Diffuse Reflectance Spectroscopy as a Novel Method of Caries Detection—An In Vitro Comparative Study in Permanent Teeth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visual Inspection
2.2. Laser Fluorescence (Diagnodent Pen) Assessment
2.3. Diffuse Reflectance Spectroscopy (DRS) Assessment
- Wavelength at which reflectivity was maximal (λmax);
- Wavelength at which reflectivity was minimal (λmin);
- Average reflectivity in the interval of wavelengths λmax—λmin;
- Average difference between reflectivity values in the λmax—λmin interval and a line connecting maximal and minimal values of reflectivity;
- Value of a second derivative of a polynomial of a second degree approximated to the values in the λmax—λmin interval at the average of wavelengths λmax and λmin;
- Standard deviation of a signal after detrending and subtracting the approximated polynomial;
- The participation of high-frequency signals in signal energy after detrending and subtracting the approximated polynomial.
2.4. Histological Verification
2.5. Statistical Analysis
3. Results
3.1. ICDAS
3.2. Diagnodent Pen
3.3. DRS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinho, V.C.; Chong, L.-Y.; Worthington, H.V.; Walsh, T. Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2016, CD002284. [Google Scholar] [CrossRef]
- Horst, J.A.; Tanzer, J.M.; Milgrom, P.M. Fluorides and Other Preventive Strategies for Tooth Decay. Dent. Clin. N. Am. 2018, 62, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Kocak, N.; Cengiz-Yanardag, E. Clinical performance of clinical-visual examination, digital bitewing radiography, laser fluorescence, and near-infrared light transillumination for detection of non-cavitated proximal enamel and dentin caries. Lasers Med. Sci. 2020, 35, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, T.; Piovesan, C.; Braga, M.M.; Raggio, D.P.; Deery, C.; Ricketts, D.N.; Ekstrand, K.; Mendes, F.M. Visual Inspection for Caries Detection: A systematic review and meta-analysis. J. Dent. Res. 2015, 94, 895–904. [Google Scholar] [CrossRef]
- Gugnani, N.; Pandit, I.K.; Srivastava, N.; Gupta, M.; Sharma, M. International Caries Detection and Assessment System (ICDAS): A New Concept. Int. J. Clin. Pediatr. Dent. 2011, 4, 93–100. [Google Scholar] [CrossRef]
- Dikmen, B. ICDAS II criteria (international caries detection and assessment system). J. Istanb. Univ. Fac. Dent. 2015, 49, 63–72. [Google Scholar] [CrossRef]
- Ekstrand, K.R.; Gimenez, T.; Ferreira, F.R.; Mendes, F.M.; Braga, M.M. The International Caries Detection and Assessment System—ICDAS: A Systematic Review. Caries Res. 2018, 52, 406–419. [Google Scholar] [CrossRef]
- Geibel, M.-A.; Carstens, S.; Braisch, U.; Rahman, A.; Herz, M.; Jablonski-Momeni, A. Radiographic diagnosis of proximal caries—Influence of experience and gender of the dental staff. Clin. Oral Investig. 2017, 21, 2761–2770. [Google Scholar] [CrossRef]
- Turchiello, R.Z.; Pedrotti, D.; Braga, M.M.; Rocha, R.O.; Rodrigues, J.A.; Lenzi, T.L. Do undergraduate dental students perform well detecting and staging caries and assessing activity by visual examination? A systematic review and meta-analysis. Int. J. Paediatr. Dent. 2019, 29, 281–293. [Google Scholar] [CrossRef]
- Todorova, V.; Filipov, I.; Petrova, R. In Vitro Comparison of Several Methods for Initial Proximal Caries Detection. Folia Med. 2020, 62, 358–364. [Google Scholar] [CrossRef]
