Strategic Significance of Low Viral Load of Human Papillomavirus in Uterine Cervical Cytology Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. AnyplexTM II HPV H28 Detection Assay
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- WHO Classification of Tumours Editorial Board. Female Genital Tumours. In WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; Volume 4. [Google Scholar]
- Brancaccio, R.N.; Robitaille, A.; Dutta, S.; Cuenin, C.; Santare, D.; Skenders, G.; Gheit, T. Generation of a novel next-generation sequencing-based method for the isolation of new human papillomavirus types. Virology 2018, 520, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Halec, G.; Schmitt, M.; Dondog, B.; Sharkhuu, E.; Wentzensen, N.; Gheit, T.; Pawlita, M. Biological activity of probable/possible high-risk human papillomavirus types in cervical cancer. Int. J. Cancer 2013, 132, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Cogliano, V. A review of human carcinogens–Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef]
- Haedicke, J.; Iftner, T. Human papillomaviruses and cancer. Radiother. Oncol. 2013, 108, 397–402. [Google Scholar] [CrossRef]
- Ball, S.L.; Winder, D.M.; Vaughan, K.; Hanna, N.; Levy, J.; Sterling, J.C.; Goon, P.K. Analyses of human papillomavirus genotypes and viral loads in anogenital warts. J. Med. Virol. 2011, 83, 1345–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Liu, J.; Hu, Y.; Lu, X.; Li, B.; Li, Y.; Cheng, X. Viral E6 is overexpressed via high viral load in invasive cervical cancer with episomal HPV16. BMC Cancer 2017, 17, 136. [Google Scholar] [CrossRef] [Green Version]
- Gheit, T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front. Oncol. 2019, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Arbyn, M.; Benoy, I.; Simoens, C.; Bogers, J.; Beutels, P.; Depuydt, C. Prevaccination Distribution of Human Papillomavirus Types in Women Attending at Cervical Cancer Screening in Belgium. Cancer Epidemiol. Biomark. Prev. 2009, 18, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Arbyn, M.; Raifu, A.O.; Weiderpass, E.; Bray, F.; Anttila, A. Trends of Cervical Cancer Mortality in the Member States of the European Union. Eur. J. Cancer 2009, 45, 2640–2648. [Google Scholar] [CrossRef]
- Arbyn, M.; Sasieni, P.; Meijer, C.J.; Clavel, C.; Koliopoulos, G.; Dillner, J. Clinical Applications of Hpv Testing: A Summary of Meta-Analyses. Vaccine 2006, 24 (Suppl. 3), 78–79. [Google Scholar] [CrossRef] [PubMed]
- Badaracco, G.; Savarese, A.; Micheli, A.; Rizzo, C.; Paolini, F.; Carosi, M.; Venuti, A. Persistence of Hpv after Radio-Chemotherapy in Locally Advanced Cervical Cancer. Oncol. Rep. 2010, 23, 1093–1099. [Google Scholar] [PubMed] [Green Version]
- Berkhof, J.; Coupe, V.M.; Bogaards, J.A.; van Kemenade, F.J.; Helmerhorst, T.J.; Snijders, P.J.; Meijer, C.J. The Health and Economic Effects of Hpv DNA Screening in the Netherlands. Int. J. Cancer 2010, 127, 2147–2158. