Clinical Insights Regarding the Targeted Chromosomal Region for Mosaicism and Aneuploidy in Embryos in IVF Treatment and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Embryo Biopsy and PGT-A Analysis
2.2. Inclusion Criteria
2.3. Statistical Analysis
3. Results
3.1. Distribution of Affected Chromosomes by Mosaicism Class
3.2. Chromosomal Region Differentiation
3.3. The Percentage of Chromosomes Affected and the Average Mosaicism Rate
3.4. The Percentage of Chromosomes Affected by Mosaicism for Each Embryo Analyzed
3.5. Aneuploidy
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IVF | in vitro fertilization |
PGT-A | preimplantation genetic testing for aneuploidy |
C | chromosome |
NGS | next-generation sequencing |
FISH | fluorescence In Situ hybridization |
PGDIS | Preimplantation Genetic Diagnosis International Society |
ZP | zona pellucida |
ART | assisted reproductive technologies |
NICU | neonatal intensive care unit |
M.A. | multiple aneuploidy |
References
- Rossant, J.; Tam, P.P.L. Exploring Early Human Embryo Development. Science 2018, 360, 1075–1076. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, P.; Liu, X.; Li, Y.; Liang, X.; Li, J. Comparison of Aneuploidy Rate in Spontaneous Abortion Chorionic Villus between D6 and D5 Thawed-Frozen Blastocyst Transfer. BMC Pregnancy Childbirth 2023, 23, 130. [Google Scholar] [CrossRef]
- Benn, P.; Grati, F.R. Aneuploidy in First Trimester Chorionic Villi and Spontaneous Abortions: Windows into the Origin and Fate of Aneuploidy through Embryonic and Fetal Development. Prenat. Diagn. 2021, 41, 519–524. [Google Scholar] [CrossRef]
- Levy, B.; Hoffmann, E.R.; McCoy, R.C.; Grati, F.R. Chromosomal Mosaicism: Origins and Clinical Implications in Preimplantation and Prenatal Diagnosis. Prenat. Diagn. 2021, 41, 631–641. [Google Scholar] [CrossRef]
- Munné, S.; Wells, D. Detection of Mosaicism at Blastocyst Stage with the Use of High-Resolution next-Generation Sequencing. Fertil. Steril. 2017, 107, 1085–1091. [Google Scholar] [CrossRef]
- Leigh, D.; Cram, D.S.; Rechitsky, S.; Handyside, A.; Wells, D.; Munne, S.; Kahraman, S.; Grifo, J.; Katz-Jaffe, M.; Rubio, C.; et al. PGDIS Position Statement on the Transfer of Mosaic Embryos 2021. Reprod. Biomed. Online 2022, 45, 19–25. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Lee, C.-I.; Cheng, E.-H.; Huang, C.-C.; Lee, T.-H.; Shih, H.-H.; Pai, Y.-P.; Chen, Y.-C.; Lee, M.-S. Clinical Outcomes of Single Mosaic Embryo Transfer: High-Level or Low-Level Mosaic Embryo, Does It Matter? J. Clin. Med. 2020, 9, 1695. [Google Scholar] [CrossRef]
- Victor, A.R.; Tyndall, J.C.; Brake, A.J.; Lepkowsky, L.T.; Murphy, A.E.; Griffin, D.K.; McCoy, R.C.; Barnes, F.L.; Zouves, C.G.; Viotti, M. One Hundred Mosaic Embryos Transferred Prospectively in a Single Clinic: Exploring When and Why They Result in Healthy Pregnancies. Fertil. Steril. 2019, 111, 280–293. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, D.; Zhu, Y.; Gao, Y.; Yan, J.; Chen, Z.-J. Rates of Live Birth after Mosaic Embryo Transfer Compared with Euploid Embryo Transfer. J. Assist. Reprod. Genet. 2019, 36, 165–172. [Google Scholar] [CrossRef]
