–0.963) | 0.637 |
| Model 2: Reverse association tHcy-NVAF (PITX2 C>T instrument, NVAF exposure, and ln[tHcy] outcome) | ||
| Effect of exposure on outcome | ||
| NVAF | 1.045 (0.573–1.907) | --- |
| Effects of covariates (confounders) on outcome | ||
| MTHFR 677 C>T variant allele | 1.080 (1.018–1.147) | 1.380 |
| KCNE1 112A>G variant allele | 1.043 (0.965–1.126) | --- |
| Blood pressure” from principal components analysis | 1.032 (0.924–1.154) | --- |
| “BMI-CRP” from principal components analysis | 1.020 (0.987–1.054) | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levicki, R.; Trkulja, V.; Pašara, V.; Prepolec, I.; Matovinović, M.; Ganoci, L.; Šegulja, D.; Lovrić Benčić, M.; Božina, T. Common Methylenetetrahydrofolate Reductase Polymorphism MTHFR 677C>T (rs1801133), Plasma Homocysteine, and Non-Valvular Atrial Fibrillation in Overweight/Obese Patients: Causality Indicated by Mediation and One-Sample Mendelian Randomization Analysis. Diagnostics 2025, 15, 2870. https://doi.org/10.3390/diagnostics15222870
Levicki R, Trkulja V, Pašara V, Prepolec I, Matovinović M, Ganoci L, Šegulja D, Lovrić Benčić M, Božina T. Common Methylenetetrahydrofolate Reductase Polymorphism MTHFR 677C>T (rs1801133), Plasma Homocysteine, and Non-Valvular Atrial Fibrillation in Overweight/Obese Patients: Causality Indicated by Mediation and One-Sample Mendelian Randomization Analysis. Diagnostics. 2025; 15(22):2870. https://doi.org/10.3390/diagnostics15222870
Chicago/Turabian StyleLevicki, Rea, Vladimir Trkulja, Vedran Pašara, Ivan Prepolec, Martina Matovinović, Lana Ganoci, Dragana Šegulja, Martina Lovrić Benčić, and Tamara Božina. 2025. "Common Methylenetetrahydrofolate Reductase Polymorphism MTHFR 677C>T (rs1801133), Plasma Homocysteine, and Non-Valvular Atrial Fibrillation in Overweight/Obese Patients: Causality Indicated by Mediation and One-Sample Mendelian Randomization Analysis" Diagnostics 15, no. 22: 2870. https://doi.org/10.3390/diagnostics15222870
APA StyleLevicki, R., Trkulja, V., Pašara, V., Prepolec, I., Matovinović, M., Ganoci, L., Šegulja, D., Lovrić Benčić, M., & Božina, T. (2025). Common Methylenetetrahydrofolate Reductase Polymorphism MTHFR 677C>T (rs1801133), Plasma Homocysteine, and Non-Valvular Atrial Fibrillation in Overweight/Obese Patients: Causality Indicated by Mediation and One-Sample Mendelian Randomization Analysis. Diagnostics, 15(22), 2870. https://doi.org/10.3390/diagnostics15222870

