Electrical Properties Tomography: A Methodological Review
Abstract
:1. Introduction
2. Phasor Representations for the RF Field
2.1. Transmit and Receive Fields
2.2. MR Imaging
2.3. Transmit and Receive Fields in Terms of Measurable Quantities
3. Fundamental EPT Equations
3.1. First-Order Differential Equations: Maxwell’s Equations
3.2. Second-Order Differential Equation: The Generalized Helmholtz Equation
3.2.1. The Gradient-Type Generalized Helmholtz Equation
3.2.2. The Generalized Helmholtz Equation as a Convection–Reaction Equation
3.2.3. Helmholtz Equations for the Receive Field
3.3. Volume Integral Equations
4. EPT Methods Requiring Transmit Field Mapping
- Section 4.1: Helmholtz-based EPT (H-EPT)
- Section 4.2: Simplified H-EPT (SH-EPT)
- Section 4.2.1: Poisson-based Conductivity Mapping (P-CM)
- Section 4.3: Local Maxwell tomography (LMT)
- Section 4.4: Modified dual-excitation EPT (MDE-EPT)
- Section 4.5: Gradient-based EPT (G-EPT)
- Section 4.6: Convection–reaction EPT (CR-EPT)
- Section 4.6.1: Phase-only convection–reaction conductivity mapping (PCR-CM)
- Section 4.7: Transverse EPT (T-EPT)
- Section 4.8: First-order induced-current EPT (foIC-EPT)
- Section 4.9: Variational Born iterative method EPT (VBIM-EPT)
- Section 4.10: Global Maxwell tomography (GMT)
- Section 4.11: Contrast source inversion EPT (CSI-EPT)
4.1. Helmholtz-Based EPT
4.2. Simplified H-EPT
4.2.1. Poisson-Based Conductivity Mapping
4.3. Local Maxwell Tomography
4.4. Modified Dual-Excitation EPT
4.5. Gradient-Based EPT
4.6. Convection–Reaction EPT
4.6.1. Phase-Only Convection–Reaction Conductivity Mapping
4.7. Transverse EPT
Listing 1. Transverse EPT (T-EPT). |
|
4.8. First-Order Induced-Current EPT
4.9. Variational Born Iterative Method EPT
Listing 2. Variational Born Iterative Method-EPT (VBIM-EPT). |
|
4.10. Global Maxwell Tomography
Listing 3. Global Maxwell Tomography (GMT). |
|
4.11. Contrast Source Inversion EPT
Listing 4. Contrast Source Inversion-EPT (CSI-EPT). |
|
5. EPT Methods Not Requiring Transmit Field Mapping
- Section 5.1: Single-acquisition EPT (SA-EPT)
- Section 5.2: Image-based EPT (I-EPT)
5.1. Single-Acquisition EPT
5.2. Image-Based EPT
6. Data Driven Deep Learning Approaches for Solving Inverse Problems
6.1. Convolutional Neural Networks
6.2. Deep Learning for EPT Reconstruction: Single Feedforward Approaches
6.3. Training Data and Generalization to Unseen Data
6.4. Deep Learning EPT: Integrating Deep Learning into Iterative EPT Schemes
6.5. Outlook
7. Discussion and Conclusions
7.1. Approach Description
- Differential methods or integral methods
- Local methods that reconstruct the EPs at a specific location by only taking the information from the direct neighbourhood into account, or global methods that take the whole imaging domain into account to reconstruct the EP maps as a whole
- Direct methods that act directly on the data to reconstruct the EPs, also called backward methods since they run ‘backwards’ from the measured field map to the underlying EPs, or forward methods that employ forward models or solve forward problems in the inversion scheme and act ‘indirectly’ on the data
7.1.1. Differential vs. Integral
7.1.2. Local vs. Global
7.1.3. Direct vs. Forward
7.2. Data Requirements
7.2.1. Measurable and Non-Measurable Data
7.2.2. Field/Object Structure
7.3. State Of Development
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CR-EPT | Convection–reaction EPT |
CSI-EPT | Contrast source inversion EPT |
DL-EPT | Deep-learning EPT |
ECG | Electrocardiography |
EEG | Electroencephalography |
EM | Electromagnetic |
EP | Electrical property |
EPT | Electrical properties tomography |
foIC-EPT | First-order induced-current EPT |
G-EPT | Gradient-based EPT |
GMT | Global Maxwell tomography |
H-EPT | Helmholtz-based EPT |
