Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation
Abstract
1. Introduction
2. Non-Coding RNA
2.1. Small Non-Coding RNAs
2.1.1. Transfer RNAs
2.1.2. Small Nuclear RNAs
2.1.3. Small Nucleolar RNAs
2.1.4. PIWI-Interacting RNAs
2.1.5. Small Interfering RNAs
2.1.6. MicroRNAs
2.2. Long Non-Coding RNAs
2.2.1. Long Intergenic Non-Coding RNAs
2.2.2. Antisense Long Non-Coding RNAs
2.2.3. Circular RNAs
2.2.4. Pseudogenes
3. Eosinophil Biology
3.1. Eosinophils’ Development Control by Non-Coding RNA
3.2. Functional Modulation of Eosinophil Activity
3.3. Eosinophil-Derived Exosomes and Their Functional Roles in Asthma
4. Non-Coding RNAs in the Regulation of Airway Inflammation
ncRNA Name (type) | Target Cells/ Affected Cells | Main Target(s)/Gene(s) | Role/Function | Upregulated/Downregulated | Reference |
---|---|---|---|---|---|
miR-223 (miRNA) | Eosinophil progenitor cells | IGF1R | Regulates eosinophil development; limits progenitor proliferation and promotes differentiation | Upregulated during eosinophilopoiesis and in asthma/eosinophilic disorders | [82,83,84] |
miR-21 (miRNA) | Eosinophil progenitors | PDCD4, PTEN, Psrc1 (predicted) | Promotes cell proliferation and survival, highest expression in eosinophilic asthma. Antagomir therapy inhibits Th2 activation | Upregulated during eosinophil development and in allergic airway inflammation | [83,85] |
Plasma | Not specified | Specific marker for eosinophilic asthma | Increase stepwise from noneosinophilic to eosinophilic asthma | [115] | |
miR-21 * | Mature eosinophils (GM-CSF stimulated) | ERK signaling pathway | Prolongs eosinophil survival and protects from apoptosis | Upregulated upon GM-CSF stimulation | [86] |
miR-203, miR-130, miR-125b (miRNAs) | Not specified | Not specified | Not specified | Downregulated in mild asthma | [100] |
miR-371a-5p (miRNA) | Not specified | Not specified | Linked to bronchiolitis, asthma, COPD | Differentially increased in bronchiolitis, asthma, COPD | [105] |
miR-16 (miRNA) | Mouse airway (HDM model) | Not specified | Not specified | Upregulated in allergen-exposed airways | [106] |
miR-570 (miRNA) | Airway epithelial cells | HuR (ELAVL1) | Sustain chronic inflammation | Upregulated upon TNFα stimulation | [106] |
miR-221 (miRNA) | Not specified | Not specified | Not specified | Upregulated in the blood of children with asthma | [107] |
Airway smooth muscle cells | Not specified | Regulates airway smooth muscle cell proliferation and IL-6 production | Upregulated in severe asthma | [116] | |
miR-485-3p (miRNA) | Not specified | Not specified | Not specified | Upregulated in the blood of children with asthma | [107] |
miR-1246, miR-320a, miR-21-5p (miRNAs) | Not specified | Not specified | Negatively correlated with FVC | Upregulated in eosinophils in asthma | [108] |
miR-629-5p (miRNA) | Not specified | Not specified | Negatively correlated with FEV1 | Upregulated in eosinophils in asthma | [108] |
miR-29b (miRNA) | Ovalbumin-induced murine | ICOS | Facilitates eosinophilic inflammation | Downregulated in ovalbumin-induced asthmatic mice | [112] |
miR-15a (miRNA) | Not specified | VEGF | Promotes an asthma-like phenotype | Downregulated in Th2 airway inflammation | [113] |
let-7 family (miRNA) | Not specified | Not specified | Not specified | Downregulated in mild asthma | [100] |
Not specified | Not specified | Reflect asthma severity | Increase stepwise from mild to severe asthma | [115] | |
miR-98 (miRNA) | Not specified | Not specified | Reflect asthma severity | Increase stepwise from mild to severe asthma | [115] |
miR-155 (miRNA) | Plasma | Not specified | Specific marker for eosinophilic asthma | Increase stepwise from noneosinophilic to eosinophilic asthma and from mild to severe asthma | [115,117] |
Bronchial epithelial cells | Not specified | Not specified | Increased in bronchial epithelial cells in asthma | [117] | |
miR-185-5p (miRNA) | Serum | Not specified | Reflect asthma severity | Increase stepwise from mild to severe asthma | [108] |
miR-19a (miRNA) | CD4+ T cells; ILC2s | Not specified | Stimulates IL-13 secretion; promotes CD4+ T cell survival/proliferation; drives cytokine production in ILC2s | Upregulated in asthma | [118,119,120] |
miR-126 (miRNA) | CD4+ T cells | Not specified | Indirectly upregulates GATA-3, enhancing Th2 cytokine (IL-5, IL-13) secretion | Upregulated in asthma | [121] |
miR-24, miR-27 (miRNAs) | CD4+ T cells | Not specified | Inhibit IL-4 production in CD4+ T cells | Not specified | [122] |
miR-371, miR-138, miR-544, miR-145, miR-214 (miRNAs) | CD4+ T cells | Runx3 | Shifting Th1/Th2 balance toward Th2 | Upregulated in asthma | [123] |
miR-1 (miRNA) | Bronchial smooth muscle cells | Not specified | Loss of miR-1 is associated with smooth muscle cell hypertrophy | Downregulated in asthma | [124] |
miR-26a (miRNA) | Airway smooth muscle cells | GSK-3β | Promotes hypertrophic signaling | Upregulated upon mechanical stretch | [125] |
miR-200 family (miRNA) | Not specified | Not specified | Not specified | Downregulated in mild asthma | [100] |
Airway epithelial cells | ZEB1 via ERK/p38 pathway | Controls epithelial–mesenchymal transition | Downregulated | [126] | |
miR-146b-5p (miRNA) | Airway smooth muscle cells | Not specified | Not specified | Upregulated in airway smooth muscle cells in asthma upon stimulation | [127] |
EGO (lncRNA) | CD34+ hematopoietic progenitors | MBP, EDN transcripts | Regulates eosinophil granule protein expression during differentiation | Upregulated upon IL-5 stimulation | [87] |
ITGB2-AS1 (lncRNA) | Eosinophils (HL-60c15 cell model) | EPX, MBP-1, CCR3, CCR1, ITGB2 (CD18) | Regulator of eosinophil differentiation and mature eosinophil effector functions (degranulation, ROS production) | Not specified | [88,89,90,91] |
