Approach of Heterogeneous Spectrum Involving 3beta-Hydroxysteroid Dehydrogenase 2 Deficiency
Abstract
:1. Introduction
2. Methods
2.1. 3βHSD2 Deficiency: General Frame of Approach
2.2. Clinical Presentation of Patients Confirmed with 3βHSD Type II Deficiency
2.3. Biochemical/Hormonal Assessments in 3βHSD Type II Deficiency
2.4. Genetic Background: HSD3B2
2.5. Fertility Issues
2.6. Complications & Outcome
2.7. Management
2.8. Other Anomalies Reported in Patients with 3βHSD2 Deficiency
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTH | Adrenocorticotropic Hormone |
3βHSD | 3beta-hydroxysteroid dehydrogenase |
CAH | congenital adrenal hyperplasia |
CRF | Corticotrophin Releasing Factor |
DHEA-S | dehydroepiandrosterone sulfate |
DHEA | dehydroepiandrosterone |
DSD | disorders of sex development |
LC-MS/MS | Liquid chromatography tandem–mass spectrometry |
IQ | intelligence quotient |
OART | ovarian adrenal rest tumours |
Preg | pregnenolone |
POS | polycystic ovaries syndrome |
17OHP | 17-hydroxyprogesterone |
17OH-Preg | 17-hydroxypregnenolone |
21OHD | 21-hydroxylase |
TARTs | testicular adrenal rest tumours |
SW | salt wasting |
References
- Witchel, S.F. Congenital Adrenal Hyperplasia. J. Pediatr. Adolesc. Gynecol. 2017, 30, 520–534. [Google Scholar] [CrossRef] [PubMed]
- Nordenström, A.; Lajic, S.; Falhammar, H. Long-Term Outcomes of Congenital Adrenal Hyperplasia. Endocrinol. Metab. 2022, 37, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Kater, C.E.; Giorgi, R.B.; Costa-Barbosa, F.A. Classic and current concepts in adrenal steroidogenesis: A reappraisal. Arch. Endocrinol. Metab. 2022, 66, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Auchus, R.J. The uncommon forms of congenital adrenal hyperplasia. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 263–270. [Google Scholar] [CrossRef]
- Van der Grinten, H.L.C.; Speiser, P.W.; Ahmed, S.F.; Arlt, W.; Auchus, R.J.; Falhammar, H.; Flück, C.E.; Guasti, L.; Huebner, A.; Kortmann, B.B.M.; et al. Congenital Adrenal Hyperplasia—Current Insights in Pathophysiology, Diagnostics, and Management. Endocr. Rev. 2021, 43, 91–159. [Google Scholar] [CrossRef]
- Jha, S.; Turcu, A.F. Nonclassic Congenital Adrenal Hyperplasia: What Do Endocrinologists Need to Know? Endocrinol. Metab. Clin. N. Am. 2021, 50, 151–165. [Google Scholar] [CrossRef]
- Mallappa, A.; Merke, D.P. Management challenges and therapeutic advances in congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 2022, 18, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.M.; Stepien, K.M.; Krishan, A. Glucocorticoid replacement regimens for treating congenital adrenal hyperplasia. Cochrane Database Syst. Rev. 2020, 3, CD012517. [Google Scholar] [CrossRef]
- Török, D. Congenital Adrenal Hyperplasia. Exp. Suppl. 2019, 111, 245–260. [Google Scholar] [CrossRef]
- Nordenström, A.; Falhammar, H.; Lajic, S. Current and Novel Treatment Strategies in Children with Congenital Adrenal Hyperplasia. Horm. Res. Paediatr. 2022, 5, 2260. [Google Scholar] [CrossRef] [PubMed]
- Lousada, L.M.; Mendonca, B.B.; Bachega, T.A.S.S. Adrenal crisis and mortality rate in adrenal insufficiency and congenital adrenal hyperplasia. Arch. Endocrinol. Metab. 2021, 65, 488–494. [Google Scholar] [CrossRef]
- Li, L.; Bensing, S.; Falhammar, H. Rate of fracture in patients with glucocorticoid replacement therapy: A systematic review and meta-analysis. Endocrine 2021, 74, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Rangaswamaiah, S.; Gangathimmaiah, V.; Nordenstrom, A.; Falhammar, H. Bone Mineral Density in Adults with Congenital Adrenal Hyperplasia: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 493. [Google Scholar] [CrossRef] [PubMed]
- Minnetti, M.; Caiulo, S.; Ferrigno, R.; Baldini-Ferroli, B.; Bottaro, G.; Gianfrilli, D.; Sbardella, E.; De Martino, M.C.; Savage, M.O. Abnormal linear growth in paediatric adrenal diseases: Pathogenesis, prevalence and management. Clin. Endocrinol. 2019, 92, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner-Parzer, S.; Witsch-Baumgartner, M.; Hoeppner, W. EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency. Eur. J. Hum. Genet. 2020, 28, 1341–1367. [Google Scholar] [CrossRef]
- White, P.C. Emerging treatment for congenital adrenal hyperplasia. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Schröder, M.A.M.; van der Grinten, H.L. Novel treatments for congenital adrenal hyperplasia. Rev. Endocr. Metab. Disord. 2022, 23, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Frontino, G.; Stancampiano, M.R.; Aiuti, A. Potentialities of Gene Therapy in Pediatric Endocrinology. Horm. Res. Paediatr. 2021, 5, 965. [Google Scholar] [CrossRef] [PubMed]
- Prete, A.; Auchus, R.J.; Ross, R.J. Clinical advances in the pharmacotherapy of congenital adrenal hyperplasia. Eur. J. Endocrinol. 2022, 186, R1–R14. [Google Scholar] [CrossRef]
- Hosseinirad, H.; Yadegari, P.; Falahieh, F.M.; Nouraei, S.; Paktinat, S.; Afsharzadeh, N.; Sadeghi, Y. Disorders of sex development and female reproductive capacity: A literature review. Syst. Biol. Reprod. Med. 2021, 67, 323–336. [Google Scholar] [CrossRef]
- Finkielstain, G.P.; Vieites, A.; Bergadá, I.; Rey, R.A. Disorders of Sex Development of Adrenal Origin. Front. Endocrinol. 2021, 12, 770782. [Google Scholar] [CrossRef] [PubMed]
- Benkert, A.R.; Young, M.; Robinson, D.; Hendrickson, C.; Lee, P.A.; Strauss, K.A. Severe Salt-Losing 3β-Hydroxysteroid Dehydrogenase Deficiency: Treatment and Outcomes of HSD3B2 c.35G>A Homozygotes. J. Clin. Endocrinol. Metab. 2015, 100, E1105–E1115. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Du, C.; Yu, X.; Hou, L.; Wu, W.; Ying, Y.; Luo, X. Clinical applications of genetic analysis and liquid chromatography tandem-mass spectrometry in rare types of congenital adrenal hyperplasia. BMC Endocr. Disord. 2021, 21, 237. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, A.; Baronio, F.; Ortolano, R.; Menabo, S.; Baldazzi, L.; Di Natale, V.; Vissani, S.; Cassio, A. Congenital Adrenal Hyperplasias Presenting in the Newborn and Young Infant. Front. Pediatr. 2020, 8, 593315. [Google Scholar] [CrossRef] [PubMed]
- Donadille, B.; Houang, M.; Netchine, I.; Siffroi, J.-P.; Christin-Maitre, S. Human 3beta-hydroxysteroid dehydrogenase deficiency associated with normal spermatic numeration despite a severe enzyme deficit. Endocr. Connect. 2018, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Guran, T.; Kara, C.; Yildiz, M.; Bitkin, E.C.; Haklar, G.; Lin, J.-C.; Keskin, M.; Barnard, L.; Anik, A.; Catli, G.; et al. Revisiting Classical 3β-hydroxysteroid Dehydrogenase 2 Deficiency: Lessons from 31 Pediatric Cases. J. Clin. Endocrinol. Metab. 2020, 105, e1718–e1728. [Google Scholar] [CrossRef]
- Podgórski, R.; Aebisher, D.; Stompor, M.; Podgórska, D.; Mazur, A. Congenital Adrenal Hyperplasia: Clinical symptoms and diagnostic methods. Acta Biochim. Pol. 2018, 65, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Ntali, G.; Charisis, S.; Kylafi, C.F.; Vogiatzi, E.; Michala, L. The way toward adulthood for females with nonclassic congenital adrenal hyperplasia. Endocrine 2021, 73, 16–30. [Google Scholar] [CrossRef]