- Pretty, I.A. Caries detection and diagnosis: Novel technologies. J. Dent. 2006, 34, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Abogazalah, N.; Ando, M. Alternative methods to visual and radiographic examinations for approximal caries detection. J. Oral Sci. 2017, 59, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Marinova-Takorova, M.; Anastasova, R.; Panov, V.E. Comparative evaluation of the effectiveness of five methods for early diagnosis of occlusal caries lesions—In vitro study. J. IMAB—Annu. Proceeding Sci. Pap. 2014, 20, 533–536. [Google Scholar] [CrossRef]
- Blazejewska, A.I.; Dacyna, N.; Niesiobędzki, P.; Trzaska, M.; Gozdowski, D.; Turska-Szybka, A.; Olczak-Kowalczyk, D. Comparison of the detection of proximal caries in children and youth using DIAGNOcam and bitewing radiovisiography. Dent. Med. Probl. 2016, 53, 468–475. [Google Scholar] [CrossRef]
- Alamoudi, N.; Khan, J.; El-Ashiry, E.; Felemban, O.; Bagher, S.; Al-Tuwirqi, A. Accuracy of the DIAGNOcam and bitewing radiographs in the diagnosis of cavitated proximal carious lesions in primary molars. Niger. J. Clin. Pract. 2019, 22, 1576–1582. [Google Scholar] [CrossRef]
- Gostanian, H.V.; Shey, Z.; Kasinathan, C.; Caceda, J.; Janal, M.N. An in vitro evaluation of the effect of sealant characteristics on laser fluorescence for caries detection. Pediatr. Dent. 2006, 28, 445–450. [Google Scholar] [PubMed]
- Ekstrand, K.; Ricketts, D.N.J.; Kidd, E.A.M. Reproducibility and Accuracy of Three Methods for Assessment of Demineralization Depth on the Occlusal Surface: An in vitro Examination. Caries Res. 1997, 31, 224–231. [Google Scholar] [CrossRef]
- Ricketts, D.; Kidd, E.; Weerheijm, K.; De Soet, H. Hidden caries: What is it? Does it exist? Does it matter? Int. Dent. J. 1997, 47, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Takamori, K.; Hokari, N.; Okumura, Y.; Watanabe, S. Detection of Occlusal Caries under Sealants by Use of a Laser Fluorescence System. J. Clin. Laser Med. Surg. 2001, 19, 267–271. [Google Scholar] [CrossRef]
- Heinrich-Weltzien, R.; Weerheijm, K.L.; Kühnisch, J.; Oehme, T.; Stösser, L. Clinical evaluation of visual, radiographic, and laser fluorescence methods for detection of occlusal caries. ASDC J. Dent. Child. 2002, 69, 127–132. [Google Scholar]
- Anttonen, V.; Seppä, L.; Hausen, H. Clinical Study of the Use of the Laser Fluorescence Device DIAGNOdent for Detection of Occlusal Caries in Children. Caries Res. 2003, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Hellwig, E. Performance of a new laser fluorescence device for the detection of occlusal caries in vitro. J. Dent. 2006, 34, 467–471. [Google Scholar] [CrossRef]
- Rodrigues, J.; Hug, I.; Diniz, M.; Lussi, A. Performance of Fluorescence Methods, Radiographic Examination and ICDAS II on Occlusal Surfaces in vitro. Caries Res. 2008, 42, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Alkurt, M.T.; Peker, I.; Arisu, H.D.; Bala, O.; Altunkaynak, B. In vivo comparison of laser fluorescence measurements with conventional methods for occlusal caries detection. Lasers Med. Sci. 2007, 23, 307–312. [Google Scholar] [CrossRef]
- Tassoker, M.; Ozcan, S.; Karabekiroglu, S. Occlusal Caries Detection and Diagnosis Using Visual ICDAS Criteria, Laser Fluorescence Measurements, and Near-Infrared Light Transillumination Images. Med. Princ. Pract. 2020, 29, 25–31. [Google Scholar] [CrossRef]