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, B.; Sengupta, S. Cpg Methylation of Hpv 16 Lcr at E2 Binding Site Proximal to P97 Is Associated with Cervical Cancer in Presence of Intact E2. Virology 2006, 354, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Loos, A.H.; McCarron, P.; Weiderpass, E.; Arbyn, M.; Moller, H.M.; Parkin, D.M. Trends in Cervical Squamous Cell Carcinoma Incidence in 13 European Countries: Changing Risk and the Effects of Screening. Cancer Epidemiol. Biomark. Prev. 2005, 14, 677–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiwongkot, A.; Vinokurova, S.; Pientong, C.; Ekalaksananan, T.; Kongyingyoes, B.; Kleebkaow, P.; von Knebel Doeberitz, M. Differential Methylation of E2 Binding Sites in Episomal and Integrated Hpv 16 Genomes in Preinvasive and Invasive Cervical Lesions. Int. J. Cancer 2013, 132, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; De Simone, P.; Venturoli, S.; Cricca, M.; Zerbini, M.L.; Musiani, M.; Syrjänen, K. Factors Predicting Human Papillomavirus Clearance in Cervical Intraepithelial Neoplasia Lesions Treated by Conization. Gynecol. Oncol. 2003, 90, 358–365. [Google Scholar] [CrossRef]
- Costa, S.; Venturoli, S.; Origoni, M.; Preti, M.; Mariani, L.; Cristoforoni, P.; Sandri, M.T. Performance of Hpv DNA Testing in the Follow-up after Treatment of High-Grade Cervical Lesions, Adenocarcinoma in Situ (Ais) and Microinvasive Carcinoma. Ecancermedicalscience 2015, 9, 528. [Google Scholar]
- Cheung, J.L.; Lo, K.W.; Cheung, T.H.; Tang, J.W.; Chan, P.K. Viral Load, E2 Gene Disruption Status, and Lineage of Human Papillomavirus Type 16 Infection in Cervical Neoplasia. J. Infect. Dis. 2006, 194, 1706–1712. [Google Scholar] [CrossRef] [Green Version]
- Cuzick, J.; Clavel, C.; Petry, K.U.; Meijer, C.J.; Hoyer, H.; Ratnam, S.; Iftner, T. Overview of the European and North American Studies on Hpv Testing in Primary Cervical Cancer Screening. Int. J. Cancer 2006, 119, 1095–1101. [Google Scholar] [CrossRef]
- Dong, X.P.; Stubenrauch, F.; Beyer-Finkler, E.; Pfister, H. Prevalence of Deletions of Yy1-Binding Sites in Episomal Hpv 16 DNA from Cervical Cancers. Int. J. Cancer 1994, 58, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Papenfuss, M.; Klimecki, W.T.; Giuliano, A.R. Cross-Sectional Analysis of Oncogenic Hpv Viral Load and Cervical Intraepithelial Neoplasia. Int. J. Cancer 2006, 118, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Gravitt, P.; Duh, L.M.; Lefevre, J.; Pourreaux, K.; Hankins, C.; Canadian Women’s HIV Study Group. High Level of Correlation of Human Papillomavirus-16 DNA Viral Load Estimates Generated by Three Real-Time Pcr Assays Applied on Genital Specimens. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2200–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervais, F.; Dunton, K.; Jiang, Y.; Largeron, N. Systematic Review of Cost-Effectiveness Analyses for Combinations of Prevention Strategies against Human Papillomavirus (Hpv) Infection: A General Trend. BMC Public Health 2017, 17, 283. [Google Scholar] [CrossRef] [Green Version]
- Gravitt, P.E.; Kovacic, M.B.; Herrero, R.; Schiffman, M.; Bratti, C.; Hildesheim, A.; Burk, R.D. High Load for Most High Risk Human Papillomavirus Genotypes Is Associated with Prevalent Cervical Cancer Precursors but Only Hpv16 Load Predicts the Development of Incident Disease. Int. J. Cancer 2007, 121, 2787–2793. [Google Scholar] [CrossRef] [Green Version]
- Hesselink, A.T.; Berkhof, J.; Heideman, D.A.; Bulkmans, N.W.; van Tellingen, J.E.; Meijer, C.J.; Snijders, P.J. High-Risk Human Papillomavirus DNA Load in a Population-Based Cervical Screening Cohort in Relation to the Detection of High-Grade Cervical Intraepithelial Neoplasia and Cervical Cancer. Int. J. Cancer 2009, 124, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, J.C.; Oton-Gonzalez, L.; Mazziotta, C.; Lanzillotti, C.; Iaquinta, M.R.; Tognon, M.; Martini, F. Simultaneous Detection and Viral DNA Load Quantification of Different Human Papillomavirus Types in Clinical Specimens by the High Analytical Droplet Digital PCR Method. Front. Microbiol. 