I-EPT | Image-based EPT |
LMT | Local Maxwell tomography |
MDE-EPT | Modified dual-excitation EPT |
MR | Magnetic resonance |
MRI | Magnetic resonance imaging |
P-CM | Poisson-based conductivity mapping |
PCR-CM | Phase-only convection–reaction conductivity mapping |
RF | Radio Frequency |
SA-EPT | Single-acquisition EPT |
SH-EPT | Simplified H-EPT |
SNR | Signal-to-noise ratio |
T-EPT | Transverse EPT |
VBIM-EPT | Variational Born iterative method EPT |
References
- Zhang, X.; Liu, J.; He, B. Magnetic-Resonance-Based Electrical Properties Tomography: A Review. IEEE Rev. Biomed. Eng. 2014, 7, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Surowiec, A.J.; Stuchly, S.S.; Barr, J.R.; Swarup, A. Dielectric Properties of Breast Carcinoma and the Surrounding Tissues. IEEE Trans. Biomed. Eng. 1988, 35, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, B.; Xu, J.; Yu, J. Dielectric properties of human glioma and surrounding tissue. Int. J. Hyperth. 1992, 8, 755–760. [Google Scholar] [CrossRef]
- Hancu, I.; Roberts, J.C.; Bulumulla, S.; Lee, S.K. On conductivity, permittivity, apparent diffusion coefficient, and their usefulness as cancer markers at MRI frequencies. Magn. Reson. Med. 2015, 73, 2025–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holder, D.S. Detection of Cerebral Ischaemia in the Anaesthetised Rat by Impedance Measurement with Scalp Electrodes: Implications for Non-Invasive Imaging of Stroke by Electrical Impedance Tomography. Clin. Phys. Physiol. Meas. 1992, 13, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Fallert, M.A.; Mirotznik, M.S.; Downing, S.W.; Savage, E.B.; Foster, K.R.; Josephson, M.E.; Bogen, D.K. Myocardial Electrical Impedance Mapping of Ischemic Sheep Hearts and Healing Aneurysms. Circulation 1993, 87, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Tha, K.K.; Stehning, C.; Suzuki, Y.; Katscher, U.; Keupp, J.; Kazumata, K.; Terasaka, S.; Van Cauteren, M.; Kudo, K.; Shirato, H. Noninvasive evaluation of electrical conductivity of the normal brain and brain tumors. Proc. Int. Soc. Magn. Reson. Med. 2014, 22, 1885. [Google Scholar]
- Tha, K.K.; Katscher, U.; Yamaguchi, S.; Stehning, C.; Terasaka, S.; Fujima, N.; Kudo, K.; Kazumata, K.; Yamamoto, T.; Van Cauteren, M.; et al. Noninvasive electrical conductivity measurement by MRI: A test of its validity and the electrical conductivity characteristics of glioma. Eur. Radiol. 2018, 28, 348–355. [Google Scholar] [CrossRef]
- Balidemaj, E.; van Lier, A.L.; Crezee, H.; Nederveen, A.J.; Stalpers, L.J.; Van Den Berg, C.A. Feasibility of electric property tomography of pelvic tumors at 3T. Magn. Reson. Med. 2015, 73, 1505–1513. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.J.; Lee, J.; Nam, Y.; Kim, M.o.; Choi, N.; Kim, S.; Kim, D.H. Initial study on in vivo conductivity mapping of breast cancer using MRI. J. Magn. Reson. Imaging 2015, 42, 371–378. [Google Scholar] [CrossRef]
- van Lier, A.; Kolk, A.; Brundel, M.; Hendriske, J.; Luijten, J.; Lagendijk, J.; van den Berg, C. Electrical conductivity in ischemic stroke at 7.0 Tesla: A case study. In Proceedings of the 20th Scientific Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM’12), Melbourne, Australia, 5–11 May 2012; Volume 3484. [Google Scholar]
- Gurler, N.; Oran, O.F.; Keklikoglu, H.D.; Ider, Y.Z. Application of generalized phase based electrical conductivity imaging in the subacute stage of hemorrhagic and ischemic strokes. In Proceedings of the 24th Annu. Meeting ISMRM, Singapore, 7–13 May 2016; p. 2994. [Google Scholar]
- Liu, J.; Wang, Y.; Katscher, U.; He, B. Electrical Properties Tomography Based on B1 Maps in MRI: Principles, Applications, and Challenges. IEEE Trans. Biomed. Eng. 2017, 64, 2515–2530. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.H. Electrical Impedance Tomography (EIT): A Review. J. Med. Eng. Technol. 2003, 27, 97–108. [Google Scholar] [CrossRef]