- Pourhashemi, S.; Jafari, A.; Motahhari, P.; Panjnoosh, M.; Fard, M.K.; Sanati, I.; Sahadfar, M.; Pariab, M. An in-vitro comparison of visual inspection, bite-wing radiography, and laser fluorescence methods for the diagnosis of occlusal caries. J. Indian Soc. Pedod. Prev. Dent. 2009, 27, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Nokhbatolfoghahaie, H.; AliKhasi, M.; Chiniforush, N.; Khoei, F.; Safavi, N.; Zadeh, B.Y. Evaluation of Accuracy of DIAGNOdent in Diagnosis of Primary and Secondary Caries in Comparison to Conventional Methods. J. Lasers Med. Sci. 2013, 4, 159–167. [Google Scholar] [CrossRef]
- Kockanat, A.; Unal, M. In vivo and in vitro comparison of ICDAS II, DIAGNOdent pen, CarieScan PRO and SoproLife camera for occlusal caries detection in primary molar teeth. Eur. J. Paediatr. Dent. 2017, 18, 99–104. [Google Scholar] [CrossRef]
- Castilho, L.S.; Cotta, F.V.; Bueno, A.C.; Moreira, A.N.; Ferreira, E.F.; Magalhães, C.S. Validation of DIAGNOdent laser fluorescence and the International Caries Detection and Assessment System (ICDAS) in diagnosis of occlusal caries in permanent teeth: An in vivo study. Eur. J. Oral Sci. 2016, 124, 188–194. [Google Scholar] [CrossRef]
- Hill, W.; Petrou, V. Caries Detection by Diode Laser Raman Spectroscopy. Appl. Spectrosc. 2000, 54, 795–799. [Google Scholar] [CrossRef]
- Samek, O.; Telle, H.H.; Beddows, D.C. Laser-induced breakdown spectroscopy: A tool for real-time, in vitro and in vivo identification of carious teeth. BMC Oral Health 2001, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Hibst, R.; Paulus, R. DIAGNOdent: An Optical Method for Caries Detection. J. Dent. Res. 2004, 83, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Izawa, T.; Wakaki, M. Application of Laser Raman Spectroscopy to Dental Diagnosis. In Proceedings of the SPIE BiOS, San Jose, CA, USA, 22–27 January 2005. [Google Scholar]
- Liu, L.; Tang, J.; Li, S.Z. A new method for caries diagnosis by characteristic spectrum. In Proceedings of the 2009 2nd Inter-national Conference on Biomedical Engineering and Informatics, Tianjin, China, 17–19 October 2009; pp. 1–4. [Google Scholar]
- Ruohonen, M.; Palo, K.; Alander, J. Spectroscopic Detection of Caries Lesions. J. Med. Eng. 2013, 2013, 161090. [Google Scholar] [CrossRef]
- Procházka, A.; Charvát, J.; Vyšata, O.; Mandic, D. Incremental deep learning for reflectivity data recognition in stomatology. Neural Comput. Appl. 2022, 34, 7081–7089. [Google Scholar] [CrossRef]
- Charvát, J.; Procházka, A.; Fričl, M.; Vyšata, O.; Himmlová, L. Diffuse reflectance spectroscopy in dental caries detection and classification. Signal Image Video Process. 2020, 14, 1063–1070. [Google Scholar] [CrossRef]
- Schwarz, R.A.; Gao, W.; Daye, D.; Williams, M.D.; Richards-Kortum, R.; Gillenwater, A. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl. Opt. 2008, 47, 825–834. [Google Scholar] [CrossRef]
- Lussi, A.; Francescut, P. Performance of Conventional and New Methods for the Detection of Occlusal Caries in Deciduous Teeth. Caries Res. 2003, 37, 2–7. [Google Scholar] [CrossRef]
- Luczaj-Cepowicz, E.; Marczuk-Kolada, G.; Obidzinska, M.; Sidun, J. Diagnostic validity of the use of ICDAS II and DIAGNOdent pen verified by micro-computed tomography for the detection of occlusal caries lesions—An in vitro evaluation. Lasers Med. Sci. 2019, 34, 1655–1663. [Google Scholar] [CrossRef]
