TG/HDL-C Ratio as a Superior Diagnostic Biomarker for Coronary Plaque Burden in First-Time Acute Coronary Syndrome
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
- Age ≥ 18 years at presentation;
- According to current ESC/AHA guidelines, the clinical presentation is consistent with acute coronary syndrome (STEMI, NSTEMI, or unstable angina);
- Untreated state (absence of prior use of lipid-lowering medicines, antiplatelet drugs other than aspirin for primary prevention, or other cardiovascular therapies);
- First acute coronary syndrome presentation (no previous myocardial infarction, percutaneous coronary intervention, or coronary artery bypass grafting);
- Complete admission lipid profile obtained within 24 h of symptom onset;
- Adequate angiographic images suitable for quantitative coronary analysis.
- Previous history of coronary artery disease, including prior myocardial infarction, PCI, or coronary artery bypass grafting;
- Use of any lipid-lowering medications, including statins, ezetimibe, PCSK9 inhibitors, or fibrates;
- Severe renal dysfunction (estimated glomerular filtration rate < 30 mL/min/1.73 m2 or requiring dialysis);
- Severe hepatic dysfunction;
- Active infection or inflammatory conditions that could affect lipid metabolism;
- Malignancy with ongoing treatment or recent chemotherapy (within 6 months);
- Pregnancy or lactation;
- Inability to undergo coronary angiography due to contrast allergy or other contraindications;
- Incomplete clinical data or lipid profile measurements;
- Poor angiographic image quality prevents accurate quantitative analysis.
2.2. Diagnostic Biomarker Assessment
- Total cholesterol: measured using the cholesterol esterase/cholesterol oxidase method;
- Triglycerides: measured using the glycerol phosphate oxidase method;
- HDL cholesterol: measured using a direct homogeneous assay with selective solubilization.
- TG/HDL-C ratio: triglycerides (mg/dL) divided by HDL cholesterol (mg/dL);
- TC/HDL-C ratio: total cholesterol (mg/dL) divided by HDL cholesterol (mg/dL);
- LDL-C/HDL-C ratio: LDL cholesterol (mg/dL) divided by HDL cholesterol (mg/dL).
2.3. Statistical Analysis
- ANOVA with Bonferroni correction applied (p < 0.01 threshold to adjust for comparisons across 5 lesion groups, calculated as 0.05/5). Correlation: Pearson and Spearman. Regression: (1) ordinal regression (lesion count), (2) logistic regression (≥3 vs. <3 lesions). ROC analysis with Youden index-derived thresholds. Subgroup analyses were performed (sex, diabetes, age).
- Pearson correlation was used for parametric assumptions, and Spearman correlation was used for ranked or ordinal data. Spearman was mostly utilized for the ordinal lesion count.
- Multivariable linear regression (considering lesion count as almost continuous for exploratory analysis), adjusting for age, sex, hypertension, diabetes, and smoking.
- Sensitivity/specificity analysis for TG/HDL thresholds (Youden index)
- Assumptions (linearity, normality, and homoscedasticity) were verified. p < 0.05 is significant. SPSS v23.0. The sample size provided >80% power to detect r ≥ 0.2 (α = 0.05).
- Missing Data Management: The primary method for addressing missing data was complete case analysis, due to the retrospective design of the study and the high completeness of essential variables. Sensitivity analyses employing multiple imputations were intended if missing data were over 5% for any critical variable.
