Bidah Pomegranate Landrace: Chemical Composition, Antioxidant, Antibacterial, and Anticancer Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material Collection
2.3. Explants and Media Preparation
2.4. Phytochemical Analysis
2.4.1. Extraction of Phytochemicals
GC/MS Analysis
Total Phenol Content Determination
Total Flavonoid Content Determination
Total Tannin Content Determination
2.5. Total Carbohydrate Content Estimation
2.6. Antioxidant Capacity
2.6.1. Diphenyl-2-picryl-hydrazyl (DPPH) Assay
2.6.2. Total Antioxidant Activity (TAC) Determination
2.6.3. Ferric Reducing Ability of the Plasma (FRAP) Assay
2.7. Microbial Susceptibility Testing of Bidah Pomegranate Extract
2.8. Anti-Proliferative Assay
2.9. Data Analysis
3. Results
3.1. Phytochemicals of Bidah Pomegranate
3.2. Antioxidant Activity of Bidah Pomegranate
3.3. Antimicrobial and Anticancer Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Facciola, S. Cornucopia: A Source Book of Edible Plants; Kampong Publications: Vista, CA, USA, 1990; Available online: https://worldveg.tind.io/record/15629/ (accessed on 15 March 2025).
- Pagliarulo, C.; De Vito, V.; Picariello, G.; Colicchio, R.; Pastore, G.; Salvatore, P.; Volpe, M.G. Inhibitory effect of pomegranate (Punica granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli. Food Chem. 2016, 190, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Lima, V.; Silva, A.S.; Vilarinho, F.; Castilho, M.C.; Khwaldia, K.; Ramos, F. Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends Food Sci. Technol. 2019, 86, 68–84. [Google Scholar] [CrossRef]
- Maphetu, N.; Unuofin, J.O.; Masuku, N.P.; Olisah, C.; Lebelo, S.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother. 2022, 153, 113256. [Google Scholar] [CrossRef]
- Howell, A.B.; D’Souza, D.H. The pomegranate: Effects on bacteria and viruses that influence human health. Evid. Based Complement. Altern. Med. 2013, 2013, 606212. [Google Scholar] [CrossRef]
- Moradnia, M.; Mohammadkhani, N.; Azizi, B.; Mohammadi, M.; Ebrahimpour, S.; Tabatabaei-Malazy, O.; Mirsadeghi, S.; Ale-Ebrahim, M. The power of Punica granatum: A natural remedy for oxidative stress and inflammation; A narrative review. J. Ethnopharmacol. 2024, 330, 118243. [Google Scholar] [CrossRef]
- Patil, P.G.; Jamma, S.M.; Singh, N.; Bohra, A.; Parashuram, S.; Injal, A.S.; Gargade, V.A.; Chakranarayan, M.G.; Salutgi, U.D.; Dhinesh Babu, K. Assessment of genetic diversity and population structure in pomegranate (Punica granatum L.) using hypervariable SSR markers. Physiol. Mol. Biol. Plants 2020, 26, 1249–1261. [Google Scholar] [CrossRef]
- Saparbekova, A.A.; Kantureyeva, G.O.; Kudasova, D.E.; Konarbayeva, Z.K.; Latif, A.S. Potential of phenolic compounds from pomegranate (Punica granatum L.) by-product with significant antioxidant and therapeutic effects: A narrative review. Saudi J. Biol. Sci. 2023, 30, 103553. [Google Scholar] [CrossRef]
- Khadivi, A.; Rezagholi, M.; Shams, M. Phytochemical properties and bioactive compounds of pomegranate (Punica granatum L.). J. Hortic. Sci. Biotechnol. 2024, 99, 639–652. [Google Scholar] [CrossRef]