- Arriba, M.; Ezquieta, B. Molecular Diagnosis of Steroid 21-Hydroxylase Deficiency: A Practical Approach. Front. Endocrinol. 2022, 13, 834549. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, F.; Achermann, J.C. Primary adrenal insufficiency: New genetic causes and their long-term consequences. Clin. Endocrinol. 2019, 92, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Huang, H.; Zhang, H.; Zhu, G.; Zhu, M. Three cases of 3β-hydroxysteroid dehydrogenase deficiency: Clinical analysis. Adv. Clin. Exp. Med. 2021, 30, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, E.; Flück, C.E. Adrenal cortex development and related disorders leading to adrenal insufficiency. Mol. Cell. Endocrinol. 2021, 527, 111206. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. MECHANISMS IN ENDOCRINOLOGY: Rare defects in adrenal steroidogenesis. Eur. J. Endocrinol. 2018, 179, R125–R141. [Google Scholar] [CrossRef] [PubMed]
- Al Alawi, A.M.; Nordenström, A.; Falhammar, H. Clinical perspectives in congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase type 2 deficiency. Endocrine 2019, 63, 407–421. [Google Scholar] [CrossRef]
- Kulle, A.; Krone, N.; Holterhus, P.-M.; Schuler, G.; Greaves, R.; Juul, A.; Rijke, Y.; Hartmann, M.; Saba, A.; Hiort, O.; et al. Steroid hormone analysis in diagnosis and treatment of DSD: Position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 2017, 176, P1–P9. [Google Scholar] [CrossRef]
- El-Maouche, D.; Arlt, W.; Merke, D.P. Congenital adrenal hyperplasia. Lancet 2017, 390, 2194–22100. [Google Scholar] [CrossRef]
- Ladjouze, A.; Donaldson, M.; Plotton, I.; Djenane, N.; Mohammedi, K.; Tardy-Guidollet, V.; Mallet, D.; Boulesnane, K.; Bouzerar, Z.; Morel, Y.; et al. Genotype, Mortality, Morbidity, and Outcomes of 3β-Hydroxysteroid Dehydrogenase Deficiency in Algeria. Front. Endocrinol. 2022, 13, 867073. [Google Scholar] [CrossRef]
- Yu, L.; Chen, P.; Zhu, W.; Sun, J.; Li, S. Case Report: Clinical experience of bilateral giant pediatric Testicular adrenal rest tumors with 3 Beta-Hydroxysteroid Dehydrogenase-2 family history. BMC Pediatr. 2021, 21, 405. [Google Scholar] [CrossRef] [PubMed]
- Fanis, P.; Neocleous, V.; Kosta, K.; Karipiadou, A.; Hartmann, M.F.; Wudy, S.A.; Karantaglis, N.; Papadimitriou, D.T.; Skordis, N.; Tsikopoulos, G.; et al. Late diagnosis of 3β-Hydroxysteroid dehydrogenase deficiency: The pivotal role of gas chromatography-mass spectrometry urinary steroid metabolome analysis and a novel homozygous nonsense mutation in the HSD3B2 gene. J. Pediatr. Endocrinol. Metab. 2020, 34, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Giri, D.; Bockenhauer, D.; Deshpande, C.; Achermann, J.C.; Taylor, N.F.; Rumsby, G.; Morgan, H.; Senniappan, S.; Ajzensztejn, M. Co-Existence of Congenital Adrenal Hyperplasia and Bartter Syndrome due to Maternal Uniparental Isodisomy of HSD3B2 and CLCNKB Mutations. Horm. Res. Paediatr. 2020, 93, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Reihani-Sabet, F.; Eftekhari-Yazdi, P.; Boroujeni, P.B.; Saffari, J.R.; Almadani, N.; Boloori, S.; Zamanian, M.R. Birth of a healthy boy following preimplantation genetic diagnosis for congenital adrenal hyperplasia. JBRA Assist. Reprod. 2020, 24, 227–230. [Google Scholar] [CrossRef]
- Aslaksen, S.; Methlie, P.; Vigeland, M.D.; Jøssang, D.E.; Wolff, A.B.; Sheng, Y.; Oftedal, B.E.; Skinningsrud, B.; Undlien, D.E.; Selmer, K.K.; et al. Coexistence of Congenital Adrenal Hyperplasia and Autoimmune Addison’s Disease. Front. Endocrinol. 2019, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Dundar, A.; Bayramov, R.; Onal, M.G.; Akkus, M.; Dogan, M.E.; Kenanoglu, S.; Gunes, M.C.; Kazimli, U.; Ozbek, M.N.; Ercan, O.; et al. The molecular basis and genotype–phenotype correlations of congenital adrenal hyperplasia (CAH) in Anatolian population. Mol. Biol. Rep. 2019, 46, 3677–3690. [Google Scholar] [CrossRef] [PubMed]
- Lolis, E.; Juhlin, C.C.; Nordenström, A.; Falhammar, H. Extensive Bilateral Adrenal Rest Testicular Tumors in a Patient With 3β-Hydroxysteroid Dehydrogenase Type 2 Deficiency. J. Endocr. Soc. 2018, 2, 513–517. [Google Scholar] [CrossRef]
- Shehab, M.A.; Mahmood, T.; Hasanat, M.A.; Fariduddin; Ahsan, N.; Hossain, M.S.; Hossain, S.; Jahan, S. A rare variety of congenital adrenal hyperplasia with mosaic Klinefelter syndrome: A unique combination presenting with ambiguous genitalia and sexual precocity. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 108. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, S.L.; Morton, A. Adrenarche unmasks compound heterozygous 3β-hydroxysteroid dehydrogenase deficiency: C.244G>A (p.Ala82Thr) and the novel 931C>T (p.Gln311*) variant in a non-salt wasting, severely undervirilised 46XY. J. Pediatr. Endocrinol. Metab. 2017, 30, 355–360. [Google Scholar] [CrossRef]
- Güven, A.; Polat, S. Testicular Adrenal Rest Tumor in Two Brothers with a Novel Mutation in the 3-Beta-Hydroxysteroid Dehydrogenase-2 Gene. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 85–90. [Google Scholar] [CrossRef]
- Panzer, K.; Ekhaguere, O.A.; Darbro, B.; Cook, J.; Shchelochkov, O.A. Uniparental Isodisomy of Chromosome 1 Unmasking an Autosomal Recessive 3-Beta Hydroxysteroid Dehydrogenase Type II-Related Congenital Adrenal Hyperplasia. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 70–73. [Google Scholar] [CrossRef]
- Scaramuzzo, R.T.; Menabò, S.; Baldazzi, L.; Moscuzza, F.; Saba, A.; Balsamo, A.; Boldrini, A.; Ghirri, P. Two Moroccan Sisters Presenting with a Severe Salt-Wasting Form of Congenital Adrenal Hyperplasia but Normal Female Genitalia. Sex. Dev. 2017, 11, 82–85. [Google Scholar] [CrossRef]
- Gortakowski, M.; Conroy, R.; Aguiar, L.; Allen, H. Premature pubarche in a child with abnormal 3β-hydroxysteroid dehydrogenase function and Klinefelter syndrome: The intriguing relationship between androgen deficiency and excess. Clin. Case Rep. 2016, 5, 57–60. [Google Scholar] [CrossRef]
- Levy-Shraga, Y.; Pinhas-Hamiel, O. High 17-hydroxyprogesterone level in newborn screening test for congenital adrenal hyperplasia. BMJ Case Rep. 2016, 2016, bcr2015213939. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Massimi, A.; Federici, L.; Cualbu, A.; Loche, S.; Bellincampi, L.; Bernardini, S.; Cappa, M.; Porzio, O. A New Homozygous Frameshift Mutation in the HSD3B2 Gene in an Apparently Nonconsanguineous Italian Family. Horm. Res. Paediatr. 2016, 86, 53–61. [Google Scholar] [CrossRef]