3. Results
3.1. Baseline Characteristics
3.2. Diagnostic Performance of Lipid Biomarkers
3.3. Diagnostic Accuracy of TG/HDL-C Ratio
- >3.0: Sensitivity 82.1%, Specificity 65.3%, PPV 71.4%, NPV 77.8%
- >3.3: Sensitivity 76.5%, Specificity 76.8%, PPV 78.9%, NPV 74.2%
- >4.0: Sensitivity 68.4%, Specificity 89.5%, PPV 88.7%, NPV 70.1%
- >4.5: Sensitivity 52.1%, Specificity 93.7%, PPV 91.3%, NPV 61.2%
3.4. Multivariable Analysis
3.4.1. Independent Predictor Analysis
3.4.2. Subgroup Analysis Results
3.5. Cost-Effectiveness and Implementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | Acute Coronary Syndrome |
ASCVD | Atherosclerotic Cardiovascular Disease |
AUC | Area Under the Curve |
CAD | Coronary Artery Disease |
CHD | Coronary Heart Disease |
HDL-C | High-Density Lipoprotein Cholesterol |
LDL-C | Low-Density Lipoprotein Cholesterol |
MetS | Metabolic Syndrome |
NPV | Negative Predictive Value |
NSTEMI | Non-ST-Elevation Myocardial Infarction |
OCT | Optical Coherence Tomography |
PAD | Peripheral Artery Disease |
PCI | Percutaneous Coronary Intervention |
PCSK9 | Proprotein Convertase Subtilisin/Kexin Type 9 |
PPV | Positive Predictive Value |
QCA | Quantitative Coronary Analysis |
sdLDL | Small Dense Low-Density Lipoprotein |
STEMI | ST-Segment Elevation Myocardial Infarction |
TC | Total Cholesterol |
TGs | Triglycerides |
References
- Otrante, A.; Bounafaa, A.; Berrougui, H.; Essamadi, A.K.; Nguyen, M.; Fülöp, T.; Khalil, A. Small Dense LDL Level and LDL/HDL Distribution in Acute Coronary Syndrome Patients. Biomedicines 2023, 11, 1198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guijarro, C.; Cosin-Sales, J. LDL cholesterol and atherosclerosis: The evidence. Clin. Investig. Arter. Publ. Off. Soc. Esp. Arterioscler. 2021, 33 (Suppl. S1), 25–32. [Google Scholar]
- Welty, F.K. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr. Cardiol. Rep. 2013, 15, 400. [Google Scholar] [CrossRef]
- Bulnes, J.F.; González, L.; Velásquez, L.; Orellana, M.P.; Venturelli, P.M.; Martínez, G. Role of inflammation and evidence for the use of colchicine in patients with acute coronary syndrome. Front. Cardiovasc. Med. 2024, 11, 1356023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Writing, C.; Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Covington, A.M.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C., Jr.; et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 80, 1366–1418. [Google Scholar]
- Duran, E.K.; Aday, A.W.; Cook, N.R.; Buring, J.E.; Ridker, P.M.; Pradhan, A.D. Triglyceride-Rich Lipoprotein Cholesterol, Small Dense LDL Cholesterol, and Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 75, 2122–2135. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergmark, B.A.; Mathenge, N.; Merlini, P.A.; Lawrence-Wright, M.B.; Giugliano, R.P. Acute coronary syndromes. Lancet 2022, 399, 1347–1358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tani, S. The Ratio of Triglyceride to High-density Lipoprotein Cholesterol as an Indicator of Risk Stratification for Atherosclerotic Cardiovascular Disease in a Clinical Setting. Intern. Med. 2020, 59, 2639–2640. [Google Scholar] [CrossRef]