- Zhang, X.; de Moortele, P.F.V.; Schmitter, S.; He, B. Complex B1 mapping and electrical properties imaging of the human brain using a 16-channel transceiver coil at 7T. Magn. Reson. Med. 2013, 69, 1285–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, H. Magnetic induction tomography. Meas. Sci. Technol. 2001, 12, 1126. [Google Scholar] [CrossRef]
- Woo, E.J.; Lee, S.Y.; Mun, C.W. Impedance tomography using internal current density distribution measured by nuclear magnetic resonance. In Mathematical Methods in Medical Imaging III; International Society for Optics and Photonics: Bellingham, WA USA, 1994; Volume 2299, pp. 377–385. [Google Scholar]
- Woo, E.J.; Seo, J.K. Magnetic Resonance Electrical Impedance Tomography (MREIT) for High-Resolution Conductivity Imaging. Physiol. Meas. 2008, 29, R1–R26. [Google Scholar] [CrossRef] [Green Version]
- Katscher, U.; Kim, D.H.; Seo, J.K. Recent Progress and Future Challenges in MR Electric Properties Tomography. Comput. Math. Method. Med. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, H.; Shah, J.; Balaban, R.S. Hall Effect Imaging. IEEE Trans. Biomed. Eng. 1998, 45, 119–124. [Google Scholar] [CrossRef]
- Xu, Y.; He, B. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI). Phys. Med. Biol. 2005, 50, 5175–5187. [Google Scholar] [CrossRef] [Green Version]
- Haacke, E.M.; Petropoulos, L.S.; Nilges, E.W.; Wu, D.H. Extraction of conductivity and permittivity using magnetic resonance imaging. Phys. Med. Biol. 1991, 36, 723–734. [Google Scholar] [CrossRef]
- Wen, H. Noninvasive Quantitative Mapping of Conductivity and Dielectric Distributions Using RF Wave Propagation Effects in High-Field MRI. In Medical Imaging 2003: Physics of Medical Imaging; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5030, pp. 471–477. [Google Scholar]
- Katscher, U.; van den Berg, C.A.T. Electric Properties Tomography: Biochemical, Physical and Technical Background, Evaluation and Clinical Applications. NMR Biomed. 2017, 30, e3729. [Google Scholar] [CrossRef]
- Hoult, D.I. The Principle of Reciprocity in Signal Strength Calculations – a Mathematical Guide. Concepts Magn. Reson. 2000, 12, 173–187. [Google Scholar] [CrossRef]
- van Lier, A.L.H.M.W.; Raaijmakers, A.; Voigt, T.; Lagendijk, J.J.W.; Luijten, P.R.; Katscher, U.; van den Berg, C.A.T. Electrical Properties Tomography in the Human Brain at 1.5, 3, and 7 T: A Comparison Study. Magn. Reson. Med. 2014, 71, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Katscher, U.; Findeklee, C.; Voigt, T. B1-based specific energy absorption rate determination for nonquadrature radiofrequency excitation. Magn. Reson. Med. 2012, 68, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Schmitter, S.; Van de Moortele, P.F.; Liu, J.; He, B. From Complex B1 Mapping to Local SAR Estimation for Human Brain MR Imaging Using Multi-Channel Transceiver Coil at 7T. IEEE Trans. Med. Imaging 2013, 32, 1058–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family–development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2009, 55, N23–N38. [Google Scholar] [CrossRef]
- Mandija, S.; Petrov, P.I.; Vink, J.J.; Neggers, S.F.; van den Berg, C.A. Brain Tissue Conductivity Measurements with MR-Electrical Properties Tomography: An In Vivo Study. Brain Topogr. 2020, 34, 56–63. [Google Scholar] [CrossRef]
- Seo, J.K.; Kim, M.O.; Lee, J.; Choi, N.; Woo, E.J.; Kim, H.J.; Kwon, O.I.; Kim, D.H. Error Analysis of Nonconstant Admittivity for MR-Based Electric Property Imaging. IEEE Trans. Med. Imaging 2011, 31, 430–437. [Google Scholar]
- Mandija, S.; Sbrizzi, A.; Katscher, U.; Luijten, P.R.; van den Berg, C.A. Error Analysis of Helmholtz-Based MR-Electrical Properties Tomography. Magn. Reson. Med. 2018, 80, 90–100. [Google Scholar] [CrossRef]