- Probst-Scheidegger, U.; Udhane, S.S.; L’Allemand, D.; Flück, C.E.; Camats, N. Non-Virilizing Congenital Adrenal Hyperplasia in a Female Patient with a Novel HSD3B2 Mutation. Sex. Dev. 2016, 10, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Konar, M.C.; Goswami, S.; Babu, B.G.; Mallick, A.K. Hypoglycemia due to 3β-hydroxysteroid dehydrogenase type II deficiency in a newborn. Indian Pediatr. 2015, 52, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Vukina, J.; Chism, D.D.; Sharpless, J.L.; Raynor, M.C.; Milowsky, M.I.; Funkhouser, W.K. Metachronous Bilateral Testicular Leydig-Like Tumors Leading to the Diagnosis of Congenital Adrenal Hyperplasia (Adrenogenital Syndrome). Case Rep. Pathol. 2015, 2015, 459318. [Google Scholar] [CrossRef]
- Burckhardt, M.-A.; Udhane, S.S.; Marti, N.; Schnyder, I.; Tapia, C.; Nielsen, J.E.; Mullis, P.E.; Meyts, E.R.-D.; Flück, C.E. Human 3β-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk: Lesson from an experiment of nature. Eur. J. Endocrinol. 2015, 173, K1–K12. [Google Scholar] [CrossRef]
- Araújo, V.G.; Oliveira, R.S.; Gameleira, K.P.; Cruz, C.B.; Lofrano-Porto, A. 3β-hydroxysteroid dehydrogenase type II deficiency on newborn screening test. Arq. Bras. Endocrinol. Metabol. 2014, 58, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, K.; Ono, M.; Hijikata, A.; Matsubara, Y.; Katsumata, N.; Takagi, M.; Morio, T.; Ohara, O.; Kashimada, K.; Mizutani, S. Two novel HSD3B2 missense mutations with diverse residual enzymatic activities for Δ5-steroids. Clin. Endocrinol. 2013, 80, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Jeandron, D.D.; Sahakitrungruang, T. A Novel Homozygous Q334X Mutation in the HSD3B2 Gene Causing Classic 3β-Hydroxysteroid Dehydrogenase Deficiency: An Unexpected Diagnosis after a Positive Newborn Screen for 21-Hydroxylase Deficiency. Horm. Res. Paediatr. 2012, 77, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Baquedano, M.S.; Ciaccio, M.; Marino, R.; Garrido, N.P.; Ramirez, P.; Maceiras, M.; Turjanski, A.; Defelipe, L.A.; Rivarola, M.A.; Belgorosky, A. A Novel Missense Mutation in the HSD3B2 Gene, Underlying Nonsalt-Wasting Congenital Adrenal Hyperplasia. New Insight into the Structure-Function Relationships of 3β-Hydroxysteroid Dehidrogenase Type II. J. Clin. Endocrinol. Metab. 2015, 100, E191–E196. [Google Scholar] [CrossRef] [PubMed]
- Prentice, P. Guideline review: Congenital adrenal hyperplasia clinical practice guideline 2018. Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 354–357. [Google Scholar] [CrossRef]
- Maekawa, M.; Shimada, M.; Ohno, K.; Togawa, M.; Nittono, H.; Iida, T.; Hofmann, A.F.; Goto, J.; Yamaguchi, H.; Mano, N. Focused metabolomics using liquid chromatography/electrospray ionization tandem mass spectrometry for analysis of urinary conjugated cholesterol metabolites from patients with Niemann–Pick disease type C and 3β-hydroxysteroid dehydrogenase deficiency. Ann. Clin. Biochem. 2015, 52, 576–587. [Google Scholar] [CrossRef]
- Alkhatib, E.H.; Adams, S.D.; Miller, E.R. Case of an unreported genetic variant of salt losing 3-β-hydroxysteroid dehydrogenase deficiency. Oxf. Med Case Rep. 2021, 2021, omab021. [Google Scholar] [CrossRef]
- Alswailem, M.; Alsagheir, A.; Abbas, B.B.; Alzahrani, O.; Alzahrani, A.S. Molecular genetics of disorders of sex development in a highly consanguineous population. J. Steroid Biochem. Mol. Biol. 2021, 208, 105736. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Kagami, M.; Fukami, M. Uniparental disomy as a cause of pediatric endocrine disorders. Clin. Pediatr. Endocrinol. 2018, 27, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Olivini, N.; Pedicelli, S.; Marini, R.; Giannone, G.; Cambiaso, P.; Cappa, M. Congenital primary adrenal insufficiency and selective aldosterone defects presenting as salt-wasting in infancy: A single center 10-year experience. Ital. J. Pediatr. 2016, 42, 73. [Google Scholar] [CrossRef] [PubMed]
- Reichman, D.E.; White, P.C.; New, M.I.; Rosenwaks, Z. Fertility in patients with congenital adrenal hyperplasia. Fertil. Steril. 2014, 101, 301–309. [Google Scholar] [CrossRef]
- Chatziaggelou, A.; Sakkas, E.G.; Votino, R.; Papagianni, M.; Mastorakos, G. Assisted Reproduction in Congenital Adrenal Hyperplasia. Front. Endocrinol. 2019, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, M.L.; Varriale, G.; Zagaroli, L.; Lasorella, S.; Greco, M.; Iapadre, G.; Verrotti, A. A Case of Salt-Wasting Congenital Adrenal Hyperplasia with Triple Homozygous Mutation: Review of Literature. J. Pediatr. Genet. 2020, 10, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Acién, P.; Acién, M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J. Clin. Med. 2020, 9, 3555. [Google Scholar] [CrossRef]
- Öcal, G.; Berberoğlu, M.; Sıklar, Z.; Aycan, Z.; Hacıhamdioglu, B.; Erdeve, S.; Çamtosun, E.; Kocaay, P.; Ruhi, H.I.; Kılıç, B.G.; et al. Clinical Review of 95 Patients with 46,XX Disorders of Sex Development Based on the New Chicago Classification. J. Pediatr. Adolesc. Gynecol. 2015, 28, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Aftab, S.; Manzoor, J.; Mahmood, Q.; Shaheen, T. Precocious puberty: The clinical profile and the etiological classification of children presented at a tertiary care children’s hospital. Pak. J. Med Sci. 2022, 38, 955–959. [Google Scholar] [CrossRef]
- Wierman, M.E. Hyperandrogenic Anovulation: Differential Diagnosis and Evaluation. Endocrinol. Metab. Clin. N. Am. 2021, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kostakis, E.K.; Gkioni, L.N.; Macut, D.; Mastorakos, G. Androgens in Menopausal Women: Not Only Polycystic Ovary Syndrome. Front. Horm. Res. 2019, 53, 135–161. [Google Scholar] [CrossRef]
- Pignatelli, D.; Pereira, S.S.; Pasquali, R. Androgens in Congenital Adrenal Hyperplasia. Front. Horm. Res. 2019, 53, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Yildiz, B.O. Endocrinology of Hirsutism: From Androgens to Androgen Excess Disorders. Front. Horm. Res. 2019, 53, 108–119. [Google Scholar] [CrossRef]
- Hu, T.; Wei, Z.; Ju, Q.; Chen, W. Sex hormones and acne: State of the art. J. Dtsch. Dermatol. Ges. 2021, 19, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Cussen, L.; McDonnell, T.; Bennett, G.; Thompson, C.J.; Sherlock, M.; O’Reilly, M.W. Approach to androgen excess in women: Clinical and biochemical insights. Clin. Endocrinol. 2022, 97, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Kandaraki, E.A.; Tseniklidi, E.; Papalou, O.; Diamanti-Kandarakis, E. Polycystic Ovary Syndrome and NC-CAH: Distinct Characteristics and Common Findings. A Systematic Review. Front. Endocrinol. 2019, 10, 388. [Google Scholar] [CrossRef]
- Matheson, E.; Bain, J. Hirsutism in Women. Am. Fam. Physician 2019, 100, 168–175. [Google Scholar] [PubMed]
- Albu, S.E.; Georgescu, C.E.; Mihalca, D.; Carsote, M.; Ghervan, C.; Valea, A. Obesity and hirsutism: How close? Arch. Balk. Med. Union 2016, 51, 133–136. [Google Scholar]
- Albu, S.E.; Carsote, M.; Ghemigian, A.; Valea, A. Pitfalls of long-term hirsutism as central feature of Cushing’s disease without identification of a pituitary mass on a menopausal woman. Arch. Balk. Med. Union 2016, 51, 413–416. [Google Scholar]
- Macut, D.; Zdravković, V.; Bjekić-Macut, J.; Mastorakos, G.; Pignatelli, D. Metabolic Perspectives for Non-classical Congenital Adrenal Hyperplasia with Relation to the Classical Form of the Disease. Front. Endocrinol. 2019, 10, 681. [Google Scholar] [CrossRef] [PubMed]