- Das, P.; Talwar, D.; Shah, N.; Murdia, K.; Chandra, V.; Aggarwal, R.; Mistari, W.; Lohar, U.; Bhoi, N. New Insights into Elucidating the Pregnancy Outcome of Low Mosaic Embryo Transfer. Reprod. Biomed. Online 2024, 48, 104021. [Google Scholar] [CrossRef]
- Dey, M.; Sharma, S.; Aggarwal, S. Prenatal Screening Methods for Aneuploidies. N. Am. J. Med. Sci. 2013, 5, 182. [Google Scholar] [CrossRef]
- Elsayed, G.M.; El Assiouty, L.; El Sobky, E.S. The Importance of Rapid Aneuploidy Screening and Prenatal Diagnosis in the Detection of Numerical Chromosomal Abnormalities. Springerplus 2013, 2, 490. [Google Scholar] [CrossRef]
- Viotti, M. Preimplantation Genetic Testing for Chromosomal Abnormalities: Aneuploidy, Mosaicism, and Structural Rearrangements. Genes 2020, 11, 602. [Google Scholar] [CrossRef]
- Ulmer, R.; Pfeiffer, R.-A.; Kollert, A.; Beinder, E. Diagnosis of Aneuploidy with Fluorescence in Situ Hybridization (FISH); Value in Pregnancies with Increased Risk for Chromosome Aberrations. Z. Geburtshilfe Neonatol. 2000, 204, 1–7. [Google Scholar] [CrossRef]
- Giles, J.; Meseguer, M.; Mercader, A.; Rubio, C.; Alegre, L.; Vidal, C.; Trabalon, M.; Bosch, E. Preimplantation Genetic Testing for Aneuploidy in Patients with Partial X Monosomy Using Their Own Oocytes: Is This a Suitable Indication? Fertil. Steril. 2020, 114, 346–353. [Google Scholar] [CrossRef]
- Sachdev, N.M.; Maxwell, S.M.; Besser, A.G.; Grifo, J.A. Diagnosis and Clinical Management of Embryonic Mosaicism. Fertil. Steril. 2017, 107, 6–11. [Google Scholar] [CrossRef]
- Spinillo, S.L.; Farina, A.; Sotiriadis, A.; Pozzoni, M.; Giglio, S.; Papale, M.; Candiani, M.; Cavoretto, P.I. Pregnancy Outcome of Confined Placental Mosaicism: Meta-Analysis of Cohort Studies. Am. J. Obs. Gynecol. 2022, 227, 714–727.e1. [Google Scholar] [CrossRef]
- Mason-Otey, A.; Seifer, D.B. United States Racial/Ethnic Disparities in PGT-A Use: An Analysis of 2014–2020 SART CORS Database. Reprod. Biol. Endocrinol. 2025, 23, 66. [Google Scholar] [CrossRef]
- Peyser, A.; Gulersen, M.; Blitz, M.J.; Manvelyan, E.; Abittan, B.; Rochelson, B.; Goldman, R.H. RACIAL DISPARITIES IN PREIMPLANTATION GENETIC TESTING (PGT). Fertil. Steril. 2022, 118, e85–e86. [Google Scholar] [CrossRef]
- Pal, L.; Akerman, M.; Kuokkanen, S. RACIAL DISPARITIES IN OUTCOMES OF PREGNANCIES RESULTING FROM PGT-A SINGLE BLASTOCYST TRANSFER-ANALYSIS OF 79, 416 FROZEN-EMBRYO TRANSFER CYLCES IN SART CORS. Fertil. Steril. 2022, 118, e204. [Google Scholar] [CrossRef]
- Beebeejaun, Y.; Bakalova, D.; Copeland, T.; Hsu, H.; Arora, T.; Sarris, I. P-524 Ethnicity and Aneuploidy Rates in a Global Perspective: A Comparative Genomic Study of 16,543 Embryos from the United Kingdom, India and Japan. Hum. Reprod. 2024, 39, deae108-864. [Google Scholar] [CrossRef]
- Frankel, R.A.; Abittan, B.; Mullin, C.; Shan, W. THE ASSOCIATION BETWEEN SELF-REPORTED RACE AND EMBRYONIC MOSAICISM. Fertil. Steril. 2021, 116, e403–e404. [Google Scholar] [CrossRef]