- Celiksoy, V.; Heard, C.M. Antimicrobial potential of pomegranate extracts. In Pomegranate; Intechopen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Kupnik, K.; Primožič, M.; Vasić, K.; Knez, Ž.; Leitgeb, M. A Comprehensive Study of the Antibacterial Activity of Bioactive Juice and Extracts from Pomegranate (Punica granatum L.) Peels and Seeds. Plants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Esmaeli, M.; Dehabadi, M.D.; Ghanbari, A. Anticancer effects of pomegranate extract on breast cancer cell lines: A systematic review of the literature. Discov. Med. 2025, 2, 42. [Google Scholar] [CrossRef]
- Usha, T.; Middha, S.K.; Sidhalinghamurthy, K.R. Pomegranate Peel and Its Anticancer Activity: A Mechanism-Based Review. In Plant-Derived Bioactives: Chemistry and Mode of Action; Swamy, M.K., Ed.; Springer: Singapore, 2020; pp. 223–250. [Google Scholar]
- Omari Alzahrani, F.; Dguimi, H.M.; Alshaharni, M.O.; Albalawi, D.; Zaoui, S. Employing plant DNA barcodes for pomegranate species identification in Al-Baha Region, Saudi Arabia. J. Umm Al-Qura Univ. Appl. Sci. 2024, 10, 136–144. [Google Scholar] [CrossRef]
- Melese, A.; Dobo, B.; Mikru, A. Antibacterial activities of Calpurnia aurea and Ocimum lamiifolium extracts against selected gram positive and gram-negative bacteria. Ethiop. J. Sci. Technol. 2019, 12, 203–220. [Google Scholar] [CrossRef]
- Setiadhi, R.; Sufiawati, I.; Zakiawati, D.; Nurâ, N.; Hidayat, W.; Firman, D.R. Evaluation of antibacterial activity and acute toxicity of pomegranate (Punica granatum L.) seed ethanolic extracts in swiss webster mice. J. Dentomaxillofacial Sci. 2017, 2, 119–123. [Google Scholar] [CrossRef]
- Akshada Amit, K.; Rajendra Chandrashekar, D.; Chandrakant Shripal, M. Natural Products in Drug Discovery. In Pharmacognosy; Shagufta, P., Areej, A.-T., Eds.; IntechOpen: Rijeka, Croatia, 2019; p. 14. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Good Agricultural and Collection Practices [GACP] for Medicinal Plants; World Health Organization: Geneva, Switzerland, 2003; Available online: https://www.who.int/publications/i/item/9241546271 (accessed on 15 March 2025).
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Ordoñez, A.A.L.; Gomez, J.D.; Vattuone, M.A.; lsla, M.I. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Chandran, K.C.; Indira, G. Quantitative estimation of total phenolic, flavonoids, tannin and chlorophyll content of leaves of Strobilanthes kunthiana (Neelakurinji). J. Med. Plants Stud. 2016, 4, 282–286. [Google Scholar]
- Salih, A.M.; Qahtan, A.A.; Al-Qurainy, F. Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia. Metabolites 2023, 13, 443. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107, 296–304. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Tyagi, S.; Gupta, V.; Jain, P.; Kanai, T.; Tripathi, R. FT-IR, GC-MS, and HPLC profiling of the bioactive constituents of ethyl acetate fraction of Eichhornia crassipes as a hepatoprotectant. Lett. Appl. NanoBioSci 2022, 12, 96. [Google Scholar]
- Zekeya, N.; Chacha, M.; Shahada, F.; Kidukuli, A. Analysis of phytochemical composition of Bersama abyssinica by gas chromatography–mass spectrometry. J. Pharmacogn. Phytochem. 2014, 3, 246–252. [Google Scholar]
- Sangeetha, J.; Vijayalakshmi, K. Determination of bioactive components of ethyl acetate fraction of Punica granatum rind extract. Int. J. Pharm. Sci. Drug Res. 2011, 3, 116–122. [Google Scholar] [CrossRef]