- Shin, J.; Kim, J.H.; Kim, D.H. Redesign of the Laplacian Kernel for Improvements in Conductivity Imaging Using MRI. Magn. Reson. Med. 2019, 81, 2167–2175. [Google Scholar] [CrossRef]
- van Lier, A.L.; Brunner, D.O.; Pruessmann, K.P.; Klomp, D.W.; Luijten, P.R.; Lagendijk, J.J.; van den Berg, C.A. Phase Mapping at 7 T and its Application for In Vivo Electrical Conductivity Mapping. Magn. Reson. Med. 2012, 67, 552–561. [Google Scholar] [CrossRef]
- Voigt, T.; Katscher, U.; Doessel, O. Quantitative Conductivity and Permittivity Imaging of the Human Brain Using Electric Properties Tomography. Magn. Reson. Med. 2011, 66, 456–466. [Google Scholar] [CrossRef]
- Bulumulla, S.B.; Lee, S.K.; Yeo, T.B.D. Calculation of Electrical Properties from B1+ Maps–a Comparison of Methods. Brain 2012, 68, 66-2. [Google Scholar]
- Liu, J.; Zhang, X.; Van de Moortele, P.F.; Schmitter, S.; He, B. Determining Electrical Properties Based on B1 Fields measured in an MR Scanner Using a Multi-Channel Transmit/Receive Coil: A General approach. Phys. Med. Biol. 2013, 58, 4395–4408. [Google Scholar] [CrossRef]
- Ropella, K.M.; Noll, D.C. A Regularized, Model-Based Approach to Phase-Based Conductivity Mapping Using MRI. Magn. Reson. Med. 2017, 78, 2011–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsic, A.; Perreard, I.; Mahara, A.; Halter, R.J. An Inverse Problems Approach to MR-EPT Image Reconstruction. IEEE Trans. Med. Imaging 2015, 35, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Sodickson, D.K.; Alon, L.; Deniz, C.M.; Brown, R.; Zhang, B.; Wiggins, G.C.; Cho, G.Y.; Eliezer, N.B.; Novikov, D.S.; Lattanzi, R.; et al. Local Maxwell Tomography Using Transmit-Receive Coil Arrays for Contact-Free Mapping of Tissue Electrical Properties and Determination of absolute RF Phase. In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 5–11 May 2012; p. 387. [Google Scholar]
- Sodickson, D.K.; Alon, L.; Deniz, C.M.; Ben-Eliezer, N.; Cloos, M.; Sodickson, L.A.; Collins, C.M.; Wiggins, G.C.; Novikov, D.S. Generalized Local Maxwell Tomography for Mapping of Electrical Property Gradients and Tensors. In Proceedings of the 21th Annual Meeting ISMRM, Salt Lake City, UT, USA, 20–26 April 2013; p. 4175. [Google Scholar]
- Zhang, X.; Zhu, S.; He, B. Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI. IEEE Trans. Med. Imaging 2010, 29, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arduino, A. Mathematical Methods for Magnetic Resonance Based Electric Properties Tomography. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2018. [Google Scholar]
- Liu, J.; Zhang, X.; Schmitter, S.; Van de Moortele, P.F.; He, B. Gradient-Based Electrical Properties Tomography (gEPT): A Robust Method for Mapping Electrical Properties of Biological Tissues In Vivo Using Magnetic Resonance Imaging. Magn. Reson. Med. 2015, 74, 634–646. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Van de Moortele, P.F.; Zhang, X.; Wang, Y.; He, B. Simultaneous Quantitative Imaging of Electrical Properties and Proton Density From B1 Maps Using MRI. IEEE Trans. Med. Imaging 2016, 35, 2064–2073. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Q.; Wang, Y.; Adriany, G.; Bischof, J.; van de Moortele, P.F.; He, B. In Vivo Imaging of Electrical Properties of an Animal Tumor Model with an 8-Channel Transceiver Array at 7 T using electrical properties tomography. Magn. Reson. Med. 2017, 78, 2157–2169. [Google Scholar] [CrossRef]