Morrbid (lncRNA) | Mature eosinophils | Bcl2l11 (Bim) | Controls apoptosis by epigenetically repressing the pro-apoptotic gene | Upregulated in hypereosinophilic conditions | [92] |
PVT1 (lncRNA) | Airway smooth muscle cells | c-MYC (transcription factor) | Reflect asthma severity and steroid resistance; regulates cellular proliferation and IL-6 release | Increase stepwise from mild to severe asthma and corticosteroid resistance | [128] |
CASC7 (lncRNA) | Airway smooth muscle cells | Sponges miR-21 to increase PTEN expression | Enhances corticosteroid responsiveness by inhibiting the PI3K/AKT signaling pathway | Downregulated in airway smooth muscle cells from patients with severe asthma | [129] |
GAS5 (lncRNA) | Airway smooth muscle cells, airway epithelium | Acts as a glucocorticoid receptor; sponges miR-10a | Regulates airway smooth muscle cell proliferation; reduction decreases airway hyperresponsiveness | Upregulated by pro-inflammatory mediators | [130,131] |
MEG3 (lncRNA) | T cells (Treg/Th17) | Sponges miR-17, indirectly influencing FoxP3 and RORγt | Disrupts the Treg/Th17 balance, contributing to neutrophilic asthma | Not specified | [132] |
LNC_000127 (lncRNA) | Blood | TCR/STAT/GATA3 signaling pathway | Modulator of Th2 inflammation; may enhance Th2 cytokine production | Upregulated in eosinophilic asthma compared to neutrophilic asthma and controls | [133] |
fantom3_9230106C11 (lncRNA) | Th2 cells | GATA-1; miR-19 (predicted) | Th2 immune responses control | Downregulated in Th2 cells | [134] |
MM9LINCRNAEXON12105+, AK089315 (lncRNA) | Th2 cells | genes involved in IL-4, IL-5, and IL-13 signaling, STAT5, STAT6, CCL17, CCL22 | Th2-type inflammation regulation | Upregulated upon the induction of asthma | [135] |
RP11-401.2 (lncRNA) | Th2 cells | Not specified | Not specified | Upregulated in asthma | [136] |
ENST00000444682, ENST00000566098, and ENST00000583179 (lncRNAs) | CD4+ T cells | SMAD7, WNT2B, C/EBP, T-bet, NF-κB genes | Modulates Th2 differentiation and pro-inflammatory cytokine production | Upregulated in asthma | [137] |
ENST00000579468 (lncRNAs) | Downregulated in asthma | ||||
LNC_00882 (lncRNA) | Airway smooth muscle cells | Wnt/β-catenin signaling through sponging of miRNA-3619-5p | Promotes cell proliferation | Upregulated after platelet-derived growth factor stimulation | [138] |
MALAT1 (lncRNA) | Airway smooth muscle cells | Sponges miRNA-150, which targets eIF4E (AKT pathway) | Promotes cell proliferation and migration | Upregulated after plate-let-derived growth factor exposure and in neonatal rat asthmatic models | [139,140] |
NORAD (lncRNA) | Bronchial epithelial cells | Sponges miR-410-3p to regulate RCC2 and the Wnt/β-catenin pathway. | Modulates epithelial–mesenchymal transition, airway remodeling, and inflammation | Upregulated in TGF-β1-induced bronchial epithelial cells and in ovalbumin-challenged asthmatic mice | [141] |
AK085865 (lncRNA) | Macrophages | Drives M2 polarization | Drives M2 macrophage polarization, which enhances ILC2 differentiation and amplifies type 2 inflammation | Upregulation in a murine asthma model | [142] |
BAZ2B (lncRNA) | Macrophages | BAZ2B pre-mRNA | Promotes M2 macrophage activation and inflammation | Upregulated in asthmatic children | [143] |
PTPRE-AS1 (lncRNA) | Macrophages | WDR5 | Negative regulator of M2 polarization and M2-mediated inflammation | Downregulated in asthma | [144] |
circ_0002594 (circRNA) | CD4+ T cells | miR-16-5p, miR-503-5p, miR-514a-3p, miR-587, let-7e-5p (predicted) | Positively correlated with FeNO | Upregulated in Th2 allergic asthma | [109] |
piR-43770 (piRNA) | Not specified | Not specified | Associated with total serum IgE; involved T cell proliferation | Not specified | [145] |
piR-58469 (piRNA) | Not specified | Not specified | Associated with total serum IgE; may indicate mitochondrial dysfunction; involved T cell proliferation | Not specified | [145] |
piR-43768 (piRNA) | Not specified | Not specified | Associated with total serum IgE; involved T cell proliferation | Not specified | [145] |
piR-33487 (piRNA) | Not specified | Not specified | Associated with eosinophils count; involved in thymus development | Not specified | [145] |
piR-36063 (piRNA) | Not specified | Not specified | Associated with eosinophils count; involved in thymus development | Not specified | [145] |
piR-32571 (piRNA) | Not specified | Not specified | Associated with eosinophils count; involved in thymus development | Not specified | [145] |
piR-37213 (piRNA) | Not specified | Not specified | Associated with total serum IgE and eosinophils count; involved in thymus development and T cell proliferation | Not specified | [145] |
piR-31038 (piRNA) | Not specified | Not specified | Associated with total serum IgE and eosinophils count; involved in thymus development and T cell proliferation | Not specified | [145] |
piR-33520 (piRNA) | Not specified | Not specified | Associated with total serum IgE and eosinophils count; involved in thymus development and T cell proliferation | Not specified | [145] |
piR-34021 (piRNA) | Not specified | Not specified | Associated with total serum IgE and eosinophils count; involved in thymus development and T cell proliferation | Not specified | [145] |
piR-33064 (piRNA) | Not specified | Not specified | Affects epithelial tight junction integrity | Not specified | [145,146] |
piR-57460 (piRNA) | Not specified | Not specified | May regulate mitochondrial apoptosis | Not specified | [145] |
piR-36707 (piRNA) | Not specified | Not specified | May indicate mitochondrial dysfunction | Not specified | [145] |
piR-35549 (piRNA) | Not specified | Not specified | May indicate mitochondrial dysfunction | Not specified | [145] |
4.1. Non-Coding RNAs Expression Patterns Across Asthma Severity
4.2. Non-Coding RNAs and Corticosteroid Responsiveness in Asthma