- Kokkali, G.; Coticchio, G.; Bronet, F.; Celebi, C.; Cimadomo, D.; Goossens, V.; Liss, J.; Nunes, S.; Sfontouris, I.; Vermeulen, N.; et al. ESHRE PGT Consortium and SIG Embryology Good Practice Recommendations for Polar Body and Embryo Biopsy for PGT. Hum. Reprod. Open 2020, 2020, hoaa020. [Google Scholar] [CrossRef]
- Ou, Z.; Chen, Z.; Deng, Y.; Sun, L. High Concordance between Next-Generation Sequencing and Single-Nucleotide Polymorphism Array in Preimplantation Genetic Testing for Aneuploidy. Clin. Exp. Obs. Gynecol. 2022, 49, 20. [Google Scholar] [CrossRef]
- Xiao, M.; Lei, C.-X.; Xi, Y.-P.; Lu, Y.-L.; Wu, J.-P.; Li, X.-Y.; Zhang, S.; Zhu, S.-J.; Zhou, J.; Li, X.; et al. Next-Generation Sequencing Is More Efficient at Detecting Mosaic Embryos and Improving Pregnancy Outcomes than Single-Nucleotide Polymorphism Array Analysis. J. Mol. Diagn. 2021, 23, 710–718. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, J.; Zhang, J.; Fong, W.I.; Li, P.; Zhao, R.; Liu, X.; Podevin, W.; Kuang, Y.; Liu, J. Randomized Comparison of Next-Generation Sequencing and Array Comparative Genomic Hybridization for Preimplantation Genetic Screening: A Pilot Study. BMC Med. Genom. 2015, 8, 30. [Google Scholar] [CrossRef]
- Tan, V.J.; Liu, T.; Arifin, Z.; Pak, B.; Tan, A.S.C.; Wong, S.; Khor, C.-C.; Yang, H.; Lee, C.G.; Huang, Z.; et al. Third-Generation Single-Molecule Sequencing for Preimplantation Genetic Testing of Aneuploidy and Segmental Imbalances. Clin. Chem. 2023, 69, 881–889. [Google Scholar] [CrossRef]
- Ai, X.; Shi, Y.; Liu, L.W.; Xu, Y.; Zhang, H.; Liu, Y.; Wang, J.; Ding, C.; Cai, B.; Zhou, C.; et al. Risk Factors Related to Chromosomal Mosaicism in Human Blastocysts. Reprod. Biomed. Online 2022, 45, 54–62. [Google Scholar] [CrossRef]
- Coll, L.; Parriego, M.; Mateo, S.; García-Monclús, S.; Rodríguez, I.; Boada, M.; Coroleu, B.; Polyzos, N.P.; Vidal, F.; Veiga, A. Prevalence, Types and Possible Factors Influencing Mosaicism in IVF Blastocysts: Results from a Single Setting. Reprod. Biomed. Online 2021, 42, 55–65. [Google Scholar] [CrossRef]
- Viotti, M.; Victor, A.R.; Barnes, F.L.; Zouves, C.G.; Besser, A.G.; Grifo, J.A.; Cheng, E.-H.; Lee, M.-S.; Horcajadas, J.A.; Corti, L.; et al. Using Outcome Data from One Thousand Mosaic Embryo Transfers to Formulate an Embryo Ranking System for Clinical Use. Fertil. Steril. 2021, 115, 1212–1224. [Google Scholar] [CrossRef]
- ASRM. Clinical Management of Mosaic Results from Preimplantation Genetic Testing for Aneuploidy of Blastocysts: A Committee Opinion. Fertil. Steril. 2023, 120, 973–982. [Google Scholar] [CrossRef]
- Escribà, M.-J.; Vendrell, X.; Peinado, V. Segmental Aneuploidy in Human Blastocysts: A Qualitative and Quantitative Overview. Reprod. Biol. Endocrinol. 2019, 17, 76. [Google Scholar] [CrossRef]
- Russell, L.M.; Strike, P.; Browne, C.E.; Jacobs, P.A. X Chromosome Loss and Ageing. Cytogenet. Genome Res. 2007, 116, 181–185. [Google Scholar] [CrossRef]