- Reisch, N. Pregnancy in Congenital Adrenal Hyperplasia. Endocrinol. Metab. Clin. N. Am. 2019, 48, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Livadas, S.; Bothou, C. Management of the Female with Non-classical Congenital Adrenal Hyperplasia (NCCAH): A Patient-Oriented Approach. Front. Endocrinol. 2019, 10, 366. [Google Scholar] [CrossRef] [PubMed]
- Whittle, E.; Falhammar, H. Glucocorticoid Regimens in the Treatment of Congenital Adrenal Hyperplasia: A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2019, 3, 1227–1245. [Google Scholar] [CrossRef]
- Delivanis, D.A.; Vassiliadi, D.A.; Tsagarakis, S. Current approach of primary bilateral adrenal hyperplasia. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Karaosmanoglu, A.D.; Onder, O.; Leblebici, C.B.; Sokmensuer, C.; Akata, D.; Ozmen, M.N.; Karcaaltincaba, M. Cross-sectional imaging features of unusual adrenal lesions: A radiopathological correlation. Abdom. Radiol. 2021, 46, 3974–3994. [Google Scholar] [CrossRef]
- Bourdeau, I.; Salle, S.P.-L.; Lacroix, A. Adrenocortical hyperplasia: A multifaceted disease. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101386. [Google Scholar] [CrossRef] [PubMed]
- Morani, A.C.; Jensen, C.T.; Habra, M.A.; Agrons, M.M.; Menias, C.O.; Wagner-Bartak, N.A.; Shaaban, A.M.; Roman-Colon, A.M.; Elsayes, K.M. Adrenocortical hyperplasia: A review of clinical presentation and imaging. Abdom. Radiol. 2019, 45, 917–927. [Google Scholar] [CrossRef]
- Nermoen, I.; Falhammar, H. Prevalence and Characteristics of Adrenal Tumors and Myelolipomas in Congenital Adrenal Hyperplasia: A Systematic Review and Meta-Analysis. Endocr. Pract. 2020, 26, 1351–1365. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, T.G.; Affeld, M.F.; Zuniga, A.; Olmos, R.; Baudrand, R.F.; San Francisco, I.F. Synchronous bilateral laparoscopic adrenalectomy: Surgical technique and perioperative results of a 13-years’ experience. Acta. Urol. Esp. 2022, 46, 245–251. [Google Scholar] [CrossRef]
- Traynor, M.D., Jr.; Sada, A.; Thompson, G.B.; Moir, C.R.; Bancos, I.; Farley, D.R.; Dy, B.M.; Lyden, M.L.; Habermann, E.B.; McKenzie, T.J. Adrenalectomy for non-neuroblastic pathology in children. Pediatr. Surg. Int. 2020, 36, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Nica, A.E.; Carsote, M.; Paduraru, D.N.; Valea, A. Bilateral adrenalectomy and Nelson’s syndrome. Arch. Balk. Med. Union 2016, 51, 280–283. [Google Scholar]
- Paduraru, D.N.; Nica, A.; Carsote, M.; Valea, A. Adrenalectomy for Cushing’s syndrome: Do’s and don’ts. J. Med. Life 2016, 4, 334–341. [Google Scholar] [CrossRef]
- Patrova, J.; Jarocka, I.; Wahrenberg, H.; Falhammar, H. Clinical Outcomes in Adrenal Incidentaloma: Experience From one Center. Endocr. Pract. 2015, 21, 870–877. [Google Scholar] [CrossRef]
- De Omena Filho, R.L.; Petroli, R.J.; Soardi, F.C.; de Paula Michelatto, D.; Mazzola, T.N.; Fabbri-Scallet, H.; de Mello, M.P.; Zanotti, S.V.; Gubert, I.C.; Monlleo, I. So, and if it is not congenital adrenal hyperplasia? Addressing an undiagnosed case of genital ambiguity. Ital. J. Pediatr. 2022, 48, 89. [Google Scholar] [CrossRef] [PubMed]
- Merke, D.P.; Auchus, R.J. Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. N. Engl. J. Med. 2020, 383, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Tresoldi, A.S.; Betella, N.; Hasenmajer, V.; Pozza, C.; Vena, W.; Fiamengo, B.; Negri, L.; Cappa, M.; Lania, A.G.A.; Lenzi, A.; et al. Bilateral testicular masses and adrenal insufficiency: Is congenital adrenal hyperplasia the only possible diagnosis? First two cases of TARTS described in Addison-only X-linked adrenoleukodystrophy and a brief review of literature. J. Endocrinol. Investig. 2020, 44, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Baronio, F.; Ortolano, R.; Menabò, S.; Cassio, A.; Baldazzi, L.; Di Natale, V.; Tonti, G.; Vestrucci, B.; Balsamo, A. 46, XX DSD Due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int. J. Mol. Sci. 2019, 20, 4605. [Google Scholar] [CrossRef]
- Rowlands, A.; Deeb, A.; Ladjouze, A.; Hamza, R.T.; Musa, S.A.; Raza, J.; Jennane, F.; Abu-Libdeh, A.; Chanoine, J.-P. GPED CAH Working Group. Access to fludrocortisone and to hydrocortisone in children with congenital adrenal hyperplasia in the WHO Eastern Mediterranean Region: It takes a village. BMJ Glob. Health 2021, 6, e007195. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Van Vliet, G. Challenges in Assessing the Cost-Effectiveness of Newborn Screening: The Example of Congenital Adrenal Hyperplasia. Int. J. Neonatal Screen. 2020, 6, 82. [Google Scholar] [CrossRef]
- Vats, P.; Dabas, A.; Jain, V.; Seth, A.; Yadav, S.; Kabra, M.; Gupta, N.; Singh, P.; Sharma, R.; Kumar, R.; et al. Newborn Screening and Diagnosis of Infants with Congenital Adrenal Hyperplasia. Indian Pediatr. 2020, 57, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Held, P.K.; Bird, I.M.; Heather, N.L. Newborn Screening for Congenital Adrenal Hyperplasia: Review of Factors Affecting Screening Accuracy. Int. J. Neonatal Screen 2020, 6, 67. [Google Scholar] [CrossRef]
- Miller, W.L. Congenital Adrenal Hyperplasia: Time to Replace 17OHP with 21-Deoxycortisol. Horm. Res. Paediatr. 2019, 91, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Fraga, N.R.; Minaeian, N.; Geffner, M.E. Components of Metabolic Syndrome in Youth with Classical Congenital Adrenal Hyperplasia. Front. Endocrinol. 2022, 13, 848274. [Google Scholar] [CrossRef] [PubMed]
- Unluhizarci, K.; Karaca, Z.; Kelestimur, F. Role of insulin and insulin resistance in androgen excess disorders. World J. Diabetes 2021, 12, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.G.; Mendonca, B.B.; Bachega, T.A. Long-term cardio-metabolic outcomes in patients with classical congenital adrenal hyperplasia: Is the risk real? Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.C.; Sousa, F.C.; Campos, S.T.; Geraldes, F.B.; Belo, J.L.; Leite, M.H.; Mirante, M.A.; Águas, M.F. Congenital adrenal hyperplasia in adolescence—A gynecological perspective. Ginekol. Pol. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Alkandari, M.H.; Zini, A. Medical management of non-obstructive azoospermia: A systematic review. Arab J. Urol. 2021, 19, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, L.; Fleischmann, W.; Howard, J.E. Macrogenitosomia precox associated with hyperplasia of the androgenic tissue of the adrenal and death from corticoadrenal insufficiency: Case report. Endocrinology 1940, 26, 385–395. [Google Scholar] [CrossRef]
- Ma, L.; Xia, Y.; Wang, L.; Liu, R.; Huang, X.; Ye, T.; Zhang, L.; Zhu, Q.; Li, J.; Jiang, Y. Sonographic features of the testicular adrenal rests tumors in patients with congenital adrenal hyperplasia: A single-center experience and literature review. Orphanet J. Rare Dis. 2019, 14, 242. [Google Scholar] [CrossRef] [PubMed]
