3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation of SG-Derived Epithelial Cells
2.2. Magnetic-Assisted Cell Sorting (MACS) of EpCAMpos Cells
2.3. Formation of Multicellular 3D SG Spheroids
2.4. Cell Pre-Labeling with Fluorescent Dyes
2.5. Cell Viability Assay
2.6. Spheroid Morphology Analysis
2.7. Immunofluorescent Staining
2.8. qPCR
2.9. Statistical Analysis
3. Results
3.1. Fibroblasts Enhance Structural Integrity in Short-Term SG-Derived Spheroid Cultures
3.2. Optimal Progenitor Marker Expression in Spheroids with 67–75% mSMG-Derived Epithelial Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Phan, T.V.; Oo, Y.; Ahmed, K.; Rodboon, T.; Rosa, V.; Yodmuang, S.; Ferreira, J.N. Salivary gland regeneration: From salivary gland stem cells to three-dimensional bioprinting. SLAS Technol. 2023, 28, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, C.; Cinat, D.; Serrano Martinez, P.; Bruin, A.L.J.; Baanstra, M.; Brouwer, U.; Del Angel Zuivre, C.; Schepers, H.; van Os, R.; Barazzuol, L.; et al. The Hippo signaling pathway effector YAP promotes salivary gland regeneration after injury. Sci. Signal 2021, 14, eabk0599. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.P.; Kim, Y.; Hur, S.S.; Byeon, H.K.; Ban, M.J.; Shim, J.W.; Park, J.H.; Hwang, Y. PIEZO1 activation may serve as an early tissue biomarker for the prediction of irradiation-induced salivary gland dysfunction. Biochem. Biophys. Res. Commun. 2024, 727, 150291. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, G.M.; Pringle, S.; Bootsma, H.; Kroese, F.G.M. Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 2021, 17, 333–348. [Google Scholar] [CrossRef]
- Anicin, A.; Jerman, A.; Urbancic, J.; Pusnik, L. Sialendoscopy-Based Analysis of Submandibular Duct Papillae with a Proposal for Classification. J. Clin. Med. 2023, 12, 1129. [Google Scholar] [CrossRef]
- Alamri, A.M.; Liu, X.; Blancato, J.K.; Haddad, B.R.; Wang, W.; Zhong, X.; Choudhary, S.; Krawczyk, E.; Kallakury, B.V.; Davidson, B.J.; et al. Expanding primary cells from mucoepidermoid and other salivary gland neoplasms for genetic and chemosensitivity testing. Dis. Models Mech. 2018, 11, dmm031716. [Google Scholar] [CrossRef]
- Chen, C.; Choudhury, S.; Wangsa, D.; Lescott, C.J.; Wilkins, D.J.; Sripadhan, P.; Liu, X.; Wangsa, D.; Ried, T.; Moskaluk, C.; et al. A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Sci. Rep. 2017, 7, 11410. [Google Scholar] [CrossRef]
- Von Der Mark, K.; Gauss, V.; Von Der Mark, H.; Müller, P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977, 267, 531–532. [Google Scholar] [CrossRef]
- Sun, M.; Liu, A.; Yang, X.; Gong, J.; Yu, M.; Yao, X.; Wang, H.; He, Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? Adv. NanoBiomed Res. 2021, 1, 2000066. [Google Scholar] [CrossRef]
- Septiana, W.L.; Pawitan, J.A. Potential Use of Organoids in Regenerative Medicine. Tissue Eng. Regen. Med. 2024, 21, 1125–1139. [Google Scholar] [CrossRef]
- Kang, Y.; Na, J.; Karima, G.; Amirthalingam, S.; Hwang, N.S.; Kim, H.D. Mesenchymal Stem Cell Spheroids: A Promising Tool for Vascularized Tissue Regeneration. Tissue Eng. Regen. Med. 2024, 21, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Maimets, M.; Rocchi, C.; Bron, R.; Pringle, S.; Kuipers, J.; Giepmans, B.N.; Vries, R.G.; Clevers, H.; de Haan, G.; van Os, R.; et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Rep. 2016, 6, 150–162. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Kim, D.; Tak, K.Y.; Hwang, S.; Kim, J.; Sim, N.S.; Cho, J.M.; Choi, D.; Ji, Y.; Hur, J.K.; et al. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat. Commun. 2022, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, H.; Hori, Y.; Yamasaki, M.; Harada, H.; Sekine, K.; Kato, S.; Itoh, N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 2000, 277, 643–649. [Google Scholar] [CrossRef]