- Zachaki, S.; Kouvidi, E.; Pantou, A.; Tsarouha, H.; Mitrakos, A.; Tounta, G.; Charalampous, I.; Manola, K.N.; Kanavakis, E.; Mavrou, A. Low-Level X Chromosome Mosaicism: A Common Finding in Women Undergoing IVF. In Vivo 2020, 34, 1433–1437. [Google Scholar] [CrossRef]
- Gersak, K.; Veble, A. Low-Level X Chromosome Mosaicism in Women with Sporadic Premature Ovarian Failure. Reprod. Biomed. Online 2011, 22, 399–403. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Lupski, J.R. Molecular Mechanisms for Constitutional Chromosomal Rearrangements In Humans. Annu. Rev. Genet. 2000, 34, 297–329. [Google Scholar] [CrossRef]
- Kivirikko, S.; Salonen, R.; Salo, A.; von Koskull, H. Prenatally Detected Trisomy 7 Mosaicism in a Dysmorphic Child. Prenat. Diagn. 2002, 22, 541–544. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T. Aneuploidy across Individual Chromosomes at the Embryonic Level in Trophectoderm Biopsies: Changes with Patient Age and Chromosome Structure. J. Assist. Reprod. Genet. 2014, 31, 1501–1509. [Google Scholar] [CrossRef]
- Girardi, L.; Serdarogullari, M.; Patassini, C.; Poli, M.; Fabiani, M.; Caroselli, S.; Coban, O.; Findikli, N.; Boynukalin, F.K.; Bahceci, M.; et al. Incidence, Origin, and Predictive Model for the Detection and Clinical Management of Segmental Aneuploidies in Human Embryos. Am. J. Hum. Genet. 2020, 106, 525–534. [Google Scholar] [CrossRef]
- Grau Madsen, S.; Uldbjerg, N.; Sunde, L.; Becher, N. Prognosis for Pregnancies with Trisomy 16 Confined to the Placenta: A Danish Cohort Study. Prenat. Diagn. 2018, 38, 1103–1110. [Google Scholar] [CrossRef]
- Sparks, T.N.; Thao, K.; Norton, M.E. Mosaic Trisomy 16: What Are the Obstetric and Long-Term Childhood Outcomes? Genet. Med. 2017, 19, 1164–1170. [Google Scholar] [CrossRef]
- Subramaniyam, S.; Pulijaal, V.; Mathew, S. Double and Multiple Chromosomal Aneuploidies in Spontaneous Abortions: A Single Institutional Experience. J. Hum. Reprod. Sci. 2014, 7, 262. [Google Scholar] [CrossRef]
- Kayser, S.; Martínez-Cuadrón, D.; Rodriguez-Veiga, R.; Hänel, M.; Tormo, M.; Schäfer-Eckart, K.; Botella, C.; Stölzel, F.; Del Castillo, T.B.; Keller, U.; et al. Impact of Trisomy 19 on Outcome According to Genetic Makeup in Patients with Acute Myeloid Leukemia. Haematologica 2023, 108, 2059–2066. [Google Scholar] [CrossRef]
- Carvalheira, G.; Oliveira, M.M.; Takeno, S.; de Lima, F.T.; Meloni, V.A.; Melaragno, M.I. 19q13.33→qter Trisomy in a Girl with Intellectual Impairment and Seizures. Meta Gene 2014, 2, 799–806. [Google Scholar] [CrossRef]
- Srivastava, P.; Bamba, C.; Chopra, S.; Rohilla, M.; Chaudhry, C.; Kaur, A.; Panigrahi, I.; Mandal, K. Identification of Genetic Alterations in Couples and Their Products of Conceptions from Recurrent Pregnancy Loss in North Indian Population. Front. Genet. 2023, 14, 1155211. [Google Scholar] [CrossRef]