- Huneif, M.A.; Al Mutairi, M.; AlHazmy, Z.H.; AlOsaimi, F.K.; AlShoomi, A.M.; AlGhofely, M.A.; AlSaheel, A. Screening for testicular adrenal rest tumors among children with congenital adrenal hyperplasia at King Fahad Medical City, Saudi Arabia. J. Pediatr. Endocrinol. Metab. 2021, 35, 49–54. [Google Scholar] [CrossRef]
- Bouzidi, L.; Triki, M.; Charfi, S.; Ben Ameur, H.; Ben Dhaou, M.; Bouaziz, T.; Boudawara, T. Incidental Finding of Bilateral Ovarian Adrenal Rest Tumor in a Patient with Congenital Adrenal Hyperplasia: A Case Report and Brief Review. Pediatr. Dev. Pathol. 2021, 24, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Paula, F.J.; Dick-de-Paula, I.; Pontes, A.; Schmitt, F.C.; Mendonça, B.B.; Foss, M.C. Hyperandrogenism due to 3 beta-hydroxysteroid dehydrogenase deficiency with accessory adrenocortical tissue: A hormonal and metabolic evaluation. Braz. J. Med. Biol. Res. 1994, 27, 1149–1158. [Google Scholar] [PubMed]
- Zhu, D.; Hu, L.; Wan, X.; Li, H.; You, Q.; Gao, L.; Feng, J. Quality of life evaluation in juveniles with disorders of sexual development. Pediatr. Surg. Int. 2012, 28, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Bhadada, S.K. Managing common endocrine disorders amid COVID-19 pandemic. Diabetes Metab. Syndr. 2020, 14, 767–771. [Google Scholar] [CrossRef]
First Author/ Year of Publication/ Reference No. | Type of Study | Studied Population/ Number of Patients | Clinical Presentation | Therapy |
---|---|---|---|---|
Ladjouze A. 2022 [38] | Mixed single-centre, longitudinal and cross-sectional study Algeria Single centre | N = 14 patients (8 females, 6 males) of 10 families with 3βHSD deficiency | Females presented with: SW (5/8) SW + clitoromegaly (2/8) screening at birth (1/8) Males presented with: SW (1/6) genital anomalies (1/6) SW + genital anomalies (3/6) family screening (1/6) Virilization of girls: not significant (2/8) Prader stage 1 +clitoromegaly (2/8) Prader stage 2 + clitoromegaly and narrow opening of distal vagina) (4/8) Undermasculinization of boys: severely (2/6) and mildly (2/6) 4 boys underwent hypospadias correction. One boy had spontaneous puberty. 2 boys had premature pubarche Median IQ = 90 N = 3/14 with IQ < 70 (2/3 with a family history of unclassified global neuro-disability disorder 2 boys were diagnosed with TARTS following systematic testicular ultrasonography (one was inadequately treated). 3 out of 4 girls who reached menarche met the criteria for POS, while one had polycystic ovaries without prolonged amenorrhea or severe hirsutism. These 3 girls also presented with adrenal masses (adrenal cortical hyperplasia). One of them also presented with an ovarian mass (highly suggestive of OART). | Hydrocortisone: mean dose of 15.2 ± 0.8 mg/m2/day Fludrocortisone: 54 ± 25 μg/day (N = 11/14) |
Li Z. 2021 [27] | Case report | 1 male patient | 9-y boy with enlargement of the testes for the last 5 y in addition to increased height growth (+1.36 SD for his age). | Hydrocortisone: 10–15 mg/m2/day, divided into 3–4 doses |
Yu L. 2021 [39] | Case report | 2 male siblings (46,XY) | 2 brothers with hypospadias, orchialgia and testicular masses (TARTs) The younger sibling also presented tanned skin colour. | Hydrocortisone: 15–23 mg/m2/day + TARTs excision |
Chen L. 2021 [31] | Case report | 3 patients (2 males and 1 female) | Patient 1 (46,XY): embedded penis, hypospadias, dark-coloured scrotum, poor suction and regurgitation of milk, diarrhoea, irritability, convulsions, lack of sweating, short stature, intellectual and developmental delay Patient 2 (46,XY): short penis with hypospadias, scrotal skin pigmentation, poor suction, low weight gain, irritability, convulsions, lack of sweating Patient 3 (46,XX): skin pigmentation, pigmentation of the labia, slightly enlarged clitoris, intermittent vomiting, diarrhoea, malnutrition, developmental delay | The patient was receiving hormonal treatment at the time of the initial diagnosis. Patient 1: Hydrocortisone (at the age of 2–5 years the dose was 8–10 mg/m2/day). Fludrocortisone 4 long-acting testosterone intramuscular injections at a dose of 100 mg/m2 once every 15 days; topical application of dihydrotestosterone cream for 1 month. Patient 2: Hydrocortisone Fludrocortisone 6 intramuscular injections of gonadotropin (1500 U) one every 2 weeks long-acting testosterone injections (intramuscularly) in a dose of 100 mg/m2 once every 2 weeks hypospadias repair at the age of 2 years and 10 months Patient 3: Hydrocortisone Fludrocortisone No surgical correction was needed |
Fanis P. 2020 [40] | Case report | 1 male patient (46,XY) | At birth: ambiguous genitalia with scrotal hypospadias, bifid scrotum, and palpable gonads in the inguinal canal bilaterally At age of 15 days: SW crisis At age of 3.5 y: gynecomastia, adrenarche, SW crisis At age of 8.5: precocious puberty (a 4-y advance of bone age versus his biological age) | Hydrocortisone: 10 mg/m2/day Fludrocortisone: 100 μg/day |
Guran T. 2020 [26] | Cross-sectional study | N = 31 patients (12 females, 19 males) | SH and non-SW forms certain levels of genotype–phenotype correlations | Hydrocortisone + Fludrocortisone in SW forms |
Giri D. 2020 [41] | Case report | 1 female (46,XX) | Weight loss, jaundice, poor feeding, hyponatremia, hypochloremia, hyperkalemia, metabolic alkalosis No ambiguity of the genitalia + Barter syndrome type 3 | Oral sodium 16 mmol/kg/day, potassium supplements 6.5 mmol/kg/day Hydrocortisone 8 mg/m2/day Fludrocortisone 60 μg/day Indomethacin 9 mg 3 times daily |
Reihani-Sabet F. 2020 [42] | Case report | 1 case of preimplantation testing for 3βHSD deficiency | Preimplantation diagnosis followed by the identification of a healthy heterozygote and the birth of a healthy boy | - |
Aslaksen S. 2019 [43] | Case report | 1 patient with 3βHSD deficiency discovered during a whole-exome sequencing study of 142 Addison’s Disease patients | Hyperpigmentation of the genitalia, clitoris hypertrophy, hyponatremia and hyperkaliemia At 1 week of age: elevated 17-ketosteroids. The patient developed premature ovarian insufficiency; and vitamin B12 deficiency (The patient had a sister who died of adrenal crisis) | Hydrocortisone 20 mg/day Fludrocortisone 100 μg/day |
Dundar A. 2019 [44] | Cross-sectional study | 386 patients with CAH 6 patients with 3βHSD deficiency | SW + hyperpigmentation SW + vomiting, diarrhoea SW + ambiguous genitalia (male) SW SW Non-classic | Hydrocortisone + Fludrocortisone in SW forms |
Lolis E. 2018 [45] | Case report | 1 male (46,XY) | SW, penoscrotal hypospadias, micropenis, cryptorchidism, bifid scrotum TARTs | Hydrocortisone until the age of 15 → followed by Prednisolone (20–30 mg equivalent to hydrocortisone) Fludrocortisone: (highest dose of 250 μg/day) After bilateral orchiectomy at 33 y: testosterone replacement therapy when testosterone declined to 10 nmol/L accompanied by elevated gonadotropins |