2020, 11, 591452. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, A.T.; Sahli, R.; Berkhof, J.; Snijders, P.J.; van der Salm, M.L.; Agard, D.; Heideman, D.A.M. Clinical Validation of Anyplex Ii Hpv Hr Detection According to the Guidelines for Hpv Test Requirements for Cervical Cancer Screening. J. Clin. Virol. 2016, 76, 36–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, I.T. Cyclic-Cmta: An Innovative Concept in Multiplex Quantification. Seegene Bull. 2012, 1, 11–15. [Google Scholar]
- Jordan, J.; Martin-Hirsch, P.; Arbyn, M.; Schenck, U.; Baldauf, J.J.; Da Silva, D.; Prendiville, W. European Guidelines for Clinical Management of Abnormal Cervical Cytology, Part 2. Cytopathology 2009, 20, 5–16. [Google Scholar] [CrossRef]
- Karim-Kos, H.E.; de Vries, E.; Soerjomataram, I.; Lemmens, V.; Siesling, S.; Coebergh, J.W. Recent Trends of Cancer in Europe: A Combined Approach of Incidence, Survival and Mortality for 17 Cancer Sites since the 1990s. Eur. J. Cancer 2008, 44, 1345–1389. [Google Scholar] [CrossRef] [PubMed]
- Kocken, M.; Helmerhorst, T.J.; Berkhof, J.; Louwers, J.A.; Nobbenhuis, M.A.; Bais, A.H.; Meijer, C.J. Risk of Recurrent High-Grade Cervical Intraepithelial Neoplasia after Successful Treatment: A Long-Term Multi-Cohort Study. Lancet Oncol. 2011, 12, 441–450. [Google Scholar] [CrossRef]
- Kristiansen, E.; Jenkins, A.; Holm, R. Coexistence of Episomal and Integrated Hpv16 DNA in Squamous Cell Carcinoma of the Cervix. J. Clin. Pathol. 1994, 47, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Marongiu, L.; Godi, A.; Parry, J.V.; Beddows, S. Human Papillomavirus 16, 18, 31 and 45 Viral Load, Integration and Methylation Status Stratified by Cervical Disease Stage. BMC Cancer 2014, 30, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnikow, J.; McGahan, C.; Sawaya, G.F.; Ehlen, T.; Coldman, A. Cervical Intraepithelial Neoplasia Outcomes after Treatment: Long-Term Follow-up from the British Columbia Cohort Study. J. Natl. Cancer Inst. 2009, 101, 721–728. [Google Scholar] [CrossRef]
- Min, K.J.; Lee, Y.J.; Suh, M.; Yoo, C.W.; Lim, M.C.; Choi, J.; Lee, J.K. The Korean Guideline for Cervical Cancer Screening. J. Gynecol. Oncol. 2015, 26, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyervides-Munoz, M.A.; Perez-Maya, A.A.; Rodriguez-Gutierrez, H.F.; Gomez-Macias, G.S.; Fajardo-Ramirez, O.R.; Trevino, V.; Barrera-Saldana, H.A.; Garza-Rodriguez, M.L. Understanding the Hpv Integration and Its Progression to Cervical Cancer. Infect. Genet. Evol. 2018, 61, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Parfenov, M.; Pedamallu, C.S.; Gehlenborg, N.; Freeman, S.S.; Danilova, L.; Bristow, C.A.; Cancer Genome Atlas Network. Characterization of Hpv and Host Genome Interactions in Primary Head and Neck Cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 15544–15549. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.-Y. Thinking “Outside the Box”. J. Adv. Nurs. 2018, 74, 237–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, M.; Stransky, N.; Couturier, J.; Hupe, P.; Barillot, E.; de Cremoux, P.; Sastre-Garau, X. Frequent Genomic Structural Alterations at Hpv Insertion Sites in Cervical Carcinoma. J. Pathol. 2010, 221, 320–330. [Google Scholar] [CrossRef]