- Kim, J.; Eom, M.R.; Ji Jeong, E.; Choi, J.S.; Kwon, S.K. Multiple stimulation with spheroids comprising salivary gland and adipose-derived stem cells enhances regeneration of radiation-damaged salivary glands. J. Ind. Eng. Chem. 2022, 107, 493–504. [Google Scholar] [CrossRef]
- Tai, C.; Xie, Z.; Li, Y.; Feng, Y.; Xie, Y.; Yang, H.; Wang, L.; Wang, B. Human skin dermis-derived fibroblasts are a kind of functional mesenchymal stromal cells: Judgements from surface markers, biological characteristics, to therapeutic efficacy. Cell Biosci. 2022, 12, 105. [Google Scholar] [CrossRef]
- Franchi-Mendes, T.; Lopes, N.; Brito, C. Heterotypic Tumor Spheroids in Agitation-Based Cultures: A Scaffold-Free Cell Model That Sustains Long-Term Survival of Endothelial Cells. Front. Bioeng. Biotechnol. 2021, 9, 649949. [Google Scholar] [CrossRef]
- Lee, H.H.; Lee, H.C.; Chou, C.C.; Hur, S.S.; Osterday, K.; del Alamo, J.C.; Lasheras, J.C.; Chien, S. Shp2 plays a crucial role in cell structural orientation and force polarity in response to matrix rigidity. Proc. Natl. Acad. Sci. USA 2013, 110, 2840–2845. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Systrems Man Cybern. 1979, 62–66. [Google Scholar] [CrossRef]
- Nitta, M.; Kume, T.; Nogawa, H. FGF alters epithelial competence for EGF at the initiation of branching morphogenesis of mouse submandibular gland. Dev. Dyn. 2009, 238, 315–323. [Google Scholar] [CrossRef]
- Wiseman, B.S.; Werb, Z. Stromal effects on mammary gland development and breast cancer. Science 2002, 296, 1046–1049. [Google Scholar] [CrossRef] [PubMed]
- Kouros-Mehr, H.; Werb, Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev. Dyn. 2006, 235, 3404–3412. [Google Scholar] [CrossRef] [PubMed]
- Sumbal, J.; Sumbalova Koledova, Z. Fibroblast-Epithelium Co-culture Methods Using Epithelial Organoids and Cell Line–Derived Spheroids. In 3D Cell Culture; Koledova, Z.S., Ed.; Springer Protocols: New York, NY, USA, 2024; Volume 2764. [Google Scholar]
- Zhang, Y.; Yan, S.; Mei, Z.; Zhang, H.; Ding, C.; Zhang, S.; Wei, S. Exploring the Cocktail Factor Approach to Generate Salivary Gland Progenitors through Co-Culture Techniques. Tissue Eng. Regen. Med. 2024, 21, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Sumbal, J.; Koledova, Z. FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 2019, 146, dev185306. [Google Scholar] [CrossRef]
- Manninen, A. Epithelial polarity--generating and integrating signals from the ECM with integrins. Exp. Cell Res. 2015, 334, 337–349. [Google Scholar] [CrossRef]
- Radisky, D.; Muschler, J.; Bissell, M.J. Order and Disorder: The Role of Extracellular Matrix in Epithelial Cancer. Cancer Investig. 2002, 20, 139–153. [Google Scholar] [CrossRef]
- Sittipo, P.; Anggradita, L.D.; Kim, H.; Lee, C.; Hwang, N.S.; Lee, Y.K.; Hwang, Y. Cell Surface Modification-Mediated Primary Intestinal Epithelial Cell Culture Platforms for Assessing Host-Microbiota Interactions. Biomater. Res. 2024, 28, 0004. [Google Scholar] [CrossRef]
- Hosseini, Z.F.; Nelson, D.A.; Moskwa, N.; Sfakis, L.M.; Castracane, J.; Larsen, M. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J. Cell Sci. 2018, 131, jcs208728. [Google Scholar] [CrossRef]