- Hibst, R.; Paulus, R.; Lussi, A. Detection of Occlusal Caries by Laser Fluorescence: Basic and Clinical Investigations. Med. Laser Appl. 2001, 16, 205–213. [Google Scholar] [CrossRef]
- Fričl, M. Analysis of Spectroscopic Images of Hard Dental Tissues; University of Chemistry and Technology: Prague, Czech Republic, 2020. [Google Scholar]
- Martynek, D. Diffuse Reflectance Spectroscopy in Dental Tissue Analysis; University of Chemistry and Technology: Prague, Czech Republic, 2022. [Google Scholar]
- Downer, M.C. Concurrent Validity of an Epidemiological Diagnostic System for Caries with the Histological Appearance of Extracted Teeth as Validating Criterion. Caries Res. 1975, 9, 231–246. [Google Scholar] [CrossRef]
- Attrill, D.C.; Ashley, P. Occlusal caries detection in primary teeth: A comparison of DIAGNOdent with conventional methods. Br. Dent. J. 2001, 190, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Subka, S.; Rodd, H.; Nugent, Z.; Deery, C. In vivo validity of proximal caries detection in primary teeth, with histological validation. Int. J. Paediatr. Dent. 2019, 29, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Huth, K.; Neuhaus, K.; Gygax, M.; Bücher, K.; Crispin, A.; Paschos, E.; Hickel, R.; Lussi, A. Clinical performance of a new laser fluorescence device for detection of occlusal caries lesions in permanent molars. J. Dent. 2008, 36, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Bengtson, A.L.; Gomes, A.C.; Mendes, F.M.; Cichello, L.R.; Bengtson, N.G.; Pinheiro, S.L. Influence of examiner’s clinical experience in detecting occlusal caries lesions in primary teeth. Pediatr. Dent. 2005, 27, 238–243. [Google Scholar]
- Reis, A.; Mendes, F.M.; Angnes, V.; Angnes, G.; Grande, R.H.M.; Loguercio, A.D. Performance of methods of occlusal caries detection in permanent teeth under clinical and laboratory conditions. J. Dent. 2006, 34, 89–96. [Google Scholar] [CrossRef]
- Jablonski-Momeni, A.; Stachniss, V.; Ricketts, D.; Heinzel-Gutenbrunner, M.; Pieper, K. Reproducibility and Accuracy of the ICDAS-II for Detection of Occlusal Caries in vitro. Caries Res. 2008, 42, 79–87. [Google Scholar] [CrossRef]
- Mitropoulos, P.; Rahiotis, C.; Stamatakis, H.; Kakaboura, A. Diagnostic performance of the visual caries classification system ICDAS II versus radiography and micro-computed tomography for proximal caries detection: An in vitro study. J. Dent. 2010, 38, 859–867. [Google Scholar] [CrossRef]
- Soviero, V.; Leal, S.; Silva, R.; Azevedo, R. Validity of MicroCT for in vitro detection of proximal carious lesions in primary molars. J. Dent. 2012, 40, 35–40. [Google Scholar] [CrossRef]
- Bader, J.D.; Shugars, D.A.; Bonito, A.J. Systematic Reviews of Selected Dental Caries Diagnostic and Management Methods. J. Dent. Educ. 2001, 65, 960–968. [Google Scholar] [CrossRef]
- Foros, P.; Oikonomou, E.; Koletsi, D.; Rahiotis, C. Detection Methods for Early Caries Diagnosis: A Systematic Review and Meta-Analysis. Caries Res. 2021, 55, 247–259. [Google Scholar] [CrossRef]
- Bader, J.D.; Shugars, D.A. A systematic review of the performance of a laser fluorescence device for detecting caries. J. Am. Dent. Assoc. 2004, 135, 1413–1426. [Google Scholar] [CrossRef]