4.3. Distinct Non-Coding RNAs Signatures in Eosinophilic Versus Neutrophilic Asthma
4.4. Non-Coding RNA Regulation of Th2 Polarization and Type 2 Immune Responses
4.5. Non-Coding RNAs in Airway Structural Cells and Remodeling
4.6. Regulation of Macrophage Polarization by Non-Coding RNAs in Type 2 Airway Inflammation
4.7. PIWI-Interacting RNAs as Novel Modulators in Asthma Pathogenesis
4.8. Metabolite-Mediated Effects of miRNAs in Asthma Pathogenesis
5. Prospects of ncRNA-Based Therapies in Asthma
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, C.; Canas, J.A.; Zafra, M.P.; Rojas Marco, A.; Fernandez-Nieto, M.; Sanz, V.; Mittelbrunn, M.; Izquierdo, M.; Baixaulli, F.; Sastre, J.; et al. Exosome secretion by eosinophils: A possible role in asthma pathogenesis. J. Allergy Clin. Immunol. 2015, 135, 1603–1613. [Google Scholar] [CrossRef]
- Engeroff, P.; Vogel, M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines 2022, 10, 133. [Google Scholar] [CrossRef]
- Cañas, J.A.; Sastre, B.; Rodrigo-Muñoz, J.M.; del Pozo, V. Exosomes: A new approach to asthma pathology. Clin. Chim. Acta 2019, 495, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Cañas, J.A.; Rodrigo-Muñoz, J.M.; Gil-Martínez, M.; Sastre, B.; del Pozo, V. Exosomes: A Key Piece in Asthmatic Inflammation. Int. J. Mol. Sci. 2021, 22, 963. [Google Scholar] [CrossRef] [PubMed]
- An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [CrossRef]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Fabbri, M.; Girnita, L.; Varani, G.; Calin, G.A. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019, 29, 1377–1388. [Google Scholar] [CrossRef]
- George, T.P.; Subramanian, S.; Supriya, M.H. A brief review of noncoding RNA. Egypt. J. Med. Hum. Genet. 2024, 25, 98. [Google Scholar] [CrossRef]
- Padgett, R.A. mRNA Splicing: Role of snRNAs. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Matera, A.G.; Terns, R.M.; Terns, M.P. Non-coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 2007, 8, 209–220. [Google Scholar] [CrossRef]
- Brown, J.W.S.; Marshall, D.F.; Echeverria, M. Intronic noncoding RNAs and splicing. Trends Plant Sci. 2008, 13, 335–342. [Google Scholar] [CrossRef]
- Taft, R.J.; Glazov, E.A.; Lassmann, T.; Hayashizaki, Y.; Carninci, P.; Mattick, J.S. Small RNAs derived from snoRNAs. RNA 2009, 15, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Dieci, G.; Preti, M.; Montanini, B. Eukaryotic snoRNAs: A paradigm for gene expression flexibility. Genomics 2009, 94, 83–88. [Google Scholar] [CrossRef]
- Shao, Z.; Flynn, R.A.; Crowe, J.L.; Zhu, Y.; Liang, J.; Jiang, W.; Aryan, F.; Aoude, P.; Bertozzi, C.R.; Estes, V.M.; et al. DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature 2020, 579, 291–296. [Google Scholar] [CrossRef]
- Schwartz, S.; Schwartz, S.; Bernstein, D.A.; Mumbach, M.R.; Jovanovic, M.; Herbst, R.H.; León-Ricardo, B.X.; Engreitz, J.M.; Guttman, M.; Satija, R.; et al. Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell 2014, 159, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Yang, J.; van Nues, R.; Watzinger, P.; Kötter, P.; Lafontaine, D.L.J.; Granneman, S.; Entian, K.-D. Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genet. 2017, 13, e1006804. [Google Scholar] [CrossRef] [PubMed]
- Abel, Y.; Rederstorff, M. SnoRNAs and the emerging class of sdRNAs: Multifaceted players in oncogenesis. Biochimie 2019, 164, 17–21. [Google Scholar] [CrossRef]
- Peters, L.; Meister, G. Argonaute Proteins: Mediators of RNA Silencing. Mol. Cell 2007, 26, 611–623. [Google Scholar] [CrossRef]
- Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009, 10, 126–139. [Google Scholar] [CrossRef]
- Vagin, V.V.; Sigova, A.; Li, C.; Seitz, H.; Gvozdev, V.; Zamore, P.D. A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline. Science (1979) 2006, 313, 320–324. [Google Scholar] [CrossRef]
- Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011, 12, 246–258. [Google Scholar] [CrossRef]
- Malone, C.D.; Hannon, G.J. Small RNAs as Guardians of the Genome. Cell 2009, 136, 656–668. [Google Scholar] [CrossRef]
- Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009, 457, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, H.; Siomi, H.; Siomi, M.C. Biology of PIWI-interacting RNAs: New insights into biogenesis and function inside and outside of germlines. Genes. Dev. 2012, 26, 2361–2373. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.J.; Weiner, M.M.; Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014, 505, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Stuwe, E.; Tóth, K.F.; Aravin, A.A. Small but sturdy: Small RNAs in cellular memory and epigenetics. Genes. Dev. 2014, 28, 423–431. [Google Scholar] [CrossRef]
- Laganà, A.; Veneziano, D.; Russo, F.; Pulvirenti, A.; Giugno, R.; Croce, C.M.; Ferro, A. Computational Design of Artificial RNA Molecules for Gene Regulation. In RNA Bioinformatics; Humana Press: Totowa, NJ, USA, 2025; pp. 393–412. [Google Scholar] [CrossRef]
- Kesharwani, P.; Gajbhiye, V.; Jain, N.K. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 2012, 33, 7138–7150. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol. 2017, 35, 872–878. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, V.N. Processing of intronic microRNAs. EMBO J. 2007, 26, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Tanzer, A.; Stadler, P.F. Molecular Evolution of a MicroRNA Cluster. J. Mol. Biol. 2004, 339, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell 2016, 64, 320–333. [Google Scholar] [CrossRef]
- Vasudevan, S.; Steitz, J.A. AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2. Cell 2007, 128, 1105–1118. [Google Scholar] [CrossRef]