- Wang, Y.; Van de Moortele, P.F.; He, B. Automated Gradient-Based Electrical Properties Tomography in the Human Brain Using 7 Tesla MRI. Magn. Reson. Med. 2019, 63, 258–266. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Q.; Van de Moortele, P.F.; Racila, E.; Liu, J.; Bischof, J.; He, B. Mapping Electrical Properties Heterogeneity of Tumor Using Boundary Informed Electrical Properties Tomography (BIEPT) at 7 T. Magn. Reson. Med. 2019, 81, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafalir, F.S.; Oran, O.F.; Gurler, N.; Ider, Y.Z. Convection-Reaction Equation Based Magnetic Resonance Electrical Properties Tomography (cr-MREPT). IEEE Trans. Med. Imaging 2014, 33, 777–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariturk, G.; Ider, Y.Z. Optimal Multichannel Transmission for Improved cr-MREPT. Phys. Med. Biol. 2018, 63, 045001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, G.; Ider, Y.Z. Use of Dielectric Padding to Eliminate Low Convective Field Artifact in cr-MREPT Conductivity Images. Magn. Reson. Med. 2019, 81, 3168–3184. [Google Scholar] [CrossRef] [PubMed]
- Gurler, N.; Ider, Y.Z. Gradient-based Electrical Conductivity Imaging Using MR Phase. Magn. Reson. Med. 2017, 77, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Leijsen, R.L.; An, X.; Brink, W.M.; Webb, A.G.; Remis, R.F. Transverse-EPT: A Local First Order Electrical Properties Tomography Approach Free of Incident Fields. In Proceedings of the 12th Annual Meeting of ISMRM Benelux, Arnhem, The Netherlands, 24 January 2020. [Google Scholar]
- van den Bergen, B.; Stolk, C.C.; van den Berg, J.B.; Lagendijk, J.J.W.; van den Berg, C.A.T. Ultra Fast Electromagnetic Field Computations for RF Multi-Transmit Techniques in High Field MRI. Phys. Med. Biol. 2009, 54, 1253–1264. [Google Scholar] [CrossRef] [Green Version]
- Chong, E.K.; Zak, S.H. An Introduction to Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Fuchs, P.S.; Mandija, S.; Stijnman, P.R.; Brink, W.M.; van den Berg, C.A.; Remis, R.F. First-Order Induced Current Density Imaging and Electrical Properties Tomography in MRI. IEEE Trans. Comput. Imaging 2018, 4, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Fushimi, M.; Nara, T. A Boundary-Value-Free Reconstruction Method for Magnetic Resonance Electrical Properties Tomography Based on the Neumann-Type Integral Formula over a Circular Region. SICE J. Control. Meas. Syst. Integr. 2017, 10, 571–578. [Google Scholar] [CrossRef]
- Fushimi, M.; Nara, T. Boundary Value-Free Magnetic Resonance Electrical Properties Tomography Based on the Generalized Cauchy Formula with the Complex-Derivative Boundary Condition. Prog. Electromagn. Res. M Pier M 2020, 96, 1–8. [Google Scholar] [CrossRef]
- Fushimi, M.; Nara, T. Three-Dimensional Magnetic Resonance Electrical Properties Tomography Based on Linear Integral Equation Derived from the Generalized Cauchy Formula. Prog. Electromagn. Res. C Pier C 2020, 105, 147–159. [Google Scholar] [CrossRef]
- Nara, T.; Furuichi, T.; Fushimi, M. An Explicit Reconstruction Method for Magnetic Resonance Electrical Property Tomography Based on the Generalized Cauchy Formula. Inverse Probl. 2017, 33, 105005. [Google Scholar] [CrossRef]
- Hong, R.; Li, S.; Zhang, J.; Zhang, Y.; Liu, N.; Yu, Z.; Liu, Q.H. 3-D MRI-based Electrical Properties Tomography Using the Volume Integral Equation Method. IEEE Trans. Microw. Theory Tech. 2017, 65, 4802–4811. [Google Scholar] [CrossRef]
- Li, S.; Hong, R.; Liu, N.; Zhang, J.; Chen, L.; Zhang, Y.; Yu, Z.; Liu, Q.H. Three-Dimensional MR Reconstruction of High-Contrast Magnetic Susceptibility by the Variational Born Iterative Method Based on the Magnetic Field Volume Integral Equation. Magn. Reson. Med. 2018, 79, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Serrallés, J.E.; Daniel, L.; White, J.K.; Sodickson, D.K.; Lattanzi, R.; Polimeridis, A.G. Global Maxwell Tomography: A Novel Technique for Electrical Properties Mapping Based on MR Measurements and Volume Integral Equation Formulations. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, 26 June–1 July 2016; IEEE: Piscataway, NJ, USA; pp. 1395–1396. [Google Scholar]