Donadille B. 2018 [25] | Case report | 1 male (46,XY) | SW, micropenis, intrascrotal testes, perineal hypospadias Normal pubertal development since the age of 15 y At 24 y: normal spermogram except for suboptimal sperm vitality with normal sperm count and percentage with typical morphology | Hydrocortisone: 17.3 mg/m2/day Fludrocortisone: 75 μg/day |
Shehab MA. 2018 [46] | Case report | 1 phenotipic male patient with mosaic Klinefelter syndrome and CAH (47,XXY/46,XX) | Penoscrotal hypospadias, bilateral cryptorchidism, accelerated growth with appearance of axillary and pubic hair with progressive blackening of skin, rapid phallic enlargement, he later developed gynecomastia + Klinefelter syndrome | Hydrocortisone 5 mg in the morning and 10 mg at night Fluodrocortisone 0.1 mg Orchidopexy right testis, orchiectomy left testicle |
Teasdale SL. 2017 [47] | Case report | 1 patient with 46,XY (assigned as female) | At birth: ambiguous genitalia: testes in scrotum, vaginal introitus, perineal urethra, small phallus (no SW) Initially misdiagnosed as androgen insensitivity, however hCG test was not consistent with androgen insensitivity → diagnosis established after adrenarche | Gonadectomy Elective clitoral reduction, Estrogen hormone replacement therapy. The patient did not require glucocorticoid replacement |
Güven A. 2017 [48] | Case report | 2 male siblings (46,XY) | Case 1 (age of 3.5 y): hypospadias, scrotum bifidum, left cryptorchidism, adrenal insufficiency + TARTs Case 2 (age of 22 months): hypospadias, scrotum bifidum + TARTs | Case 1: Hydrocortisone (13–100 mg/m2/day), fludrocortisone (0.1 mg × 2/day) Surgical correction of hypospadias and left orchidopexy Biopsy to rule out Leydig cell tumor Case 2: Hydrocortisone (15–25 mg/m2/day) Hypospadias surgical correction + Of note: Case 1: increased plasma renin activity in spite of strict fludrocortisone treatment Case 2: patient could not maintain dexamethasone treatment due to becoming obese (the treatment was switched back to high-dose hydrocortisone) in order to control TARTs |
Panzer K. 2017 [49] | Case report | 1 male (46,XY) | Hypotonia, non-specific dysmorphic facial findings (frontal bossing, hypotelorism, low nasal bridge, anteverted nares), perineal hypospadias, bifid scrotum, penile chordee, descended testes bilaterally | Steroids and electrolyte replacement, surgical correction of urogenital anomalies |
Scaramuzzo RT. 2017 [50] | Case report | 2 sisters (46,XX) | SW Normal genitalia Failure to thrive, severe dehydration, hyponatremia, hyperkaliemia, adrenal insufficiency, adrenal hyperplasy | Sister 1: Hydrocortisone 19 mg/m2/day + fludrocortisone 0.05 mg/day Sister 2: Hydrocortisone 26.5 mg/m2/day + Fludrocortisone 0.15 mg/day in 2 doses |
Gortakowski M. 2016 [51] | Case report | 1 patient (47,XXY) | Association with Klinefelter syndrome Short stature, premature pubarche, facial acne, pubarche at the age of 4 y, prepubertal testes, bone age higher than chronological age | Therapy with growth hormone, aromatase inhibitor |
Levy-Shraga Y. 2016 [52] | Case report | 1 female (46,XX) | No evidence of androgen excess (diagnosed through screening for 21OHD deficiency) | Initially: hydrocortisone 20 mg/m2/day + fludrocortisone 0.2 mg/day At the age of 5 y: hydrocortisone 9 mg/m2/day + fludrocortisone 0.1 mg/day |
Bizzarri C 2016 [53] | Case report | 1 male (46,XY) | Perineal hypospadias, palpable testes within the labial scrotal folds, microphallus Recurrent vomiting, hypoglycemia and hyponatremia | Hydrocortisone 30 mg/m2/day Fludrocortisone 0.05 mg/day NaCl 6 mEq orally 6 times a day |
Probst-Scheidegger U. 2016 [54] | Case report | 1 female (46,XX) | Diagnosed at neonatal screening SW No DSD | Hydrocortisone + Fludrocortisone replacement |
Konar MC. 2015 [55] | Case report | 1 female patient with suspected 3βHSD deficiency | Recurrent hypoglycaemia, adrenal insufficiency (in vitro fertilisation, no consanguinity, no gene testing) | NA |
Vukina J. 2015 [56] | Case report | 1 male patient | The patient presented with testicular pain and swelling The patient had a history of hypospadias, bilateral cryptorchidism, early growth spurt, frequent asthma flairs, salt craving, and a grandfather with precocious puberty Bilateral TARTs Azoospermia (no gene testing) | Orchiectomy |
Burckhardt MA. 2015 [57] | Case report | 1 patient (46,XY) male | Perinatal asphyxia, severe hypospadias, cryptorchidism, undervirilization Neonatal hypoglycemia, hyponatremia, hyperkalemia At puberty: virilization, palpable gonads in the inguinal area, gynecomastia Histology of the testes: no evidence of malignancy risk (no persisting immature foetal gonocytes, no premalignant germ cells), Sertoli-cell-only pattern Neurological impairments due to perinatal asphyxia | Replacement therapy with fludrocortisone and hydrocortisone At age of 15.5 y: orchidopexy |
Benkert AR. 2015 [22] | Retrospective study | 16 patients | Positive newborn screening, with 17OHP from filter paper (N = 11) Perinatal SW adrenal crisis (N = 1) High-risk molecular screening (N = 2) Hypospadias requiring surgical correction (all 6/16 males) No genital ambiguity in females (10/16) Complications: Adrenal insufficiency: adrenal crisis (SD N = 2, HD N = 4), hypoglycemia (SD N = 1, HD N = 2), hyperkalemic acidosis (SD N = 4, HD N = 2) Failure to thrive (SD N = 4, HD N = 1) Hypospadias (all 6 male patients) Advanced skeletal maturation (HD N = 4) Hirsutism, acne (HD N = 5) TARTs (HD N = 2) POS (HD N = 2) Arterial hypertension (SD N = 7, HD N = 3) Obesity (HD N = 5) Cushing syndrome (SD N = 3, HD N = 5) Delayed skeletal maturation (SD N = 1, HD N = 1) | SD: dexamethasone 0.22 ± 0.07 mg/m2/day HD: dexamethasone 0.54 ± 0.22 mg/m2/day |
Baquedano MS. 2015 [61] | Case report | 1 female (46,XX) | Precocious puberty at age of 7 months Clitoromegaly (non-SW) | No need for mineralocorticoid replacement |
Araújo VG. 2014 [58] | Case report | 1 male (46,XY) | Diagnosed during new-born screening for CAH 2.5 cm phallus, penoscrotal hypospadias, incompletely fused labioscrotal folds, palpable gonads bilaterally, vomiting, dehydration, hyponatremia, hypercalcemia | Glucocorticoid + mineralocorticoid replacement |
Takasawa K. 2014 [59] | Case report | 1 female (46,XX) | Labia minora fusion, clitoromegaly, Prader stage II, skin pigmentation, weight loss | Glucocorticoid + mineralocorticoid replacement |
Jeandron DD. 2012 [60] | Case report | 1 female (46,XX) | At age of 13 y: SW crisis (no SDS) | Glucocorticoid + mineralocorticoid replacement |
Claahsen-van der Grinten HL. 2012 [5] | Case report | 1 male (46,XY) | TARTs with extra-testes involvement | Surgery for perirenal mass |
First Author/ Year of Publication/ Reference No. | Hormonal Panel |
---|---|
Ladjouze A. 2022 [38] | 17OHP: above upper limit (N = 12/14; the other two patients were under treatment with hydrocortisone) Median (range) = 73.7 (0.37–164.3) nmol/L 17OH-Preg: above upper limit (N = 13/14) Median (range) = 139.7 (10.9–1500) nmol/L (a value > 90 nmol/L is sugestive the diagnosis of 3βHSD2 deficiency) ACTH: above upper limit (N = 4/14) DHEA: above upper limit (N = 8/14) within normal range (N = 4/14) below normal range (N = 2/14 under treatment with daily hydrocortisone) Androstenedione: above upper limit (N = 3/14) within normal range (N = 6/14) below lower limit (N = 1/14) DHEA-S: Median (range) = 501.2(9.4–5441.3) nmol/L |