- Truesdell, S.S.; Mortensen, R.D.; Seo, M.; Schroeder, J.C.; Lee, J.H.; LeTonqueze, O.; Vasudevan, S. MicroRNA-mediated mRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear microRNP. Sci. Rep. 2012, 2, 842. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.I.A.; Truesdell, S.S.; Lee, S.; Kollu, S.; Classon, A.; Boukhali, M.; Jain, E.; Mortensen, R.D.; Yanagiya, A.; Sadreyev, R.I.; et al. A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol. Cell 2016, 61, 760–773. [Google Scholar] [CrossRef]
- Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Mol. Cell 2008, 30, 460–471. [Google Scholar] [CrossRef]
- Makarova, J.A.; Shkurnikov, M.U.; Wicklein, D.; Lange, T.; Samatov, T.R.; Turchinovich, A.A.; Tonevitsky, A.G. Intracellular and extracellular microRNA: An update on localization and biological role. Prog. Histochem. Cytochem. 2016, 51, 33–49. [Google Scholar] [CrossRef]
- Xu, P.; Wu, Q.; Yu, J.; Rao, Y.; Kou, Z.; Fang, G.; Shi, X.; Liu, W.; Han, H. A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers. Front. Genet. 2020, 11, 278. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Röhrig, H.; Schmidt, J.; Miklashevichs, E.; Schell, J.; John, M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc. Natl. Acad. Sci. USA 2002, 99, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell Mol. Life Sci. 2018, 75, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Ørom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; et al. Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell 2010, 143, 46–58. [Google Scholar] [CrossRef]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458, 223–227. [Google Scholar] [CrossRef]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- Bhan, A.; Soleimani, M.; Mandal, S.S. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017, 77, 3965–3981. [Google Scholar] [CrossRef]
- Pelechano, V.; Steinmetz, L.M. Gene regulation by antisense transcription. Nat. Rev. Genet. 2013, 14, 880–893. [Google Scholar] [CrossRef]
- Rashid, F.; Shah, A.; Shan, G. Long Non-Coding RNAs in the Cytoplasm. Genom. Proteom. Bioinform. 2016, 14, 73–80. [Google Scholar] [CrossRef]
- Sun, M.; Yang, Y. Biological functions and applications of circRNAs—Next generation of RNA-based therapy. J. Mol. Cell Biol. 2023, 15, mjad031. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Cadena, C.; Hur, S. Antiviral Immunity and Circular RNA: No End in Sight. Mol. Cell 2017, 67, 163–164. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Panda, A.C.; Munk, R.; Grammatikakis, I.; Dudekula, D.B.; De, S.; Kim, J.; Noh, J.H.; Kim, K.M.; Martindale, J.L.; et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017, 14, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tang, D.; Wang, W.; Yang, Y.; Wu, X.; Wang, L.; Wang, D. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol. Cancer 2019, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Zhang, Y.; Hao, X.; Gao, J.; Chen, X.; Wang, K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol. Cancer 2019, 18, 136. [Google Scholar] [CrossRef]
- Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 2016, 7, 11215. [Google Scholar] [CrossRef]
- Tatomer, D.C.; Wilusz, J.E. An Unchartered Journey for Ribosomes: Circumnavigating Circular RNAs to Produce Proteins. Mol. Cell 2017, 66, 1–2. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.-L.; Wang, Y.; et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef]
- Kritika, C. Transforming ‘Junk’ DNA into Cancer Warriors: The Role of Pseudogenes in Hepatocellular Carcinoma. Cancer Diagn. Progn. 2024, 4, 214–222. [Google Scholar]
- Troskie, R.; Faulkner, G.J.; Cheetham, S.W. Processed pseudogenes: A substrate for evolutionary innovation. BioEssays 2021, 43, 2100186. [Google Scholar] [CrossRef] [PubMed]
- Nakamura-García, A.K.; Espinal-Enríquez, J. Pseudogenes in Cancer: State of the Art. Cancers 2023, 15, 4024. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef]
- Swaminathan, G.; Rogel-Ayala, D.G.; Armich, A.; Barreto, G. Implications in Cancer of Nuclear Micro RNAs, Long Non-Coding RNAs, and Circular RNAs Bound by PRC2 and FUS. Cancers 2024, 16, 868. [Google Scholar] [CrossRef]
- Milligan, M.J.; Lipovich, L. Pseudogene-derived lncRNAs: Emerging regulators of gene expression. Front. Genet. 2015, 5, 476. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Bochner, B.S. Eosinophil Survival and Apoptosis in Health and Disease. Allergy Asthma Immunol. Res. 2010, 2, 87. [Google Scholar] [CrossRef]
- Gigon, L.; Fettrelet, T.; Yousefi, S.; Simon, D.; Simon, H. Eosinophils from A to Z. Allergy 2023, 78, 1810–1846. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Weller, P.F. Contemporary understanding of the secretory granules in human eosinophils. J. Leukoc. Biol. 2018, 104, 85–93. [Google Scholar] [CrossRef]
- Bainton, D.F.; Farquhar, M.G. Segregation and Packaging of Granule Enzymes in Eosinophilic Leukocytes. J. Cell Biol. 1970, 45, 54–73. [Google Scholar] [CrossRef]
- Gigon, L.; Yousefi, S.; Karaulov, A.; Simon, H.-U. Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins. Allergol. Int. 2021, 70, 30–38. [Google Scholar] [CrossRef]
- Acharya, K.R.; Ackerman, S.J. Eosinophil Granule Proteins: Form and Function. J. Biol. Chem. 2014, 289, 17406–17415. [Google Scholar] [CrossRef]
- Marichal, T.; Mesnil, C.; Bureau, F. Homeostatic Eosinophils: Characteristics and Functions. Front. Med. 2017, 4, 101. [Google Scholar] [CrossRef]
- Mishra, A.; Hogan, S.P.; Lee, J.J.; Foster, P.S.; Rothenberg, M.E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Investig. 1999, 103, 1719–1727. [Google Scholar] [CrossRef]
- Simon, H.-U.; Yousefi, S.; Germic, N.; Arnold, I.C.; Haczku, A.; Karaulov, A.V.; Simon, D.; Rosenberg, H.F. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int. Arch. Allergy Immunol. 2020, 181, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.C.K.; McNagny, K.M.; Denburg, J.A.; Siracusa, M.C. In situ hematopoiesis: A regulator of TH2 cytokine-mediated immunity and inflammation at mucosal surfaces. Mucosal Immunol. 2015, 8, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Januskevicius, A.; Janulaityte, I.; Kalinauskaite-Zukauske, V.; Gosens, R.; Malakauskas, K. The Enhanced Adhesion of Eosinophils Is Associated with Their Prolonged Viability and Pro-Proliferative Effect in Asthma. J. Clin. Med. 2019, 8, 1274. [Google Scholar] [CrossRef] [PubMed]