- Onea, H.L.; Spinu, M.; Homorodean, C.; Ober, M.C.; Olinic, M.; Lazar, F.L.; Achim, A.; Tataru, D.A.; Olinic, D.M. Superficial Calcified Plates Associated to Plaque Erosions in Acute Coronary Syndromes. Life 2023, 13, 1732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, H.; Abtahian, F.; Aguirre, A.D.; Lee, S.; Chia, S.; Lowe, H.; Kato, K.; Yonetsu, T.; Vergallo, R.; Hu, S.; et al. In vivo diagnosis of plaque erosion and calcified nodules in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol. 2013, 62, 1748–1758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sugiyama, T.; Yamamoto, E.; Fracassi, F.; Lee, H.; Yonetsu, T.; Kakuta, T.; Soeda, T.; Saito, Y.; Yan, B.P.; Kurihara, O.; et al. Calcified Plaques in Patients with Acute Coronary Syndromes. JACC Cardiovasc. Interv. 2019, 12, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, F.; Gonzalo, N.; Nuñez-Gil, I.; Bañuelos, C. Coronary thrombosis from large, nonprotruding, superficial calcified coronary plaques. J. Am. Coll. Cardiol. 2013, 62, 2254. [Google Scholar] [CrossRef]
- Pogran, E.; Burger, A.L.; Zweiker, D.; Kaufmann, C.C.; Muthspiel, M.; Rega-Kaun, G.; Wenkstetten-Holub, A.; Wojta, J.; Drexel, H.; Huber, K. Lipid-Lowering Therapy after Acute Coronary Syndrome. J. Clin. Med. 2024, 13, 2043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Chen, X. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation. Front. Cardiovasc. Med. 2023, 10, 1138787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, N.; Cho, J.M.; Yang, I.H. Recurrent Acute Coronary Syndrome in Young Man with Familial Hypercholesterolemia: Efficacy of Evolocumab Add-On Treatment Demonstrated via Serial Coronary Angiography. Biomedicines 2024, 12, 1113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lagace, T.A. PCSK9 and LDLR Degradation. Curr. Opin. Lipidol. 2014, 25, 387–393. [Google Scholar] [CrossRef]
- Cohen, M.; Visveswaran, G. Defining and managing patients with non-ST-elevation myocardial infarction: Sorting through type 1 vs. other types. Clin. Cardiol. 2020, 43, 242–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Z.V.; Lam, H. Aggressive lipid-lowering therapy after percutaneous coronary intervention—For whom and how?: Aggressive lipid-lowering therapy after PCI. AsiaIntervention 2022, 8, 24–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, G.; Yu, G.; Zheng, M.; Peng, W.; Li, L. Recent Advances for Dynamic-Based Therapy of Atherosclerosis. Int. J. Nanomedicine 2023, 18, 3851–3878. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Rong, C.; Qi, P.; Bai, W.; Yao, W.; Zhang, Y.; Dang, Y. LDL-C and Total Stent Length are Independent Predictors of Periprocedural Myocardial Injury and Infarction for Unstable Angina Patients Undergoing Elective Percutaneous Coronary Intervention. Int. J. Gen. Med. 2021, 14, 1357–1365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. ESC Scientific Document Group. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826, Erratum in Eur. Heart J. 2024, 45, 1145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Qiu, M.; Wang, K.; Li, J.; Li, Y.; Han, Y. Triglyceride to high density lipoprotein cholesterol ratio and major adverse cardiovascular events in ACS patients undergoing PCI. Sci. Rep. 2024, 14, 31752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koide, Y.; Miyoshi, T.; Nishihara, T.; Nakashima, M.; Ichikawa, K.; Miki, T.; Osawa, K.; Ito, H. The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosmas, C.E.; Silverio, D.; Tsomidou, C.; Salcedo, M.D.; Montan, P.D.; Guzman, E. The Impact of Insulin Resistance and Chronic Kidney Disease on Inflammation and Cardiovascular Disease. Clin. Med. Insights Endocrinol. Diabetes 2018, 11, 1179551418792257. [Google Scholar] [CrossRef]
- Atamas, S.P.; Chapoval, S.P.; Keegan, A.D. Cytokines in chronic respiratory diseases. F1000 Biol. Rep. 2013, 5, 3. [Google Scholar] [CrossRef]