- Saha, S.; Ghosh, A.; Acharyya, S.; Bhattacharya, M. Metabolites of Albizia inhibit in vitro growth of phosphate solubilizing microbial consortia isolated from tea garden soil of Darjeeling hills, India. Biodiversitas J. Biol. Divers. 2022, 23. [Google Scholar] [CrossRef]
- Ghosh, A.; Majumder, S.; Saha, S.; Sarkar, S.; Bhattacharya, M. Gas Chromatography-Mass Spectrometry profiling, and evaluation of antioxidant and antibacterial activity of Albizia spp. Nusant. Biosci. 2021, 13. [Google Scholar] [CrossRef]
- Kushwaha, P.; Alok, S.; Dwivedi, L. The GC-MS analysis of methanolic extract of Chlorophytum borivilianum and compounds’ activities validation at standard databases. South Asian J. Exp. Biol. 2021, 11, 768–774. [Google Scholar] [CrossRef]
- Kabir, A.K.; Pijush Dutta, P.D.; Anwar, M. Biological evaluation of some acylated derivatives of D-mannose. Pak. J. Biol. Sci. 2004, 7, 1730–1734. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Y.; Zhang, P.; Miao, M.; Zhang, T.; Jiang, B. D-Mannose: Properties, production, and applications: An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 773–785. [Google Scholar] [CrossRef]
- Bojke, A.; Tkaczuk, C.; Bauer, M.; Kamysz, W.; Gołębiowski, M. Application of HS-SPME-GC-MS for the analysis of aldehydes produced by different insect species and their antifungal activity. J. Microbiol. Methods 2020, 169, 105835. [Google Scholar] [CrossRef]
- Aziz, M.A.; Khan, A.H.; Adnan, M.; Izatullah, I. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan. J. Ethnopharmacol. 2017, 198, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Sudha, T.; Chidambarampillai, S.; Mohan, V. GC-MS analysis of bioactive components of aerial parts of Kirganelia reticulata Poir (Euphorbiaceae). J. Curr. Chem. Pharm. Sci. 2013, 3, 113–122. [Google Scholar]
- Natarajan, P.; Singh, S.; Balamurugan, K. Gas chromatography-mass spectrometry (GC-MS) analysis of bio active compounds presents in Oeophylla smaragdina. Res. J. Pharm. Technol. 2019, 12, 2736–2741. [Google Scholar] [CrossRef]
- Ferdosi, M.F.; Javaid, A.; Khan, I.H. Phytochemical profile of n-hexane flower extract of Cassia fistula L. Bangladesh J. Bot. 2022, 51, 393–399. [Google Scholar] [CrossRef]
- Amudha, P.; Jayalakshmi, M.; Pushpabharathi, N.; Vanitha, V. Identification of bioactive components in Enhalus acoroides seagrass extract by gas chromatography-mass spectrometry. Asian J. Pharm. Clin. Res. 2018, 11, 313–315. [Google Scholar]
- Fatwati, K.; Amin, A.; Indriyani, L.; Ladju, R.; Hamrun, N. Gc–Ms Analysis and in Silico Approaches to Stichopus Hermanii as Anti-Inflammatory Through Pkc-Β Inhibition. Results Chem. 2025, 14, 102086. [Google Scholar] [CrossRef]
- Manivannan, P.; Muralitharan, G.; Balaji, N.P. Prediction aided in vitro analysis of octa-decanoic acid from Cyanobacterium Lyngbya sp. as a proapoptotic factor in eliciting anti-inflammatory properties. Bioinformation 2017, 13, 301. [Google Scholar] [CrossRef]
- Osuntokun, O.; Ige, O.; Idowu, T.; Gamberini, M.C. Bio-activity and Spectral Analysis of Gas Chromatography/Mass Spectroscopy (GCMS) Profile of Crude Spondiasmonbin Extracts. J. Anal. Biochem. 2018, 1–12. [Google Scholar]
- Uka, E.; Eghianrunwa, Q.A.; Akwo, V.D. GC-MS analysis of bioactive compounds in ethanol leaves extract of sphenocentrum jollyanum and their biological activities. Int. J. Sci. Res. Eng. Manag. 2022, 6. [Google Scholar] [CrossRef]