- Leiferman, K.M.; Gleich, G.J. The true extent of eosinophil involvement in disease is unrecognized: The secret life of dead eosinophils. J. Leukoc. Biol. 2024, 116, 271–287. [Google Scholar] [CrossRef]
- Radonjic-Hoesli, S.; Brüggen, M.-C.; Feldmeyer, L.; Simon, H.-U.; Simon, D. Eosinophils in skin diseases. Semin. Immunopathol. 2021, 43, 393–409. [Google Scholar] [CrossRef]
- Valent, P.; Klion, A.D.; Horny, H.-P.; Roufosse, F.; Gotlib, J.; Weller, P.F.; Hellmann, A.; Metzgeroth, G.; Leiferman, K.M.; Arock, M.; et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 2012, 130, 607–612.e9. [Google Scholar] [CrossRef]
- Lu, T.X.; Lim, E.-J.; Besse, J.A.; Itskovich, S.; Plassard, A.J.; Fulkerson, P.C.; Aronow, B.J.; Rothenberg, M.E. miR-223 Deficiency Increases Eosinophil Progenitor Proliferation. J. Immunol. 2013, 190, 1576–1582. [Google Scholar] [CrossRef]
- Lu, T.X.; Munitz, A.; Rothenberg, M.E. MicroRNA-21 Is Up-Regulated in Allergic Airway Inflammation and Regulates IL-12p35 Expression. J. Immunol. 2009, 182, 4994–5002. [Google Scholar] [CrossRef]
- Garbacki, N.; Di Valentin, E.; Huynh-Thu, V.A.; Geurts, P.; Irrthum, A.; Crahay, C.; Arnould, T.; Deroanne, C.; Piette, J.; Cataldo, D.; et al. MicroRNAs Profiling in Murine Models of Acute and Chronic Asthma: A Relationship with mRNAs Targets. PLoS ONE 2011, 6, e16509. [Google Scholar] [CrossRef]
- Lu, T.X.; Lim, E.-J.; Itskovich, S.; Besse, J.A.; Plassard, A.J.; Mingler, M.K.; Rothenberg, J.A.; Fulkerson, P.C.; Aronow, B.J.; Rothenberg, M.E. Targeted Ablation of miR-21 Decreases Murine Eosinophil Progenitor Cell Growth. PLoS ONE 2013, 8, e59397. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Lau, K.M.; Chan, I.H.S.; Hu, S.; Lam, Y.Y.O.; Choi, A.O.K.; Lam, C.W.K. MicroRNA-21* regulates the prosurvival effect of GM-CSF on human eosinophils. Immunobiology 2013, 218, 255–262. [Google Scholar] [CrossRef]
- Wagner, L.A.; Christensen, C.J.; Dunn, D.M.; Spangrude, G.J.; Georgelas, A.; Kelley, L.; Esplin, M.S.; Weiss, R.B.; Gleich, G.J. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 2007, 109, 5191–5198. [Google Scholar] [CrossRef]
- Fettrelet, T.; Hosseini, A.; Wyss, J.; Boros-Majewska, J.; Stojkov, D.; Yousefi, S.; Simon, H.-U. Evidence for a Role of the Long Non-Coding RNA ITGB2-AS1 in Eosinophil Differentiation and Functions. Cells 2024, 13, 1936. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Wang, C.B.; Li, M.L.Y.; Ip, W.K.; Tian, Y.P.; Lam, C.W.K. Induction of adhesion molecules upon the interaction between eosinophils and bronchial epithelial cells: Involvement of p38 MAPK and NF-κB. Int. Immunopharmacol. 2006, 6, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.-J.; Ponath, P.D.; Mackay, C.R.; Newman, W.; Miyasaka, M.; Tamatani, T.; Flanagan, B.F.; Lobb, R.R.; Williams, T.J.; Nourshargh, S.; et al. Human Eotaxin Induces α4 and β2 Integrin-Dependent Eosinophil Accumulation in Rat Skin In Vivo: Delayed Generation of Eotaxin in Response to IL-4. J. Immunol. 1998, 160, 3569–3576. [Google Scholar] [CrossRef]
- Mengelers, H.J.; Maikoe, T.; Raaijmakers, J.A.; Lammers, J.W.; Koenderman, L. Cognate interaction between human lymphocytes and eosinophils is mediated by beta 2-integrins and very late antigen-4. J. Lab. Clin. Med. 1995, 126, 261–268. [Google Scholar]
- Kotzin, J.J.; Spencer, S.P.; McCright, S.J.; Uthaya Kumar, D.B.; Collet, M.A.; Mowel, W.K.; Elliott, E.N.; Uyar, A.; Makiya, M.A.; Dunagin, M.C.; et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 2016, 537, 239–243. [Google Scholar] [CrossRef]
- Simon, H.-U.; Rothenberg, M.E.; Bochner, B.S.; Weller, P.F.; Wardlaw, A.J.; Wechsler, M.E.; Rosenwasser, L.J.; Roufosse, F.; Gleich, G.J.; Klion, A.D. Refining the definition of hypereosinophilic syndrome. J. Allergy Clin. Immunol. 2010, 126, 45–49. [Google Scholar] [CrossRef]
- Zafra, M.P.; Mazzeo, C.; Gámez, C.; Rodriguez Marco, A.; de Zulueta, A.; Sanz, V.; Bilbao, I.; Ruiz-Cabello, J.; Zubeldia, J.M.; del Pozo, V. Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits Asthma Phenotype in Mice. PLoS ONE 2014, 9, e91996. [Google Scholar]
- Zafra, M.; Cañas, J.A.; Mazzeo, C.; Gámez, C.; Sanz, V.; Fernández-Nieto, M.; Quirce, S.; Barranco, P.; Ruiz-Hornillos, J.; Sastre, J.; et al. SOCS3 Silencing Attenuates Eosinophil Functions in Asthma Patients. Int. J. Mol. Sci. 2015, 16, 5434–5451. [Google Scholar] [CrossRef] [PubMed]
- Spencer, L.A.; Szela, C.T.; Perez, S.A.C.; Kirchhoffer, C.L.; Neves, J.S.; Radke, A.L.; Weller, P.F. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 2009, 85, 117–123. [Google Scholar] [CrossRef]
- HOGAN, S.P.; Rosenberg, H.F.; Moqbel, R.; Phipps, S.; Foster, P.S.; Lacy, P.; Kay, A.B.; Rothenberg, M.E. Eosinophils: Biological Properties and Role in Health and Disease. Clin. Exp. Allergy 2008, 38, 709–750. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Liu, L.; Xenakis, J.J.; Spencer, L.A. Eosinophil-derived cytokines in health and disease: Unraveling novel mechanisms of selective secretion. Allergy 2013, 68, 274–284. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Federzoni, E.A.; Wang, X.; Dharmawan, A.; Hu, X.; Wang, H.; Hawley, R.J.; Stevens, S.; Sykes, M.; et al. CD47 cross-dressing by extracellular vesicles expressing CD47 inhibits phagocytosis without transmitting cell death signals. eLife 2022, 11, e73677. [Google Scholar] [CrossRef] [PubMed]