- Li, Y.; Deng, S.; Liu, B.; Yan, Y.; Du, J.; Li, Y.; Jing, X.; Liu, Y.; Wang, J.; Du, J.; et al. The effects of lipid-lowering therapy on coronary plaque regression: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 7999. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, X.; Huang, J.; Lin, H.; Chen, P. Apelin-to-total cholesterol ratio predicts long-term major adverse cardiovascular events in ST-elevation myocardial infarction patients after primary percutaneous coronary intervention: A retrospective cohort analysis. BMC Cardiovasc. Disord. 2025, 25, 478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dimitriadis, K.; Pyrpyris, N.; Iliakis, P.; Beneki, E.; Adamopoulou, E.; Papanikolaou, A.; Konstantinidis, D.; Fragkoulis, C.; Kollias, A.; Aznaouridis, K.; et al. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes. J. Clin. Med. 2024, 13, 5040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, T.T.; Gao, Y.; Zheng, Y.Y.; Ma, Y.T.; Xie, X. Atherogenic index of plasma (AIP): A novel predictive indicator for the coronary artery disease in postmenopausal women. Lipids Health Dis. 2018, 17, 197. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, J.; Wu, Z.; Lv, Y.; Li, W. Predictive value of the atherogenic index of plasma for chronic total occlusion before coronary angiography. Clin. Cardiol. 2021, 44, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Bhattacharjee, J.; Bhatnagar, M.K.; Tyag, S. Atherogenic index of plasma, Castelli risk index and atherogenic coefficient- new parameters in assessing cardiovascular risk. Int. J. Pharm. Biol. Sci. 2013, 3, 354–364. [Google Scholar]
- Mortensen, M.B.; Dzaye, O.; Bøtker, H.E.; Jensen, J.M.; Maeng, M.; Bentzon, J.F.; Kanstrup, H.; Sørensen, H.T.; Leipsic, J.; Blankstein, R.; et al. Low-Density Lipoprotein Cholesterol Is Predominantly Associated With Atherosclerotic Cardiovascular Disease Events in Patients With Evidence of Coronary Atherosclerosis: The Western Denmark Heart Registry. Circulation 2023, 147, 1053–1063. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, M.; Yang, Y.; Dong, S.L.; Zhao, C.; Yang, F.; Yuan, Y.-F.; Liao, Y.-H.; He, S.-L.; Liu, K.; Wei, F.; et al. Effect of Colchicine on Coronary Plaque Stability in Acute Coronary Syndrome as Assessed by Optical Coherence Tomography: The COLOCT Randomized Clinical Trial. Circulation 2024, 150, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Priest, V.L.; Scuffham, P.A.; Hachamovitch, R.; Marwick, T.H. Cost-effectiveness of coronary computed tomography and cardiac stress imaging in the emergency department: A decision analytic model comparing diagnostic strategies for chest pain in patients at low risk of acute coronary syndromes. JACC Cardiovasc. Imaging 2011, 4, 549–556. [Google Scholar] [CrossRef]
- Baron, S.J.; Korjian, S.; Gibson, C.M.; Reynolds, M.R. Cost-Effectiveness of the CADScor System in Low-Risk Patients Presenting to the Emergency Department with Chest Pain. PharmacoEconomics-Open, 2025; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, S.N.; Her, S.H.; Yoo, K.D.; Moon, K.W.; Moon, D.; Jang, W.Y. Long-Term Clinical Impact of Patients with Multi-Vessel Non-Obstructive Coronary Artery Disease. Life 2023, 13, 2119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variable | 0 Lesions (n = 86) | 1 Lesion (n = 104) | 2 Lesions (n = 74) | 3 Lesions (n = 62) | ≥4 Lesions (n = 50) | p-Value * |
---|---|---|---|---|---|---|
Diagnostic Cohort | ||||||