- Sarian, L.O.; Derchain, S.F.; Pitta Dda, R.; Morais, S.S.; Rabelo-Santos, S.H. Factors Associated with Hpv Persistence after Treatment for High-Grade Cervical Intra-Epithelial Neoplasia with Large Loop Excision of the Transformation Zone (Lletz). J. Clin. Virol. 2004, 31, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, N.F.; Trevisan, A.; Duarte-Franco, E.; Rohan, T.E.; Ferenczy, A.; Villa, L.L.; Franco, E.L. Viral Load as a Predictor of the Risk of Cervical Intraepithelial Neoplasia. Int. J. Cancer 2003, 103, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.H.; Kim, H.; Sohn, I.S.; Hwang, H.S.; Kwon, H.S.; Lee, S.J.; Chang, S. Nationwide Cervical Cancer Screening in Korea: Data from the National Health Insurance Service Cancer Screening Program and National Cancer Screening Program, 2009-2014. J. Gynecol. Oncol. 2017, 28, e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends--an Update. Cancer Epidemiol. Biomarkers. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wentzensen, N.; Vinokurova, S.; von Knebel Doeberitz, M. Systematic Review of Genomic Integration Sites of Human Papillomavirus Genomes in Epithelial Dysplasia and Invasive Cancer of the Female Lower Genital Tract. Cancer Res. 2004, 64, 3878–3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, L.F.; Hughes, J.P.; Edelstein, Z.R.; Kiviat, N.B.; Koutsky, L.A.; Mao, C.; Schiffman, M. Human Papillomavirus (Hpv) Type 16 and Type 18 DNA Loads at Baseline and Persistence of Type-Specific Infection During a 2-Year Follow-Up. J. Infect. Dis. 2009, 200, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Baasland, I.; Romundstad, P.R.; Eide, M.L.; Jonassen, C.M. Clinical performance of Anyplex II HPV28 by human papillomavirus type and viral load in a referral population. PLoS ONE 2019, 14, e0210997. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H. TOCE: Innovative Technology for High Multiplex Real-time PCR. Seegene Bull. 2012, 1, 5–10. [Google Scholar]
- Lee, D.H.; Hwang, N.R.; Lim, M.C.; Yoo, C.W.; Joo, J.; Kim, J.-Y.; Park, S.-Y.; Hwang, H.-S. Comparison of the performance of Anyplex II HPV HR, the Cobas 4800 human papillomavirus test and Hybrid Capture 2. Ann. Clin. Biochem. 2016, 53 Pt 5, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Cornall, A.M.; Poljak, M.; Garland, S.M.; Phillips, S.; Tan, J.H.; Machalek, D.A.; Quinn, M.A.; Tabrizi, S.N. Anyplex II HPV28 detection and Anyplex II HPV HR detection assays are highly concordant with other commercial assays for detection of high-risk HPV genotypes in women with high grade cervical abnormalities. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 545–551. [Google Scholar] [CrossRef]
- Zur Hausen, H. Papillomaviruses and Cancer: From Basic Studies to Clinical Application. Nat. Rev. Cancer 2002, 2, 342–350. [Google Scholar] [CrossRef] [PubMed]
Original Site | Previous Histologic Diagnosis | Cases [No.] |
---|---|---|
Uterus, cervix | Condyloma acuminatum | 2 |
LSIL (CIN1) | 20 | |
HSIL (CIN2 or CIN3) | 18 | |
Squamous carcinoma in situ | 43 | |
Microinvasive squamous cell carcinoma | 8 | |
Invasive squamous cell carcinoma | 30 | |
Adenocarcinoma in situ | 2 | |
Invasive adenocarcinoma | 18 | |
Vagina | HSIL (VAIN2) | 1 |
Invasive squamous cell carcinoma | 1 | |
Invasive adenocarcinoma | 1 | |
Neuroendocrine carcinoma | 1 | |
Vulva | Extramammary Paget disease | 1 |
Squamous cell carcinoma in situ | 1 | |
Invasive squamous cell carcinoma | 3 | |
Total | 150 |
HPV Genotypes | Single Infection [No. (%)] | Multiple Infection [No. (%)] |
---|---|---|