- Levänen, B.; Bhakta, N.R.; Torregrosa Paredes, P.; Barbeau, R.; Hiltbrunner, S.; Pollack, J.L.; Sköld, C.M.; Svartengren, M.; Grunewald, J.; Gabrielsson, S.; et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J. Allergy Clin. Immunol. 2013, 131, 894–903.e8. [Google Scholar] [CrossRef]
- Cañas, J.A.; Sastre, B.; Rodrigo-Muñoz, J.M.; Fernández-Nieto, M.; Barranco, P.; Quirce, S.; Sastre, J.; Del Pozo, V. Eosinophil-derived exosomes contribute to asthma remodelling by activating structural lung cells. Clin. Exp. Allergy 2018, 48, 1173–1185. [Google Scholar] [CrossRef]
- Kida, H.; Mucenski, M.L.; Thitoff, A.R.; Le Cras, T.D.; Park, K.-S.; Ikegami, M.; Müller, W.; Whitsett, J.A. GP130-STAT3 Regulates Epithelial Cell Migration and Is Required for Repair of the Bronchiolar Epithelium. Am. J. Pathol. 2008, 172, 1542–1554. [Google Scholar] [CrossRef]
- Wang, W.; Kuo, C.; Tzang, B.; Chen, H.; Kao, S. IL-6 augmented motility of airway epithelial cell BEAS-2B via Akt/GSK-3β signaling pathway. J. Cell Biochem. 2012, 113, 3567–3575. [Google Scholar] [CrossRef] [PubMed]
- Chetta, A.; Zanini, A.; Foresi, A.; D’Ippolito, R.; Tipa, A.; Castagnaro, A.; Baraldo, S.; Neri, M.; Saetta, M.; Olivieri, D. Vascular endothelial growth factor up-regulation and bronchial wall remodelling in asthma. Clin. Exp. Allergy 2005, 35, 1437–1442. [Google Scholar] [CrossRef]
- Brown, J.N.; Brewer, H.M.; Nicora, C.D.; Weitz, K.K.; Morris, M.J.; Skabelund, A.J.; Adkins, J.N.; Smith, R.D.; Cho, J.-H.; Gelinas, R. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea. BMC Med. Genom. 2014, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Roff, A.N.; Craig, T.J.; August, A.; Stellato, C.; Ishmael, F.T. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am. J. Clin. Exp. Immunol. 2014, 3, 68–83. [Google Scholar]
- LIU, F.; QIN, H.-B.; XU, B.; ZHOU, H.; ZHAO, D.-Y. Profiling of miRNAs in pediatric asthma: Upregulation of miRNA-221 and miRNA-485-3p. Mol. Med. Rep. 2012, 6, 1178–1182. [Google Scholar] [CrossRef]
- Rodrigo-Muñoz, J.M.; Cañas, J.A.; Sastre, B.; Rego, N.; Greif, G.; Rial, M.; Mínguez, P.; Mahíllo-Fernández, I.; Fernández-Nieto, M.; Mora, I.; et al. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy 2019, 74, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fu, B.; Qi, X.; Xu, Y.; Mou, Y.; Zhou, M.; Cao, Y.; Wu, G.; Xie, J.; Zhao, J.; et al. Diagnostic and Therapeutic Value of Hsa_circ_0002594 for T Helper 2-Mediated Allergic Asthma. Int. Arch. Allergy Immunol. 2021, 182, 388–398. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, X.; Sun, S.; Yang, T.; Yang, J.; Wu, G.; Qiu, Y.; Yin, Y.; Xu, W. miR-29b Reverses T helper 1 cells/T helper 2 cells Imbalance and Alleviates Airway Eosinophils Recruitment in OVA-Induced Murine Asthma by Targeting Inducible Co-Stimulator. Int. Arch. Allergy Immunol. 2019, 180, 182–194. [Google Scholar] [CrossRef]
- Nakano, T.; Inoue, Y.; Shimojo, N.; Yamaide, F.; Morita, Y.; Arima, T.; Tomiita, M.; Kohno, Y. Lower levels of hsa-mir-15a, which decreases VEGFA, in the CD4+ T cells of pediatric patients with asthma. J. Allergy Clin. Immunol. 2013, 132, 1224–1227.e12. [Google Scholar] [CrossRef]
- Gonzalo, J.A.; Tian, J.; Delaney, T.; Corcoran, J.; Rottman, J.B.; Lora, J.; Al-garawi, A.; Kroczek, R.; Gutierrez-Ramos, J.C.; Coyle, A.J. ICOS is critical for T helper cell–mediated lung mucosal inflammatory responses. Nat. Immunol. 2001, 2, 597–604. [Google Scholar] [CrossRef]
- Lee, C.G.; Link, H.; Baluk, P.; Homer, R.J.; Chapoval, S.; Bhandari, V.; Kang, M.J.; Cohn, L.; Kim, Y.K.; McDonald, D.M.; et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat. Med. 2004, 10, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Zhou, Q.; Li, Q.; Niu, M.; Chen, S.; Yang, P.; Liu, Z.; Xia, L. Differentially expressed circular RNAs in a murine asthma model. Mol. Med. Rep. 2020, 22, 5412–5422. [Google Scholar] [CrossRef]
- Zhang, S.; Laryea, Z.; Panganiban, R.; Lambert, K.; Hsu, D.; Ishmael, F.T. Plasma microRNA profiles identify distinct clinical phenotypes in human asthmatics. J. Transl. Genet. Genom. 2018, 2, 18. [Google Scholar] [CrossRef]
- Perry, M.M.; Baker, J.E.; Gibeon, D.S.; Adcock, I.M.; Chung, K.F. Airway Smooth Muscle Hyperproliferation Is Regulated by MicroRNA-221 in Severe Asthma. Am. J. Respir. Cell Mol. Biol. 2014, 50, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhang, Y.; Do, D.C.; Ke, X.; Zhang, S.; Lambert, K.; Kumar, S.; Hu, C.; Zhou, Y.; Ishmael, F.T.; et al. miR-155 Modulates Cockroach Allergen– and Oxidative Stress–Induced Cyclooxygenase-2 in Asthma. J. Immunol. 2018, 201, 916–929. [Google Scholar] [CrossRef]
- Simpson, L.J.; Patel, S.; Bhakta, N.R.; Choy, D.F.; Brightbill, H.D.; Ren, X.; Wang, Y.; Pua, H.H.; Baumjohann, D.; Montoya, M.M.; et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat. Immunol. 2014, 15, 1162–1170. [Google Scholar] [CrossRef]
- Xiao, C.; Srinivasan, L.; Calado, D.P.; Patterson, H.C.; Zhang, B.; Wang, J.; Henderson, J.M.; Kutok, J.L.; Rajewsky, K. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 2008, 9, 405–414. [Google Scholar] [CrossRef]
- Singh, P.B.; Pua, H.H.; Happ, H.C.; Schneider, C.; von Moltke, J.; Locksley, R.M.; Baumjohann, D.; Ansel, K.M. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J. Exp. Med. 2017, 214, 3627–3643. [Google Scholar] [CrossRef]
- Mattes, J.; Collison, A.; Plank, M.; Phipps, S.; Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of T H 2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18704–18709. [Google Scholar] [CrossRef]
- Pua, H.H.; Steiner, D.F.; Patel, S.; Gonzalez, J.R.; Ortiz-Carpena, J.F.; Kageyama, R.; Chiou, N.-T.; Gallman, A.; de Kouchkovsky, D.; Jeker, L.T.; et al. MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production. Immunity 2016, 44, 821–832. [Google Scholar] [CrossRef]
- Qiu, Y.-Y.; Zhang, Y.-W.; Qian, X.-F.; Bian, T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am. J. Transl. Res. 2017, 9, 3184–3199. [Google Scholar] [PubMed]