- Ligaba, S.B.; Khurana, A.; Graham, G.; Krawczyk, E.; Jablonski, S.; Petricoin, E.F.; Glazer, R.I.; Upadhyay, G. Multifactorial analysis of conditional reprogramming of human keratinocytes. PLoS ONE 2015, 10, e0116755. [Google Scholar] [CrossRef]
- Maherali, N.; Hochedlinger, K. Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 2009, 19, 1718–1723. [Google Scholar] [CrossRef]
- Tan, F.; Qian, C.; Tang, K.; Abd-Allah, S.M.; Jing, N. Inhibition of transforming growth factor beta (TGF-beta) signaling can substitute for Oct4 protein in reprogramming and maintain pluripotency. J. Biol. Chem. 2015, 290, 4500–4511. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Min, S.; Kim, D.; Kim, H.; Roh, S. A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules 2021, 26, 2658. [Google Scholar] [CrossRef] [PubMed]
- Day, M.L.; Foster, R.G.; Day, K.C.; Zhao, X.; Humphrey, P.; Swanson, P.; Postigo, A.A.; Zhang, S.H.; Dean, D.C. Cell anchorage regulates apoptosis through the retinoblastoma tumor suppressor/E2F pathway. J. Biol. Chem. 1997, 272, 8125–8128. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, K.; Suzuki, H.I. TGF-beta Signaling in Cellular Senescence and Aging-Related Pathology. Int. J. Mol. Sci. 2019, 20, 5002. [Google Scholar] [CrossRef]
- Ramesh, S.; Wildey, G.M.; Howe, P.H. Transforming growth factor β (TGFβ)-induced apoptosis: The rise & fall of Bim. Cell Cycle 2009, 8, 11–17. [Google Scholar] [CrossRef]
- Dolivo, D.M.; Larson, S.A.; Dominko, T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev. 2017, 38, 49–58. [Google Scholar] [CrossRef]
Primer | Sequences (5’–3’) |
---|---|
Gapdh_Forward | TTGATGGCAACAATCTCCAC |
Gapdh_Reverse | CGTCCCGTAGACAAAATGGT |
E-cad_Forward | CACCTGGAGAGAGGCCATGT |
E-cad_Reverse | TGGGAAACATGAGCAGCTCT |
Krt5_Forward | CTGCTGGAGGGCGAGGAATGC |
Krt5_Reverse | CCACCGAGGCCACCGCCATA |
Krt7_Forward | CGCCGCTGAGTGTGGACATCG |
Krt7_Reverse | CTGGCTGCTCTTGGCTGACTTCTG |
Krt14_Forward | AGCGGCAAGAGTGAGATTTCT |
Krt14_Reverse | CCTCCAGGTTATTCTCCAGGG |
Krt18_Forward | AATCAGGGACGCTGAGACCACA |
Krt18_Reverse | GCTCCATCTGTGCCTTGTATCG |
p21_Forward | CCTGGTGATGTCCGACCTG |
p21_Reverse | CCATGAGCGCATCGCAATC |
Bax_Forward | TGAAGACAGGGGCCTTTTTG |
Bax_Reverse | AATTCGCCGGAGACACTCG |
Serpine1_Forward | CCTCTTCCACAAGTCTGATGGC |
Serpine1_Reverse | GCAGTTCCACAACGTCATACTCG |
p53_Forward | ACCGCCGACCTATCCTTACC |
p53_Reverse | TCTTCTGTACGGCGGTCTCTC |
Cc3_Forward | GGAGTCTGACTGGAAAGCCGAA |
Cc3_Reverse | CTTCTGGCAAGCCATCTCCTCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.T.P.; Kim, J.H.; Son, J.; Hur, S.S.; Lee, M.; Byeon, H.K.; Kim, J.-Y.; Ban, M.J.; Kim, J.H.; Lee, M.R.; et al. 3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function. Life 2025, 15, 607. https://doi.org/10.3390/life15040607
Nguyen LTP, Kim JH, Son J, Hur SS, Lee M, Byeon HK, Kim J-Y, Ban MJ, Kim JH, Lee MR, et al. 3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function. Life. 2025; 15(4):607. https://doi.org/10.3390/life15040607
Chicago/Turabian StyleNguyen, Lan Thi Phuong, Joo Hyun Kim, Jiwon Son, Sung Sik Hur, Minyong Lee, Hyung Kwon Byeon, Jin-Young Kim, Myung Jin Ban, Joo Hyun Kim, Man Ryul Lee, and et al. 2025. "3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function" Life 15, no. 4: 607. https://doi.org/10.3390/life15040607
APA StyleNguyen, L. T. P., Kim, J. H., Son, J., Hur, S. S., Lee, M., Byeon, H. K., Kim, J.-Y., Ban, M. J., Kim, J. H., Lee, M. R., Park, J. H., & Hwang, Y. (2025). 3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function. Life, 15(4), 607. https://doi.org/10.3390/life15040607