Li Z. 2021 [27] | High levels of 17OHP and testosterone Very high values of DHEAS and androstenedione |
Yu L. 2021 [39] | 17OHP: elevated (values between 20–60 nmol/L) ACTH: elevated (values between 500–1500 pg/mL; cortisol with values between 100–200 nmol/L) Testosterone: elevated (values around 20 mol/L) Following surgery, hormone levels were: ACTH = 4.090 pg/mL Plasma cortisol = 0.000 μg/dL Testosterone = 7.54 nmol/L 17OHP = 0.47 nmol/L |
Chen L. 2021 [31] | Patient 1: 17OHP >75.75 mmol/L (normal: <29.1 mmol/L) ACTH = 34 pg/mL (normal: <46 pg/mL) Testosterone = 4.02 nmol/L (normal: <0.69 nmol/L) DHEA = 5.92 μmol/L Androstenedione >35 nmol/L Patient 2: 17OHP = 3.7 mmol/L ACTH = 262 pg/mL Plasma cortisol = 810 nmol/L (normal: 124–662 nmol/L) Testosterone = 4.3 nmol/L (normal: <0.69 nmol/L) DHEA < 0.41 μmol/L (normal: <0.41) Androstenedione = 2.13 nmol/L Patient 3: 7OHP > 75.5 mmol/L ACTH > 1250 pg/mL Cortisol = 497 (normal: 124–662 nmol/L) Testosterone = 2.13 nmol/L (normal: <0.69 nmol/L) DHEA > 27.1 μmol/L (normal: <0.41) Androstenedione > 35 nmol/L |
Fanis P. 2020 [40] | At age of 8.5 y: 17OHP = 394 ng/mL (normal: <6.3) ACTH = 3312.8 pg/mL (normal: 10–60) Plasma cortisol = 0.7 μg/dL (normal: 6–19) Testosterone = 738 ng/dL (normal: 115–403) DHEA = 633 ng/mL (normal: 0.46–3.22) Progesterone = 7 ng/mL (normal: <0.5 ng/mL) Plasma Renin Activity = 116.86 ng/mL/h (normal: 1.4–7.8 ng/mL/h) |
Guran T. 2020 [26] | Median values (N = 31, mean age of 6.6 ± 5.1 y): 17OHP = 2.38 nmol/L (normal: 0.27–7.73) 17OH-Preg = 83.3 nmol/L (normal: 45.4–125) Plasma cortisol = 21.1 nmol/L (normal: 1.78–113) Testosterone = 0.55 nmol/L (normal: 0.17–1.94) DHEA = 39.9 nmol/L (normal: 8.01–105) Androstenedione = 0.97 nmol/L (normal: 0.27–2.82) 11-deoxycortisol = 1.09 nmol/L (normal: 0.37–2.85) |
Giri D. 2020 [41] | 17OHP >110 nmol/L DHEA-S = 7 μmol/L (normal: 0.9–11.6) |
Aslaksen S. 2019 [43] | Elevated 17-ketosteroids (at one week of age) After the age of 50 y: all mineralocorticoids, and most glucocorticoids and androgens were below the detection limit, except for: Tetrahydrocortisol = 0.308 nmol/L 5α-tetrahydrocortisol = 0.187 nmol/L Testosterone = 0.066 nmol/L DHEA-S below the normal range. ACTH highest levels = 130 pmol/L (normal: 2.0–11.6) |
Shehab MA. 2018 [46] | 17OHP = 2.15 ng/mL (normal: 0.5–2.1) 17OH-Preg = 2097 ng/dL (normal: <72) ACTH = 269 pg/mL (normal: 0–46) Plasma cortisol = 129 nmol/L (normal: 138–690) Testosterone = 276 ng/dL (normal: <42) DHEA-S = 331.8 (normal: <186) Androstenedione = 34 ng/dL (normal: 6–115) |
Lolis E. 2018 [45] | 17OHP = 15 nmol/L (normal: <5) Testosterone = 30 nmol/L (normal: 10–30), with later decline to 10 nmol/L accompanied by elevated gonadotropins (bilateral orchiectomy) DHEA = high levels Androstenedione = 12 nmol/L (normal: 1.2–5.0) Estradiol = 164 pmol/L (normal: <130) Renin = highest level of 442 mIU/L (normal: 2.4 to 41) |
Donadille B. 2018 [25] | At age of 12 days: 17OHP = normal 17OH-Preg = elevated At age of 22 y: 17OHP = 0.022 nmol/L (normal: 1.2–7.6) 17OH-Preg = 4.38 nmol/L (normal: <6) Plasma cortisol = 0.039 nmol/L (normal: 212–607) Testosterone = 13.82 nmol/L (normal: 9–38) DHEA = 6.48 nmol/L (normal: 3.5–52) Androstenedione = 1.46 nmol/L (normal: 0.9–7) 11-deoxycortisol = 0.006 nmol/L (normal: <3) Aldosterone = 0.011 nmol/L (normal: 0.4) FSH = 3.6 UI/L (normal: 1.4–18.1) LH = 4.8 UI/L (normal: 1.5–9.3) |
Teasdale SL. 2017 [47] | 17OH-Preg = 376.7 nmol/L (normal: 0.0–10.0) ACTH = 147 ng/L (normal: 9–51) Plasma cortisol = 524 nmol/L Testosterone = 2.2 nmol/L (normal: 0.3–2.8) DHEA = 9.1 μmol/L (normal: 0.3–1.6) Androstenedione = 4.5 nmol/L (normal: 1.0–1.8) Neonatal hCG stimulation test: 4–5 days: free testosterone = 4.8 pmol/L (day 0) (normal: <2.0 pmol/L), DHT = 1.54 nmol/L (day 1), LH = 8 U/L (day 1), FSH < 2 U/L (day 1) 9–10 days: testosterone = 3.9 pmol/L (day 5) (2–4 × baseline), DHT = 1.4 nmol/L (day 5) (T:DHT < 10:1), LH = 2 U/L (day 5), FSH < 2 U/L (day 5) |
Güven A. 2017 [48] | Case 1: 17OHP = 29 ng/mL ACTH = 546 pg/mL DHEA-S = 1550 μg/dL Case 2: ACTH = 161 pg/mL (normal: 6–46) ACTH stimulation test: Case 1 at 0′: ACTH >1250 pg/mL, Cortisol = 0.45 μg/dL, 17OHP = 27.5 ng/mL, Androstenedione = 0.2 ng/mL, Testosterone = 0.18 ng/mL, Progesterone = 0.6 ng/mL, DHEA-S = 1550 μg/dL Case 1 at 30′: Cortisol = 0.73 μg/dL, 17OHP = 35.1 ng/mL, Androstenedione = 0.4 ng/mL, Testosterone = 0.18 ng/mL, Progesterone = 0.6 ng/mL Case 2 at 0′: ACTH = 507 pg/mL, Cortisol = 16.5 μg/dL, 17OHP = 112 ng/mL, Androstenedione = 16.7 ng/mL, Testosterone = 4.5 ng/mL, Progesterone = 36.1 ng/mL, DHEA-S = 3870 μg/dL Case 2 at 30′: Cortisol = 17.6 μg/dL, 17OHP = 106 ng/mL, Androstenedione = 14.2 ng/mL, Testosterone = 4.4 ng/mL, Progesterone = 43.3 ng/mL, DHEA-S = 2985 μg/dL |
Panzer K. 2017 [49] | 17OHP = 16.9 nmol/L (normal: 1.3–6.4) 17OH-Preg = 119.0 nmol/L (normal: 0.3–26.2) ACTH = 8.4 pmol/L (normal: 1.3–10.6) Plasma cortisol = 1462.3 nmol/L (normal: 77.3–303.5) Testosterone = 1.6 nmol/L (normal: 0.7–1.7) DHEA = 95.4 nmol/L (normal: 1.7–26.4) Androstenedione = 9.7 nmol/L (normal: <1.8) 11-deoxycortisol = 9.9 nmol/L (normal: <5.9) 11-desoxycorticosterone = 0.2 nmol/L (normal: 1–2.07) |
Scaramuzzo RT. 2017 [50] | Sister 1: 17OHP = 259 ng/mL (high) Testosterone = 0.351 ng/mL (high) Androstenedione > 12 ng/mL Sister 2: 17OHP = 314 ng/mL ACTH = 0.896 ng/mL DHEA = 730 ng/mL |
Gortakowski M. 2016 [51] | 17OHP = 42 ng/dL (normal: <116 ng/dL) Testosterone = 43 ng/dL (normal: <3–10 ng/dL) DHEA-S = 365 μg/dL (normal: 42–109 μg/dL) LH = 0.2 mIU/mL TSH, free T4, anti-tissue transglutaminase antibody, and IGF1 and IGFBP3 within normal range After ACTH stimulation test: 1 h after iv cosyntropin 250 μg: 17OH-Preg = 1979 ng/dL (normal: 88–675) 17OH-Preg/17OHProg = 35.3 (normal: 0.5–6.3) Plasma cortisol = 36.7 μg/dL (normal: 15–36) 17OH-Preg(nmol/L)/cortisol (μmol/L) = 53.9 (normal) |
Levy-Shraga Y. 2016 [52] | 17OHP = 500 nmol/L, at 6 days 181 nmol/L (normal: <7.5 nmol/L) Plasma cortisol = 292 nmol/L (normal: 138–690) Testosterone >55 nmol/L (normal: 0.7–2.2) Androstendion >34.5 nmol/L (normal: 0.7–10.5) 11-deoxycortisol = 143.2 nmol/L (normal: <23) Plasma renin activity >50 ng/mL/h (normal: 8–17) |
Bizzarri C 2016 [53] | 17OHP = 9620 ng/dL (normal: 7–77) ACTH = 577 pg/mL (normal: 96–135 pg/mL) Plasma cortisol = 10.78 μg/dL (normal: 0.6–19.8) Testosterone = 1320 ng/dL (normal: 1–177) DHEA-S = 473.1 μg/dL (normal: 91–376) Androstenedione = 1990 ng/dL (normal: 5–45) Renin: elevated aldosterone and renin |
Probst-Scheidegger U. 2016 [54] | 17OHP = 124 nmol/L (increased) ACTH = 549 ng/L (increased) Cortisol = 92 nmol/L (decreased) DHEA-S = 12 micromol/L (normal) 11-deoxycortisol = 54 nmol/L (normal) |