- McCarthy, J.J.; Esser, K.A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol. 2007, 102, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, J.S.; Lopez, M.A.; Boriek, A.M. Mechanical Stretch Up-regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3β. J. Biol. Chem. 2010, 285, 29336–29347. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sun, K.; Tu, Y.; Li, P.; Hao, D.; Yu, P.; Chen, A.; Wan, Y.; Shi, L. miR-200a-3p regulates epithelial–mesenchymal transition and inflammation in chronic rhinosinusitis with nasal polyps by targeting ZEB1 via ERK/p38 pathway. Int. Forum Allergy Rhinol. 2024, 14, 41–56. [Google Scholar] [CrossRef]
- Comer, B.S.; Camoretti-Mercado, B.; Kogut, P.C.; Halayko, A.J.; Solway, J.; Gerthoffer, W.T. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 307, L727–L734. [Google Scholar] [CrossRef]
- Austin, P.J.; Tsitsiou, E.; Boardman, C.; Jones, S.W.; Lindsay, M.A.; Adcock, I.M.; Chung, K.F.; Perry, M.M. Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. J. Allergy Clin. Immunol. 2017, 139, 780–789. [Google Scholar] [CrossRef]
- Liu, J.-H.; Li, C.; Zhang, C.-H.; Zhang, Z.-H. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology 2020, 26, 18–26. [Google Scholar] [CrossRef]
- Keenan, C.R.; Schuliga, M.J.; Stewart, A.G. Pro-inflammatory mediators increase levels of the noncoding RNA GAS5 in airway smooth muscle and epithelial cells. Can. J. Physiol. Pharmacol. 2015, 93, 203–206. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, X.-Y.; Li, N.; Zhao, L.-M.; Guo, Y.-L.; Li, X.-S.; Tian, C.-J.; Cheng, D.-J.; Chen, Z.-C.; Zhang, L.-X. GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci. 2018, 212, 93–101. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Y.; Lin, M.-J.; Bian, T.; Xiao, Y.-L.; Qin, C. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/RORγt. Biomed. Pharmacother. 2019, 111, 386–394. [Google Scholar] [CrossRef]
- Zhu, Y.; Mao, D.; Gao, W.; Han, G.; Hu, H. Analysis of lncRNA Expression in Patients with Eosinophilic and Neutrophilic Asthma Focusing on LNC_000127. Front. Genet. 2019, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Ji, N.; Chen, Z.; Wu, C.; Sun, Z.; Yu, W.; Hu, F.; Huang, M.; Zhang, M. Next Generation Sequencing for Long Non-coding RNAs Profile for CD4+ T Cells in the Mouse Model of Acute Asthma. Front. Genet. 2019, 10, 545. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Fan, X.-L.; Yu, Q.-N.; Deng, M.-X.; Sun, Y.-Q.; Gao, W.-X.; Li, C.-L.; Shi, J.-B.; Fu, Q.-L. The lncRNAs involved in mouse airway allergic inflammation following induced pluripotent stem cell-mesenchymal stem cell treatment. Stem Cell Res. Ther. 2017, 8, 2. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Mao, D.; Gao, W.; Hu, H. Peripheral whole blood lncRNA expression analysis in patients with eosinophilic asthma. Medicine 2018, 97, e9817. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Chen, H.; Huang, Z.; Fu, B.; Wang, Y.; Xie, J.; Zhao, J.; Cao, Y.; Xiong, W. Aberrantly expressed lncRNAs identified by microarray analysis in CD4+T cells in asthmatic patients. Biochem. Biophys. Res. Commun. 2018, 503, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mei, L.; He, Z. Long non-coding RNA00882 contributes to platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by enhancing Wnt/β-catenin signaling via sponging miR-3619–5p. Biochem. Biophys. Res. Commun. 2019, 514, 9–15. [Google Scholar] [CrossRef]
- Yang, M.; Wang, L. MALAT1 knockdown protects from bronchial/tracheal smooth muscle cell injury via regulation of microRNA-133a/ryanodine receptor 2 axis. J. Biosci. 2021, 46, 28. [Google Scholar] [CrossRef]
- Lin, L.; Li, Q.; Hao, W.; Zhang, Y.; Zhao, L.; Han, W. Upregulation of LncRNA Malat1 Induced Proliferation and Migration of Airway Smooth Muscle Cells via miR-150-eIF4E/Akt Signaling. Front. Physiol. 2019, 10, 1337. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, H.; Liang, L.; Lu, H.; Liang, D. Long non-coding RNA (LncRNA) non-coding RNA activated by DNA damage (NORAD) knockdown alleviates airway remodeling in asthma via regulating miR-410-3p/RCC2 and inhibiting Wnt/β-catenin pathway. Heliyon 2024, 10, e23860. [Google Scholar] [CrossRef]
- Pei, W.; Zhang, Y.; Li, X.; Luo, M.; Chen, T.; Zhang, M.; Zhong, M.; Lv, K. LncRNA AK085865 depletion ameliorates asthmatic airway inflammation by modulating macrophage polarization. Int. Immunopharmacol. 2020, 83, 106450. [Google Scholar] [CrossRef]
- Xia, L.; Wang, X.; Liu, L.; Fu, J.; Xiao, W.; Liang, Q.; Han, X.; Huang, S.; Sun, L.; Gao, Y.; et al. lnc-BAZ2B promotes M2 macrophage activation and inflammation in children with asthma through stabilizing BAZ2B pre-mRNA. J. Allergy Clin. Immunol. 2021, 147, 921–932.e9. [Google Scholar] [CrossRef]
- Han, X.; Huang, S.; Xue, P.; Fu, J.; Liu, L.; Zhang, C.; Yang, L.; Xia, L.; Sun, L.; Huang, S.-K.; et al. LncRNA PTPRE-AS1 modulates M2 macrophage activation and inflammatory diseases by epigenetic promotion of PTPRE. Sci. Adv. 2019, 5, eaax9230. [Google Scholar] [CrossRef]
- Li, J.; Hong, X.; Jiang, M.; Kho, A.T.; Tiwari, A.; Wang, A.L.; Chase, R.P.; Celedón, J.C.; Weiss, S.T.; McGeachie, M.J.; et al. A novel piwi-interacting RNA associates with type 2–high asthma phenotypes. J. Allergy Clin. Immunol. 2024, 153, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Kohjima, M.; Noda, Y.; Takeya, R.; Saito, N.; Takeuchi, K.; Sumimoto, H. PAR3β, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions. Biochem. Biophys. Res. Commun. 2002, 299, 641–646. [Google Scholar] [CrossRef]
- Ito, K.; Chung, K.F.; Adcock, I.M. Update on glucocorticoid action and resistance. J. Allergy Clin. Immunol. 2006, 117, 522–543. [Google Scholar] [CrossRef] [PubMed]