- Serrallés, J.E.; Giannakopoulos, I.; Zhang, B.; Ianniello, C.; Cloos, M.A.; Polimeridis, A.G.; White, J.K.; Sodickson, D.K.; Daniel, L.; Lattanzi, R. Noninvasive Estimation of Electrical Properties from Magnetic Resonance Measurements via Global Maxwell Tomography and Match Regularization. IEEE Trans. Biomed. Eng. 2020, 67, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, I.I.; Serrallés, J.E.; Daniel, L.; Sodickson, D.K.; Polimeridis, A.G.; White, J.K.; Lattanzi, R. Magnetic-Resonance-Based Electrical Property Mapping Using Global Maxwell Tomography with an 8-Channel Head Coil at 7 Tesla: A Simulation Study. IEEE Trans. Biomed. Eng. 2020, 68, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Polimeridis, A.G.; Villena, J.F.; Daniel, L.; White, J.K. Stable FFT-JVIE Solvers for Fast Analysis of Highly Inhomogeneous Dielectric Objects. J. Comput. Phys. 2014, 269, 280–296. [Google Scholar] [CrossRef]
- Leijsen, R.L.; Brink, W.M.; Van Den Berg, C.A.; Webb, A.G.; Remis, R.F. 3-D Contrast Source Inversion-Electrical Properties Tomography. IEEE Trans. Med. Imaging 2018, 37, 2080–2089. [Google Scholar] [CrossRef]
- Leijsen, R.; Fuchs, P.; Brink, W.; Webb, A.; Remis, R. Developments in Electrical-Property Tomography Based on the Contrast-Source Inversion Method. J. Imaging 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Webb, A. A New Approach for Electrical Properties Estimation Using a Global Integral Equation and Improvements Using High Permittivity Materials. J. Magn. Reson. 2016, 262, 8–14. [Google Scholar] [CrossRef]
- Guo, L.; Jin, J.; Liu, C.; Liu, F.; Crozier, S. An Efficient Integral-Based Method for Three-Dimensional MR-EPT and the Calculation of the RF-Coil-Induced Bz Field. IEEE Trans. Biomed. Eng. 2017, 65, 282–293. [Google Scholar] [CrossRef]
- Guo, L.; Jin, J.; Li, M.; Wang, Y.; Liu, C.; Liu, F.; Crozier, S. Reference-Based Integral MR-EPT: Simulation and Experiment Studies at 9.4 T MRI. IEEE Trans. Biomed. Eng. 2018, 66, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, M.; Nguyen, P.; Liu, F.; Crozier, S. Integral MR-EPT with the Calculation of Coil Current Distributions. IEEE Trans. Med. Imaging 2019, 39, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Balidemaj, E.; van den Berg, C.A.T.; Trinks, J.; van Lier, A.L.H.M.W.; Nederveen, A.J.; Stalpers, L.J.A.; Crezee, H.; Remis, R.F. CSI-EPT: A Contrast Source Inversion Approach for Improved MRI-Based Electric Properties Tomography. IEEE Trans. Med. Imag. 2015, 34, 1788–1796. [Google Scholar] [CrossRef] [PubMed]
- Arduino, A.; Chiampi, M.; Zilberti, L.; Bottauscio, O. Alternative Approaches to Magnetic Resonance-Based Electric Properties Tomography and Local Specific Absorption Rate Estimation. IEEE Trans. Magn. 2016, 53, 1–8. [Google Scholar] [CrossRef]
- Arduino, A.; Zilberti, L.; Chiampi, M.; Bottauscio, O. CSI-EPT in Presence of RF-Shield for MR-Coils. IEEE Trans. Med. Imag. 2017, 36, 1396–1404. [Google Scholar] [CrossRef]
- Arduino, A.; Chiampi, M.; Pennecchi, F.; Zilberti, L.; Bottauscio, O. Monte Carlo Method for Uncertainty Propagation in Magnetic Resonance-Based Electric Properties Tomography. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar]
- Stijnman, P.R.; Mandija, S.; Fuchs, P.S.; van den Berg, C.A.; Remis, R.F. Transceive Phase Corrected Contrast Source Inversion-Electrical Properties Tomography. arXiv 2019, arXiv:1907.13451. [Google Scholar]