HR-HPV | 224 (62.9%) | 3 (0.8%) |
HPV16 | 20 (5.6%) | |
HPV18 | 10 (2.8%) | |
Other HR-types | HPV26 (n = 2, 0.6%) HPV31 (n = 10, 2.8%) HPV33 (n = 3, 0.8%) HPV35 (n = 5, 1.4%) HPV39 (n = 28, 7.9%) HPV45 (n = 2, 0.6%) HPV51 (n = 10, 2.8%) HPV52 (n = 24, 6.7%) HPV53 (n = 21, 5.9%) HPV56 (n = 23, 6.5%) HPV58 (n = 17, 4.8%) HPV59 (n = 9, 2.5%) HPV66 (n = 11, 3.1%) HPV68 (n = 29, 8.1%) | HPV51 + HPV52 (n = 1, 0.3%) HPV53 + HPV68 (n = 1, 0.3%) HPV59 + HPV66 (n = 1, 0.3%) |
LR-HPV | 115 (32.6%) | 8 (2.2%) |
HPV6 | 8 (2.2%) | |
HPV11 | 0 (0%) | |
Other LR-types | HPV40 (n = 9, 2.5%) HPV42 (n = 10, 2.8%) HPV43 (n = 10, 2.8%) HPV44 (n = 13, 3.7%) HPV54 (n = 39, 11.0%) HPV61 (n = 18, 5.1%) HPV70 (n = 10, 2.8%) | HPV42 + HPV54 (n = 1, 0.3%) HPV42 + HPV70 (n = 1, 0.3%) HPV44 + HPV54 (n = 1, 0.3%) HPV44 + HPV61 (n = 1, 0.3%) HPV54 + HPV61 (n = 1, 0.3%) HPV61 + HPV70 (n = 3, 0.8%) |
Mixed (HR + LR) HPV | – | 6 (1.7%) |
– | HPV26 + HPV42 (n = 1, 0.3%) HPV31 + HPV43 (n = 1, 0.3%) HPV35 + HPV54 (n = 1, 0.3%) HPV52 + HPV70 (n = 1, 0.3%) HPV58 + HPV42 (n = 1, 0.3%) HPV59 + HPV54 (n = 1, 0.3%) |
Cytological Diagnosis | HPV (1+) | HR-HPV | LR-HPV |
---|---|---|---|
Negative | 347 | 227 (65.4%) | 120 (34.6%) |
Negative for malignancy | 235 | 160 (68.1%) | 75 (31.9%) |
Reactive cellular change | 46 | 32 (69.6%) | 14 (30.4%) |
Atrophy | 35 | 19 (54.3%) | 16 (45.7%) |
Shift in flora suggestive of bacterial vaginosis | 19 | 12 (63.2%) | 7 (36.8%) |
Fungal organisms morphologically consistent with Candida spp. | 11 | 4 (36.4%) | 7 (63.6%) |
Trichomonas vaginalis | 1 | 0 (0%) | 1 (100%) |
Atypical cells | 9 | 6 (66.7%) | 3 (33.3%) |
ASC-US | 7 | 4 (57.1%) | 3 (42.9%) |
AGC | 2 | 2 (100%) | 0 (0%) |
Total | 356 (100%) | 233 (65.4%) | 123 (34.6%) |
Baseline Cytology | Infection | HPV Type | Related Bx | Follow-Up Cytology |
---|---|---|---|---|
ASC-US | Single | HR (16) | LSIL | Negative |
ASC-US | Single | HR (16) | CI | Negative |
ASC-US | Single | HR (33) | - | Negative |
ASC-US | Single | LR (43) | - | Negative (Atrophy) |
ASC-US | Multiple | Mixed (16,44) | CI | Negative |
ASC-US | Single | HR (51) | - | Negative |
ASC-US | Single | HR (56) | - | Negative |
AGC | Single | HR (39) | CI | Negative (Candida spp.) |
AGC | Single | HR (56) | - | Negative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, N.J.-Y.; Park, C.S.-Y.; Jeong, J.Y.; Kim, M.; Yoo, S.H.; Chong, G.O.; Hong, D.G.; Park, J.Y. Strategic Significance of Low Viral Load of Human Papillomavirus in Uterine Cervical Cytology Specimens. Diagnostics 2022, 12, 1855. https://doi.org/10.3390/diagnostics12081855
Park NJ-Y, Park CS-Y, Jeong JY, Kim M, Yoo SH, Chong GO, Hong DG, Park JY. Strategic Significance of Low Viral Load of Human Papillomavirus in Uterine Cervical Cytology Specimens. Diagnostics. 2022; 12(8):1855. https://doi.org/10.3390/diagnostics12081855
Chicago/Turabian StylePark, Nora Jee-Young, Claire Su-Yeon Park, Ji Yun Jeong, Moonsik Kim, Su Hyun Yoo, Gun Oh Chong, Dae Gy Hong, and Ji Young Park. 2022. "Strategic Significance of Low Viral Load of Human Papillomavirus in Uterine Cervical Cytology Specimens" Diagnostics 12, no. 8: 1855. https://doi.org/10.3390/diagnostics12081855
APA StylePark, N. J.-Y., Park, C. S.-Y., Jeong, J. Y., Kim, M., Yoo, S. H., Chong, G. O., Hong, D. G., & Park, J. Y. (2022). Strategic Significance of Low Viral Load of Human Papillomavirus in Uterine Cervical Cytology Specimens. Diagnostics, 12(8), 1855. https://doi.org/10.3390/diagnostics12081855