- Chen, C.-P.; Tsai, C.; Lin, M.-H.; Chern, S.-R.; Chen, S.-W.; Lai, S.-T.; Chen, W.-L.; Pan, C.-W.; Wang, W. Application of Non-Invasive Prenatal Testing in Late Gestation in a Pregnancy Associated with Intrauterine Growth Restriction and Trisomy 22 Confined Placental Mosaicism. Taiwan. J. Obstet. Gynecol. 2017, 56, 691–693. [Google Scholar] [CrossRef]
- Hardy, P.; Bryan, J.; Hardy, R.; Lennon, P.A.; Hardy, K. Is Monosomy 21 Rare? Seven Early Miscarriages Including One Mosaic 45,XX,-21/44,X,-21 in a Single Study Population. Am. J. Med. Genet. A 2012, 158A, 2050–2052. [Google Scholar] [CrossRef]
- Burgess, T.; Downie, L.; Pertile, M.D.; Francis, D.; Glass, M.; Nouri, S.; Pszczola, R. Monosomy 21 Seen in Live Born Is Unlikely to Represent True Monosomy 21: A Case Report and Review of the Literature. Case Rep. Genet. 2014, 2014, 965401. [Google Scholar] [CrossRef]
- Gaudio, D.; Shinawi, M.; Astbury, C.; Tayeh, M.K.; Deak, K.L.; Raca, G. Diagnostic Testing for Uniparental Disomy: A Points to Consider Statement from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 1133–1141. [Google Scholar] [CrossRef]
- Capalbo, A.; Poli, M.; Rienzi, L.; Girardi, L.; Patassini, C.; Fabiani, M.; Cimadomo, D.; Benini, F.; Farcomeni, A.; Cuzzi, J.; et al. Mosaic Human Preimplantation Embryos and Their Developmental Potential in a Prospective, Non-Selection Clinical Trial. Am. J. Hum. Genet. 2021, 108, 2238–2247. [Google Scholar] [CrossRef]
- Alteri, A.; Cermisoni, G.C.; Pozzoni, M.; Gaeta, G.; Cavoretto, P.I.; Viganò, P. Obstetric, Neonatal, and Child Health Outcomes Following Embryo Biopsy for Preimplantation Genetic Testing. Hum. Reprod. Update 2023, 29, 291–306. [Google Scholar] [CrossRef] [PubMed]
Euploid | Aneuploid | Mosaic | No Diagnosis |
---|---|---|---|
38.61% | 32.10% | 16.70% | 12.58% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, B.; Savuca, A.; Anton, N.; Maftei, R.; Cretu, A.-M.; Bivoleanu, A.R.; Doroftei, M.; Ilea, C. Clinical Insights Regarding the Targeted Chromosomal Region for Mosaicism and Aneuploidy in Embryos in IVF Treatment and Literature Review. Diagnostics 2025, 15, 1375. https://doi.org/10.3390/diagnostics15111375
Doroftei B, Savuca A, Anton N, Maftei R, Cretu A-M, Bivoleanu AR, Doroftei M, Ilea C. Clinical Insights Regarding the Targeted Chromosomal Region for Mosaicism and Aneuploidy in Embryos in IVF Treatment and Literature Review. Diagnostics. 2025; 15(11):1375. https://doi.org/10.3390/diagnostics15111375
Chicago/Turabian StyleDoroftei, Bogdan, Alexandra Savuca, Nicoleta Anton, Radu Maftei, Ana-Maria Cretu, Anca Roxana Bivoleanu, Mara Doroftei, and Ciprian Ilea. 2025. "Clinical Insights Regarding the Targeted Chromosomal Region for Mosaicism and Aneuploidy in Embryos in IVF Treatment and Literature Review" Diagnostics 15, no. 11: 1375. https://doi.org/10.3390/diagnostics15111375
APA StyleDoroftei, B., Savuca, A., Anton, N., Maftei, R., Cretu, A.-M., Bivoleanu, A. R., Doroftei, M., & Ilea, C. (2025). Clinical Insights Regarding the Targeted Chromosomal Region for Mosaicism and Aneuploidy in Embryos in IVF Treatment and Literature Review. Diagnostics, 15(11), 1375. https://doi.org/10.3390/diagnostics15111375