- Walsh, L.J. Caries Diagnosis Aided by Fluorescence. In Dental Caries; InTech Open: Rijek, Croatia, 2018. [Google Scholar] [CrossRef]
- Markowitz, K.; Stenvall, R.; Graye, M. The Effect of Distance and Tooth Structure on Laser Fluorescence Caries Detection. Oper. Dent. 2012, 37, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, Z.; Kamran, M.A.; Mannan, M.M.N.; Jeong, M.Y. Approach to optimize 3-dimensional brain functional activation image with high resolution: A study on functional near-infrared spectroscopy. Biomed. Opt. Express 2019, 10, 4684–4710. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, M.; Kusakawa, N.; Masaki, S.; Honda, K.; Shimada, Y.; Fujimoto, I.; Hirao, K. Investigation on deep layer meas-urements in the cerebral cortex within the adult head by near infrared spectroscopy using an absorbance difference technique. J. Near Infrared Spectrosc. 2003, 11, 27–38. [Google Scholar] [CrossRef]
- Si, W.; Xiong, J.; Huang, Y.; Jiang, X.; Hu, D. Quality Assessment of Fruits and Vegetables Based on Spatially Resolved Spectroscopy: A Review. Foods 2022, 11, 1198. [Google Scholar] [CrossRef]
Code | Description |
---|---|
0 | Sound tooth surface: No evidence of caries after 5 s of air drying |
1 | First visual change in enamel: Opacity or discoloration (white or brown) is visible at the entrance to the pit or fissure seen after prolonged air drying |
2 | Distinct visual change in enamel visible when wet, lesion must be visible when dry |
3 | Localized enamel breakdown (without clinical visual signs of dentinal involvement) seen when wet and after prolonged drying |
4 | Underlying dark shadow from dentine |
5 | Distinct cavity with visible dentine |
6 | Extensive (more than half the surface) distinct cavity with visible dentine |
Cut-Off Limits | Clinical Lesion Depth |
---|---|
0–13 | Sound |
14–20 | Enamel lesions |
21–29 | Caries in dentin–enamel junction |
>29 | Dentin caries |
Downer’s Criteria | ICDAS | Diagnodent Pen | DRS |
---|---|---|---|
0 | Sound tooth surface | 0–13 (Sound) | D0 (Sound) |
1 | First visual change in enamel | 14–20 (Enamel caries) | D1 (Demineralization in the outer half of the enamel) |
2 | Distinct visual change in enamel | 21–29 (Caries in dentin–enamel junction) | D2 (Demineralization in the inner half of the enamel) |
3 | Localized enamel breakdown | >29 (Dentin caries) | D3 (Demineralization of the dentin) |
Caries Extent | Detection Method | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | False Negative (95% CI) | False Positive (95% CI) |
---|---|---|---|---|---|---|
D1 | ICDAS (1) | 0.31 (0.16–0.46) | 0.87 (0.83–0.91) | 0.80 (0.76–0.85) | 0.10 (0.06–0.13) | 0.76 (0.63–0.88) |
ICDAS (2) | 0.28 (0.13–0.42) | 0.88 (0.84–0.92) | 0.81 (0.76–0.86) | 0.10 (0.06–0.14) | 0.76 (0.62–0.89) | |
DIAGNOdent pen | 0.44 (0.28–0.61) | 0.89 (0.85–0.92) | 0.83 (0.79–0.88) | 0.08 (0.05–0.11) | 0.65 (0.51–0.79) | |
DRS | 0.69 (0.54–0.84) | 0.97 (0.95–0.99) | 0.94 (0.91–0.97) | 0.04 (0.02–0.06) | 0.22 (0.08–0.36) | |
D2 | ICDAS (1) | 0.40 (0.27–0.54) | 0.92 (0.89–0.95) | 0.83 (0.78–0.88) | 0.12 (0.08–0.16) | 0.49 (0.33–0.64) |
ICDAS (2) | 0.46 (0.33–0.60) | 0.93 (0.90–0.96) | 0.85 (0.80–0.89) | 0.11 (0.07–0.15) | 0.43 (0.28–0.58) | |
DIAGNOdent pen | 0.15 (0.06–0.25) | 0.95 (0.92–0.98) | 0.81 (0.76–0.86) | 0.16 (0.11–0.20) | 0.62 (0.41–0.83) | |