Age (years) | 62.1 ± 9.8 | 64.3 ± 10.2 | 65.8 ± 9.7 | 66.2 ± 10.5 | 67.5 ± 9.9 | 0.12 |
Male sex, n (%) | 60 (69.8) | 75 (72.1) | 50 (67.6) | 40 (64.5) | 30 (60.0) | 0.45 |
Cardiovascular Risk | ||||||
Hypertension, n (%) | 50 (58.1) | 60 (57.7) | 45 (60.8) | 35 (56.5) | 25 (50.0) | 0.67 |
Diabetes, n (%) | 30 (34.9) | 40 (38.5) | 25 (33.8) | 20 (32.3) | 15 (30.0) | 0.89 |
Current smoking, n (%) | 40 (46.5) | 50 (48.1) | 35 (47.3) | 30 (48.4) | 20 (40.0) | 0.75 |
ACS Presentation | ||||||
STEMI, n (%) | 54 (62.8) | 62 (59.6) | 48 (64.9) | 41 (66.1) | 35 (70.0) | 0.75 |
NSTEMI, n (%) | 30 (34.9) | 40 (38.5) | 25 (33.8) | 20 (32.3) | 15 (30.0) | 0.85 |
Unstable angina, n (%) | 2 (2.3) | 2 (1.9) | 1 (1.4) | 1 (1.6) | 0 (0.0) | 0.80 |
Biomarker | 0 Lesions | 1 Lesion | 2 Lesions | 3 Lesions | ≥4 Lesions | p-Value (Uncorrected) | p-Value (Bonferroni) | Correlation (r) |
---|---|---|---|---|---|---|---|---|
LDL-C | 110 ± 25 | 115 ± 30 | 120 ± 35 | 125 ± 40 | 130 ± 45 | 0.03 | 0.12 | 0.15 |
HDL-C | 42 ± 8 | 41 ± 7 | 40 ± 9 | 39 ± 8 | 38 ± 7 | 0.25 | NS | −0.12 |
TG | 140 ± 50 | 160 ± 60 | 175 ± 65 | 190 ± 70 | 200 ± 80 | 0.20 | NS | 0.18 |
LDL/HDL | 2.6 ± 0.7 | 2.8 ± 0.8 | 3.0 ± 0.9 | 3.2 ± 1.0 | 3.4 ± 1.1 | 0.04 | 0.15 | 0.19 |
TC/HDL | 3.8 ± 0.9 | 4.3 ± 1.0 | 4.5 ± 1.1 | 5.0 ± 1.2 | 5.3 ± 1.3 | 0.02 | 0.08 | 0.25 |
TG/HDL | 3.3 ± 1.0 | 4.0 ± 1.2 | 4.4 ± 1.4 | 4.9 ± 1.6 | 5.3 ± 1.8 | 0.01 | 0.009 | 0.32 |
Threshold | Sensitivity | Specificity | PPV | NPV | AUC | Clinical Utility |
---|---|---|---|---|---|---|
>3.0 | 82% | 65% | 71% | 78% | 0.68 | Rule out low burden |
>3.3 | 77% | 77% | 79% | 74% | 0.71 | Low-risk threshold |
>3.7 | 70% | 81% | 82% | 69% | 0.73 | Intermediate screening |
>4.0 | 68% | 90% | 89% | 70% | 0.72 | High-risk threshold |
>4.5 | 52% | 94% | 91% | 61% | 0.70 | Confirmatory |
Predictor | β (Ordinal) | p | OR (Logistic ≥ 3 Lesions) | 95% CI | p |
---|---|---|---|---|---|
TG/HDL-C | 0.18 | 0.02 | 1.25 | 1.09–1.42 | 0.004 |
LDL-C | 0.14 | 0.04 | 1.10 | 0.99–1.22 | 0.07 |
Age | 0.09 | 0.11 | 1.08 | 0.97–1.20 | 0.14 |
Male sex | 0.11 | 0.09 | 1.12 | 0.87–1.44 | 0.36 |
Hypertension | 0.10 | 0.12 | 1.11 | 0.86–1.41 | 0.31 |
Diabetes | 0.13 | 0.09 | 1.15 | 0.88–1.51 | 0.28 |
Smoking | 0.08 | 0.15 | 1.09 | 0.82–1.45 | 0.42 |
Subgroup | n | r | p |
---|---|---|---|
Diabetes | 120 | 0.35 | <0.001 |
Non-diabetes | 256 | 0.29 | <0.001 |
Age < 65 | 180 | 0.31 | <0.001 |
Age ≥ 65 | 196 | 0.33 | <0.001 |
Male | 264 | 0.31 | <0.001 |
Female | 112 | 0.34 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydin, F.; Murat, B.; Murat, S.; Dağhan, H. TG/HDL-C Ratio as a Superior Diagnostic Biomarker for Coronary Plaque Burden in First-Time Acute Coronary Syndrome. Diagnostics 2025, 15, 2222. https://doi.org/10.3390/diagnostics15172222
Aydin F, Murat B, Murat S, Dağhan H. TG/HDL-C Ratio as a Superior Diagnostic Biomarker for Coronary Plaque Burden in First-Time Acute Coronary Syndrome. Diagnostics. 2025; 15(17):2222. https://doi.org/10.3390/diagnostics15172222
Chicago/Turabian StyleAydin, Fatih, Bektaş Murat, Selda Murat, and Hazal Dağhan. 2025. "TG/HDL-C Ratio as a Superior Diagnostic Biomarker for Coronary Plaque Burden in First-Time Acute Coronary Syndrome" Diagnostics 15, no. 17: 2222. https://doi.org/10.3390/diagnostics15172222
APA StyleAydin, F., Murat, B., Murat, S., & Dağhan, H. (2025). TG/HDL-C Ratio as a Superior Diagnostic Biomarker for Coronary Plaque Burden in First-Time Acute Coronary Syndrome. Diagnostics, 15(17), 2222. https://doi.org/10.3390/diagnostics15172222