- Balidemaj, E.; van den Berg, C.A.T.; van Lier, A.L.H.M.W.; Nederveen, A.J.; Stalpers, L.J.A.; Crezee, H.; Remis, R.F. B1-Based SAR Reconstruction Using Contrast Source Inversion-Electric Properties Tomography (CSI-EPT). Med. Biol. Eng. Comput. 2017, 55, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Arduino, A.; Bottauscio, O.; Chiampi, M.; Zilberti, L. Magnetic Resonance-Based Imaging of Human Electric Properties with Phaseless Contrast Source Inversion. Inverse Probl. 2018, 34, 084002. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Bellizzi, G.G.; Crocco, L.; Isernia, T. A Method for Quantitative Imaging of Electrical Properties of Human Tissues from Only Amplitude Electromagnetic Data. Inverse Probl. 2019, 35, 025006. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Bellizzi, G.G.; Isernia, T.; Crocco, L. A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion. Prog. Electromagn. Res. Pier 2019, 164, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Marques, J.P.; Sodickson, D.K.; Ipek, O.; Collins, C.M.; Gruetter, R. Single Acquisition Electrical Property Mapping Based on Relative Coil Sensitivities: A Proof-of-Concept Demonstration. Magn. Reson. Med. 2015, 74, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.K.; Bulumulla, S.; Wiesinger, F.; Sacolick, L.; Sun, W.; Hancu, I. Tissue Electrical Property Mapping from Zero Echo-Time Magnetic Resonance Imaging. IEEE Trans. Med. Imaging 2014, 34, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Kim, M.O.; Cho, S.; Kim, D.H. Fast Spin Echo Imaging-Based Electric Property Tomography with K-Space Weighting via T2 Relaxation (rEPT). IEEE Trans. Med. Imaging 2017, 36, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Soullié, P.; Missoffe, A.; Ambarki, K.; Felblinger, J.; Odille, F. MR Electrical Properties Imaging Using a Generalized Image-Based Method. Magn. Reson. Med. 2021, 85, 762–776. [Google Scholar] [CrossRef]
- George, D.; Huerta, E. Deep Learning for Real-Time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data. Phys. Lett. B 2018, 778, 64–70. [Google Scholar] [CrossRef]
- Flamary, R. Astronomical Image Reconstruction with Convolutional Neural Networks. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2468–2472. [Google Scholar]
- Lundervold, A.S.; Lundervold, A. An Overview of Deep Learning in Medical Imaging Focusing on MRI. Z. Med. Phys. 2019, 29, 102–127. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, L.G.; Teixeira, F.L.; Liu, C.; Nehorai, A.; Cui, T.J. DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering. IEEE Trans. Antennas Propag. 2018, 67, 1819–1825. [Google Scholar] [CrossRef] [Green Version]
- Meliadò, E.F.; Raaijmakers, A.J.E.; Sbrizzi, A.; Steensma, B.R.; Maspero, M.; Savenije, M.H.F.; Luijten, P.R.; van den Berg, C.A.T. A Deep Learning Method for Image-Based Subject-Specific Local SAR assessment. Magn. Reson. Med. 2020, 83, 695–711. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Mandija, S.; Meliadò, E.F.; Huttinga, N.R.; Luijten, P.R.; van den Berg, C.A. Opening a New Window on MR-Based Electrical Properties Tomography with Deep Learning. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampe, N.; Katscher, U.; Van den Berg, C.A.T.; Tha, K.K.; Mandija, S. Investigating the Challenges and Generalizability of Deep Learning Brain Conductivity Mapping. Phys. Med. Biol. 2020, 65, 135001. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, S.; van den Berg, C.A.T.; Savenije, M.H.F.; Kok, H.P.; de Boer, P.; Stalpers, L.J.A.; Lagendijk, J.J.W.; Crezee, H.; van Lier, A.L.H.M.W. Deep Learning-Based Reconstruction of In Vivo Pelvis Conductivity with a 3D Patch-Based Convolutional Neural Network Trained on Simulated MR Data. Magn. Reson. Med. 2020, 84, 2772–2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijsen, R.; van den Berg, C.; Webb, A.; Remis, R.; Mandija, S. Combining Deep Learning and 3D Contrast Source Inversion in MR-Based Electrical Properties Tomography. NMR Biomed. 2019, e4211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, J.; Öktem, O. Learned Primal-Dual Reconstruction. IEEE Trans. Med. Imag. 2018, 37, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Taviani, V.; Malkiel, I.; Cheng, J.Y.; Tamir, J.I.; Shaikh, J.; Chang, S.T.; Hardy, C.J.; Pauly, J.M.; Vasanawala, S.S. Variable-Density Single-Shot Fast Spin-Echo MRI with Deep Learning Reconstruction by Using Variational Networks. Radiology 2018, 289, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Lønning, K.; Putzky, P.; Sonke, J.J.; Reneman, L.; Caan, M.W.; Welling, M. Recurrent Inference Machines for Reconstructing Heterogeneous MRI Data. Med. Image Anal. 2019, 53, 64–78. [Google Scholar] [CrossRef]
- Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a Variational Network for Reconstruction of Accelerated MRI Data. Magn. Reson. Med. 2018, 79, 3055–3071. [Google Scholar] [CrossRef]
- Knoll, F.; Hammernik, K.; Kobler, E.; Pock, T.; Recht, M.P.; Sodickson, D.K. Assessment of the Generalization of Learned Image Reconstruction and the Potential for Transfer Learning. Magn. Reson. Med. 2019, 81, 116–128. [Google Scholar] [CrossRef]
- Yoon, J.; Gong, E.; Chatnuntawech, I.; Bilgic, B.; Lee, J.; Jung, W.; Ko, J.; Jung, H.; Setsompop, K.; Zaharchuk, G.; et al. Quantitative Susceptibility Mapping Using Deep Neural Network: QSMnet. Neuroimage 2018, 179, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, W.; Bollmann, S.; Lee, J. Overview of Quantitative Susceptibility Mapping Using Deep Learning: Current Status, Challenges and Opportunities. NMR Biomed. 2020, e4292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
H-EPT | SH-EPT | LMT | MDE-EPT | G-EPT | CR-EPT | T-EPT | foIC-EPT | VBIM-EPT | GMT | CSI-EPT | SA-EPT | I-EPT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Differential (order) | ✓(2) | ✓(2) | ✓(2) | ✓(2) | ✓(2) | ✓(2) | ✓(1) | ✓(1) | ✗ | ✗ | ✗ | ✓(3) | ✓(2) |
Integral | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
Local | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ |
Global | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
Direct (backward) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ |
Forward (indirect) | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
H-EPT | SH-EPT | LMT | MDE-EPT | G-EPT | CR-EPT | T-EPT | foIC-EPT | VBIM-EPT | GMT | CSI-EPT | SA-EPT | I-EPT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
term | |||||||||||||
Multi-element array | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
Incident fields | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
Seed Points | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | |
✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | |
✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
H-EPT | SH-EPT | LMT | MDE-EPT | G-EPT | CR-EPT | T-EPT | foIC-EPT | VBIM-EPT | GMT | CSI-EPT | SA-EPT | I-EPT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Simulation | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Phantom | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ |
in vivo | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
Clinical | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leijsen, R.; Brink, W.; van den Berg, C.; Webb, A.; Remis, R. Electrical Properties Tomography: A Methodological Review. Diagnostics 2021, 11, 176. https://doi.org/10.3390/diagnostics11020176
Leijsen R, Brink W, van den Berg C, Webb A, Remis R. Electrical Properties Tomography: A Methodological Review. Diagnostics. 2021; 11(2):176. https://doi.org/10.3390/diagnostics11020176
Chicago/Turabian StyleLeijsen, Reijer, Wyger Brink, Cornelis van den Berg, Andrew Webb, and Rob Remis. 2021. "Electrical Properties Tomography: A Methodological Review" Diagnostics 11, no. 2: 176. https://doi.org/10.3390/diagnostics11020176
APA StyleLeijsen, R., Brink, W., van den Berg, C., Webb, A., & Remis, R. (2021). Electrical Properties Tomography: A Methodological Review. Diagnostics, 11(2), 176. https://doi.org/10.3390/diagnostics11020176