Konar MC. 2015 [55] | 17OHP = 11.8 ng/mL (normal: 0.2–2.00) ACTH = 183.9 pg/mL (normal: 7.2–63.3) Plasma cortisol = 2.4 μg/dL (normal: 3.7–19.4) Testosterone = 71.7 ng/dL (normal: 10–25) DHEA = DHEA-S = 191.8 μg/dL (normal: 3.4–123.6) |
Vukina J. 2015 [56] | High 17OHP to 17OH-Preg ratio ACTH = 3050 pg/mL Plasma cortisol = 0.3 μg/dL (normal: 4.5–22.7) DHEA-S = 145 μg/dL (normal: 65–334) |
Burckhardt MA. 2015 [57] | 17OHP = 967 nmol/L (normal: <30 nmol/L) ACTH = 2638 (normal: 9.0–50) ng/L Plasma cortisol = 284 (normal: 140–470) nmol/L Testosterone = 171 pmol/L (normal: 6.4–27) DHEA >105 (normal: <3) nmol/L Androstenedione >34.5 nmol/L |
Benkert AR. 2015 [22] | 17OH-Preg: mean SD = 370 ng/dL, mean HD = 5858 ng/dL ACTH: mean SD = 100 pg/mL, mean HD = 817 pg/mL DHEA: mean SD = 71 ng/dL, mean HD = 1292 ng/dL Under HD/SD: ACTH, 17OH-Preg and DHEA were elevated relative to control siblings, mainly in the HD group. Early morning glucose levels were 8% lower in patients compared to control siblings. Serum osteocalcin level were low in patients, especially in HD group. |
Araújo VG. 2014 [58] | 17OHP=5170 ng/dL (normal: <2000), 2430 ng/dL (normal: <200) 17OH-Preg = 1080 ng/dL (normal: <10) ACTH = 50.18 pg/mL (normal: 0–46) Cortisol = 5.29 μg/dL (normal: 5–25) Androstenedione>1000 ng/dL (normal: 90–460) 17OH-Preg/cortisol = 224 (proposed criteria > 94 (45)) |
Takasawa K. 2014 [59] | 17OHP = 66.6 nmol/L (normal: 2.94) 17OH-Preg = 909 nmol/L (normal: 12.6) ACTH = 32.5 pmol/L (normal: 0.3–2.9) Cortisol = 0.193 (normal: 0.3) DHEA = 262 nmol/L (normal: 10.3) Androstenedione = 3.91 (normal: 1.37) urinary pregnanendiol, urinary pregnanentriol, urinary androstenedione elevate |
First Author Year of Publication/ Reference No. | Genetic Testing of HSD3B2 Gene |
---|---|
Ladjouze A. 2022 [38] | N = 12/14: homozygous, null mutation, c.665C > A (p.Pro222Gln) N = 2/14 (sisters): homozygous, c.453_464del (p.Thr152_Pro155del)—novel mutation 8 out of the 10 Algerian families were consanguineous (the parents were first-degree cousins in 4 families, and second-degree cousins in 4 families) |
Li Z. 2021 [27] | c.674 T > A (p.V225D) (maternal and paternal inheritance) (China) |
Yu L. 2021 [39] | c.674T > A (maternal inheritance) (China) c.776 C > T (paternal inheritance) |
Chen L. 2021 [31] | Patient 1: frameshift mutation, c.154_162delinsTCCTGTT, exon 3 (novel mutation) nonsense mutation, c.1003C > T, exon 4 Patient 2: missense mutation, c.424G > A, exon 4 missense mutation, c.674T > A, exon 4 (novel mutation) Patient 3: missense mutation, c.776C > T, exon 4 nonsense mutation, c.1003C > T, exon 4 |
Fanis P. 2020 [40] | novel nonsense mutation—p.Lys36Ter (homozygosity, consanguineous parents) in addition to a heterozygous status for CYP21A2 gene—p.Val281Leu |
Guran T. 2020 [26] | frameshift, c0.271_275delCA (p.H92Qfs*32) frameshift, c. 959_960insC (p.L321Ifs*4) frameshift, c0.934delC (p.F314Sfs*54) frameshift, c0.429_430insAA (p.E144Kfs*31) missense, c0.320T > A (p.L107Q) missense, c0.1076T > C (p.L359P) missense, c0.1063T > C (p.W355R) missense, c0.967A > G (p.N323D) missense, c0.911T > C (p.L304P) missense, c0.733G > C (p.A245P) missense, c0.652T > C (p.S218P) (Turkey, 6 novel mutations) |
Giri D. 2020 [41] | homozygous, nonsense, c.745C > T (p.Arg249*) Association of Barter syndrome type 3 due to homozygous deletion from exon 1 to 19 of CLCNKB) and 3βHSD deficiency, in the context of uniparental isodisomy (non-consanguineous parents, modified gene present only in mother) |
Aslaksen S. 2019 [43] | homozygous, nonsense, c.15C > A (p.Cys5Ter), exon 2 |
Dundar A. 2019 [44] | homozygous, c.142 + 1G > T, intron 2 homozygous, p.N323D, exon 4 homozygous, p.V127E, exon 4 homozygous, p.S218P, exon 4 homozygous, p.R335X, exon 4 heterozygous, p.L304P, exon 4 (Anatolia, 4 novel mutations) |
Shehab MA. 2018 [46] | 47,XXY/46,XX homozygous miss-sense × 2 heterozygous V299I (GTA > ATA), S309T (TCC > ACC), Q311R (CAA > CGA) consanguineous |
Lolis E. 2018 [45] | Cys-72-Arg in homozygote form or as compound heterozygous with deletion |
Donadille B. 2018 [25] | homozygous, loss of function, 687del27, exon4 (consanguineous) |
Teasdale SL. 2017 [47] | novel mutation—931C > T(p.Gln311) variant in addition to prior described c.244G > A (p.Ala82Thr). |
Güven A. 2017 [48] | novel mutation—homozygous, p.W355R (c.763 T > C), exon 4 consanguinity (parents were second-degree cousins) |
Panzer K. 2017 [49] | complete uniparental isodisomy of chromosome 1 homozygous, missense c.424G > A (p.E142K) |
Scaramuzzo RT. 2017 [50] | homozygous, missense, c.969T > G (p.N323K) homozygous, missense, c.969T > G (p.N323K) (Morocco) consanguinity |
Levy-Shraga Y. 2016 [52] | homozygous, missense, c.c664a C > A, exon 4 consanguinity (parents were second-degree cousins) |
Bizzarri C 2016 [53] | novel homozygous frameshift mutation—a single nucleotide deletion at codon 319 (GTC(Val)x2192;GC) first mutation in Italy non-consanguineous |
Probst-Scheidegger U. 2016 [54] | novel mutation nonsense, c.503delC nonsense, c.512G > A (no consanguinity) |
Burckhardt MA. 2015 [57] | homozygous, loss of function, c.687del27, exon 4 consanguinity |
Benkert AR. 2015 [22] | homozygous c.35G > A |
Baquedano MS. 2015 [61] | novel missense mutation homozygous, pG250V |
Araújo VG. 2014 [58] | homozygous, missense, c.665C > A, exon4 consanguinity |
Takasawa K. 2014 [59] | missense, c.A569G missense, c.T652C (2 novel mutations) |
Jeandron DD. 2012 [60] | novel nonsense homozygous mutation Q334X |
Claahsen-van der Grinten HL. 2012 [5] | homozygous 694C > G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicola, A.G.; Carsote, M.; Gheorghe, A.-M.; Petrova, E.; Popescu, A.D.; Staicu, A.N.; Țuculină, M.J.; Petcu, C.; Dascălu, I.T.; Tircă, T. Approach of Heterogeneous Spectrum Involving 3beta-Hydroxysteroid Dehydrogenase 2 Deficiency. Diagnostics 2022, 12, 2168. https://doi.org/10.3390/diagnostics12092168
Nicola AG, Carsote M, Gheorghe A-M, Petrova E, Popescu AD, Staicu AN, Țuculină MJ, Petcu C, Dascălu IT, Tircă T. Approach of Heterogeneous Spectrum Involving 3beta-Hydroxysteroid Dehydrogenase 2 Deficiency. Diagnostics. 2022; 12(9):2168. https://doi.org/10.3390/diagnostics12092168
Chicago/Turabian StyleNicola, Andreea Gabriela, Mara Carsote, Ana-Maria Gheorghe, Eugenia Petrova, Alexandru Dan Popescu, Adela Nicoleta Staicu, Mihaela Jana Țuculină, Cristian Petcu, Ionela Teodora Dascălu, and Tiberiu Tircă. 2022. "Approach of Heterogeneous Spectrum Involving 3beta-Hydroxysteroid Dehydrogenase 2 Deficiency" Diagnostics 12, no. 9: 2168. https://doi.org/10.3390/diagnostics12092168
APA StyleNicola, A. G., Carsote, M., Gheorghe, A.-M., Petrova, E., Popescu, A. D., Staicu, A. N., Țuculină, M. J., Petcu, C., Dascălu, I. T., & Tircă, T. (2022). Approach of Heterogeneous Spectrum Involving 3beta-Hydroxysteroid Dehydrogenase 2 Deficiency. Diagnostics, 12(9), 2168. https://doi.org/10.3390/diagnostics12092168