- Tsitsiou, E.; Williams, A.E.; Moschos, S.A.; Patel, K.; Rossios, C.; Jiang, X.; Adams, O.-D.; Macedo, P.; Booton, R.; Gibeon, D.; et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J. Allergy Clin. Immunol. 2012, 129, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Iwakawa, R.; Takenaka, M.; Kohno, T.; Shimada, Y.; Totoki, Y.; Shibata, T.; Tsuta, K.; Nishikawa, R.; Noguchi, M.; Sato-Otsubo, A.; et al. Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer. Genes. Chromosomes Cancer 2013, 52, 802–816. [Google Scholar] [CrossRef]
- Guan, Y.; Kuo, W.-L.; Stilwell, J.L.; Takano, H.; Lapuk, A.V.; Fridlyand, J.; Mao, J.-H.; Yu, M.; Miller, M.A.; Santos, J.L.; et al. Amplification of PVT1 Contributes to the Pathophysiology of Ovarian and Breast Cancer. Clin. Cancer Res. 2007, 13, 5745–5755. [Google Scholar] [CrossRef]
- Alvarez, M.L.; DiStefano, J.K. Functional Characterization of the Plasmacytoma Variant Translocation 1 Gene (PVT1) in Diabetic Nephropathy. PLoS ONE 2011, 6, e18671. [Google Scholar] [CrossRef]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Brusselle, G.G.; Maes, T.; Bracke, K.R. Eosinophils in the Spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 2013, 19, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Peng, S.; Zhang, M.; Ma, Y.; Zhen, X.; Li, H. Huai Qi Huang corrects the balance of Th1/Th2 and Treg/Th17 in an ovalbumin-induced asthma mouse model. Biosci. Rep. 2017, 37, BSR20171071. [Google Scholar] [CrossRef]
- Ilmarinen, P.; Moilanen, E.; Kankaanranta, H. Mitochondria in the Center of Human Eosinophil Apoptosis and Survival. Int. J. Mol. Sci. 2014, 15, 3952–3969. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Kontny, E. Taurine and inflammatory diseases. Amino Acids 2014, 46, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Klupczynska, A.; Packi, K.; Mackowiak-Jakubowska, A.; Bręborowicz, A.; Pawlicka, O.; Olejniczak, K.; Kokot, Z.J.; Matysiak, J. Alterations in Serum-Free Amino Acid Profiles in Childhood Asthma. Int. J. Environ. Res. Public Health 2020, 17, 4758. [Google Scholar] [CrossRef]
- Sharma, R.; Mendez, K.; Begum, S.; Chu, S.; Prince, N.; Hecker, J.; Kelly, R.S.; Chen, Q.; Wheelock, C.E.; Celedón, J.C.; et al. miRNAome-metabolome wide association study reveals effects of miRNA regulation in eosinophilia and airflow obstruction in childhood asthma. EBioMedicine 2025, 112, 105534. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ge, X.; Ding, H.; Jiang, H.; Christensen, B.M.; Li, J. Role of Glutamate Decarboxylase-like Protein 1 (GADL1) in Taurine Biosynthesis. J. Biol. Chem. 2012, 287, 40898–40906. [Google Scholar] [CrossRef]
- Levan, S.R.; Stamnes, K.A.; Lin, D.L.; Panzer, A.R.; Fukui, E.; McCauley, K.; Fujimura, K.E.; McKean, M.; Ownby, D.R.; Zoratti, E.M.; et al. Author Correction: Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol. 2019, 4, 2020. [Google Scholar] [CrossRef]
- Fujii, U.; Miyahara, N.; Taniguchi, A.; Oda, N.; Morichika, D.; Murakami, E.; Nakayama, H.; Waseda, K.; Kataoka, M.; Kakuta, H.; et al. Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma. Respir. Res. 2017, 18, 23. [Google Scholar] [CrossRef]
- Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996, 10, 940–954. [Google Scholar] [CrossRef]
- Carraro, S.; Giordano, G.; Reniero, F.; Carpi, D.; Stocchero, M.; Sterk, P.J.; Baraldi, E. Asthma severity in childhood and metabolomic profiling of breath condensate. Allergy 2013, 68, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Gene-silencing technology gets first drug approval after 20-year wait. Nature 2018, 560, 291–292. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, H.Y.; Choi, J.Y.; Hur, J.; Kim, I.K.; Kim, Y.K.; Kang, J.Y.; Lee, S.Y. Inhibition of MicroRNA-21 by an antagomir ameliorates allergic inflammation in a mouse model of asthma. Exp. Lung Res. 2017, 43, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Plank, M.W.; Maltby, S.; Tay, H.L.; Stewart, J.; Eyers, F.; Hansbro, P.M.; Foster, P.S. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. PLoS ONE 2015, 10, e0144810. [Google Scholar] [CrossRef]
- Liao, Y.; Li, P.; Wang, Y.; Chen, H.; Ning, S.; Su, D. Construction of asthma related competing endogenous RNA network revealed novel long non-coding RNAs and potential new drugs. Respir. Res. 2020, 21, 14. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Tang, X.-Y.; Ma, L.-J.; Guo, Y.-L.; Li, X.-S.; Zhao, L.-M.; Tian, C.-J.; Cheng, D.-J.; Chen, Z.-C.; Zhang, L.-X. Schisandrin B down-regulated lnc RNA BCYRN<1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic rats. Cell Prolif. 2017, 50, e12382. [Google Scholar] [PubMed]
- Yu, X.; Zhe, Z.; Tang, B.; Li, S.; Tang, L.; Wu, Y.; Chen, X.; Fang, H. α-Asarone suppresses the proliferation and migration of ASMCs through targeting the lncRNA-PVT1/miR-203a/E2F3 signal pathway in RSV-infected rats. Acta Biochim. Biophys. Sin. 2017, 49, 598–608. [Google Scholar] [CrossRef]
- Xu, Z.; Meng, L.; Xie, Y.; Guo, W. lncRNA PCGEM1 strengthens anti-inflammatory and lung protective effects of montelukast sodium in children with cough-variant asthma. Braz. J. Med. Biol. Res. 2020, 53, e9271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasylė, E.; Januškevičius, A.; Malakauskas, K. Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation. Diagnostics 2025, 15, 1750. https://doi.org/10.3390/diagnostics15141750
Vasylė E, Januškevičius A, Malakauskas K. Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation. Diagnostics. 2025; 15(14):1750. https://doi.org/10.3390/diagnostics15141750
Chicago/Turabian StyleVasylė, Eglė, Andrius Januškevičius, and Kęstutis Malakauskas. 2025. "Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation" Diagnostics 15, no. 14: 1750. https://doi.org/10.3390/diagnostics15141750
APA StyleVasylė, E., Januškevičius, A., & Malakauskas, K. (2025). Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation. Diagnostics, 15(14), 1750. https://doi.org/10.3390/diagnostics15141750