DRS | 0.92 (0.85–1.00) | 0.92 (0.89–0.95) | 0.92 (0.89–0.95) | 0.02 (0.00–0.03) | 0.29 (0.19–0.40) | |
D3 | ICDAS (1) | 0.66 (0.49–0.82) | 0.90 (0.87–0.94) | 0.88 (0.84–0.92) | 0.04 (0.02–0.07) | 0.55 (0.41–0.70) |
ICDAS (2) | 0.75 (0.60–0.90) | 0.91 (0.88–0.94) | 0.89 (0.86–0.93) | 0.03 (0.01–0.05) | 0.50 (0.36–0.64) | |
DIAGNOdent pen | 0.69 (0.53–0.85) | 0.82 (0.77–0.86) | 0.80 (0.76–0.85) | 0.04 (0.02–0.07) | 0.69 (0.58–0.80) | |
DRS | 0.38 (0.21–0.54) | 0.996 (0.99–1.00) | 0.93 (0.90–0.96) | 0.07 (0.04–0.10) | 0.07 (0.00–0.38) |
Detection Method | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | False Negative (95% CI) | False Positive (95% CI) |
---|---|---|---|---|---|
ICDAS (1) | 0.90 (0.83–0.95) | 0.86 (0.80–0.91) | 0.88 (0.83–0.91) | 0.07 (0.04–0.13) | 0.19 (0.13–0.27) |
ICDAS (2) | 0.90 (0.83–0.95) | 0.87 (0.81–0.92) | 0.88 (0.84–0.92) | 0.07 (0.04–0.12) | 0.18 (0.12–0.25) |
DIAGNOdent pen | 0.93 (0.87–0.97) | 0.86 (0.80–0.90) | 0.89 (0.85–0.92) | 0.05 (0.02–0.10) | 0.19 (0.13–0.27) |
DRS | 0.91 (0.84–0.95) | 0.98 (0.94–0.99) | 0.95 (0.92–0.97) | 0.06 (0.03–0.11) | 0.04 (0.01–0.09) |
ICDAS Code | Downer’s Class 0 | Downer’s Class 1 | Downer’s Class 2 | Downer’s Class 3 | Total |
---|---|---|---|---|---|
0 | 155 | 9 | 3 | 0 | 167 |
1 | 25 | 11 | 9 | 0 | 45 |
2 | 0 | 9 | 21 | 11 | 41 |
3 | 0 | 7 | 19 | 21 | 47 |
Total | 180 | 36 | 52 | 32 | 300 |
ICDAS Code | Downer’s Class 0 | Downer’s Class 1 | Downer’s Class 2 | Downer’s Class 3 | Total |
---|---|---|---|---|---|
0 | 157 | 8 | 4 | 0 | 169 |
1 | 23 | 10 | 8 | 0 | 41 |
2 | 0 | 10 | 24 | 8 | 42 |
3 | 0 | 8 | 16 | 24 | 48 |
Total | 180 | 36 | 52 | 32 | 300 |
Diagnodent Pen Value | Downer’s Class 0 | Downer’s Class 1 | Downer’s Class 2 | Downer’s Class 3 | Total |
---|---|---|---|---|---|
0–13 | 154 | 5 | 3 | 0 | 162 |
14–20 | 9 | 16 | 14 | 7 | 46 |
21–29 | 5 | 5 | 8 | 3 | 21 |
>29 | 12 | 10 | 27 | 22 | 71 |
Total | 180 | 36 | 52 | 32 | 300 |
DRS Class | Downer’s Class 0 | Downer’s Class 1 | Downer’s Class 2 | Downer’s Class 3 | Total |
---|---|---|---|---|---|
D0 | 176 | 11 | 0 | 0 | 187 |
D1 | 4 | 25 | 3 | 0 | 32 |
D2 | 0 | 0 | 48 | 20 | 68 |
D3 | 0 | 0 | 1 | 12 | 13 |
Total | 180 | 36 | 52 | 32 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charvat, J.; Prochazka, A.; Kucera, T.; Tichy, A.; Yurchenko, M.; Himmlova, L. Diffuse Reflectance Spectroscopy as a Novel Method of Caries Detection—An In Vitro Comparative Study in Permanent Teeth. Diagnostics 2023, 13, 1878. https://doi.org/10.3390/diagnostics13111878
Charvat J, Prochazka A, Kucera T, Tichy A, Yurchenko M, Himmlova L. Diffuse Reflectance Spectroscopy as a Novel Method of Caries Detection—An In Vitro Comparative Study in Permanent Teeth. Diagnostics. 2023; 13(11):1878. https://doi.org/10.3390/diagnostics13111878
Chicago/Turabian StyleCharvat, Jindrich, Ales Prochazka, Tomas Kucera, Antonin Tichy, Maksim Yurchenko, and Lucie Himmlova. 2023. "Diffuse Reflectance Spectroscopy as a Novel Method of Caries Detection—An In Vitro Comparative Study in Permanent Teeth" Diagnostics 13, no. 11: 1878. https://doi.org/10.3390/diagnostics13111878
APA StyleCharvat, J., Prochazka, A., Kucera, T., Tichy, A., Yurchenko, M., & Himmlova, L. (2023). Diffuse Reflectance Spectroscopy as a Novel Method of Caries Detection—An In Vitro Comparative Study in Permanent Teeth. Diagnostics, 13(11), 1878. https://doi.org/10.3390/diagnostics13111878