- Awonyemi, O.; Abegunde, M.; Olabiran, T. Analysis of bioactive compounds from Raphia taedigera using gas chromatography-mass spectrometry. Eur. Chem. Commun. 2020, 2, 933–944. [Google Scholar]
- Sánchez-Burgos, J.; Ramírez-Mares, M.; Gallegos-Infante, J.; González-Laredo, R.; Moreno-Jiménez, M.; Cháirez-Ramírez, M.; Medina-Torres, L.; Rocha-Guzmán, N. Isolation of lupeol from white oak leaves and its anti-inflammatory activity. Ind. Crops Prod. 2015, 77, 827–832. [Google Scholar] [CrossRef]
- Kumari, A.; Kakkar, P. Lupeol protects against acetaminophen-induced oxidative stress and cell death in rat primary hepatocytes. Food Chem. Toxicol. 2012, 50, 1781–1789. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, Y.; He, W.; Peng, Y.; Qiu, Z. A novel mechanism of hepatocellular carcinoma cell apoptosis induced by lupeol via Brain-Derived Neurotrophic Factor Inhibition and Glycogen Synthase Kinase 3 beta reactivation. Eur. J. Pharmacol. 2015, 762, 55–62. [Google Scholar] [CrossRef]
- Tyagi, T.; Agarwal, M. GC-MS analysis of invasive aquatic weed, Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. Int. J. Curr. Pharm. Res. 2017, 9, 111. [Google Scholar] [CrossRef]
- Ododo, M.M.; Choudhury, M.K.; Dekebo, A.H. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus 2016, 5, 1210. [Google Scholar] [CrossRef]
- Tolba, S.S.; Mohammed, H.S.; Ghareeb, M.; Mohamed, A.E.-S. Antidiabetic Activity and GC-MS Analysis of n-Hexane Leaf Extract of Codiaeum variegatum (Euphorbiaceae). Azhar Int. J. Pharm. Med. Sci. 2024, 5, 128–140. [Google Scholar] [CrossRef]
- Fathi, M.; Ghane, M.; Pishkar, L. Phytochemical composition, antibacterial, and antibiofilm activity of Malva sylvestris against human pathogenic bacteria. Jundishapur J. Nat. Pharm. Prod. 2022, 17, 114164. [Google Scholar] [CrossRef]
- Shokrzadeh, M.; Azadbakht, M.; Ahangar, N.; Hashemi, A.; Saravi, S.S. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Pharmacogn. Mag. 2010, 6, 176. [Google Scholar] [CrossRef]
- Mérillon, J.-M.; Riviere, C. Natural Antimicrobial Agents; Springer: Berlin/Heidelberg, Germany, 2018; Volume 19. [Google Scholar]
- Acquaviva, R.; Malfa, G.A.; Loizzo, M.R.; Xiao, J.; Bianchi, S.; Tundis, R. Advances on natural abietane, labdane and clerodane diterpenes as anti-cancer agents: Sources and mechanisms of action. Molecules 2022, 27, 4791. [Google Scholar] [CrossRef]
- Patel, F.; Modi, N.R. Estimation of total phenolic content in selected varieties of Ocimum species grown in different environmental condition. J. Pharmacogn. Phytochem. 2018, 7, 144–148. [Google Scholar]
- Zengin, G.; Ferrante, C.; Gnapi, D.E.; Sinan, K.I.; Orlando, G.; Recinella, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Chiavaroli, A. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L). Food Res. Int. 2019, 125, 108610. [Google Scholar] [CrossRef] [PubMed]
- Pirzadeh, M.; Caporaso, N.; Rauf, A.; Shariati, M.A.; Yessimbekov, Z.; Khan, M.U.; Imran, M.; Mubarak, M.S. Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 982–999. [Google Scholar] [CrossRef]
- Kohno, H.; Suzuki, R.; Yasui, Y.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 2004, 95, 481–486. [Google Scholar] [CrossRef]
- González-Molina, E.; Moreno, D.A.; García-Viguera, C. A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food Chem. 2009, 115, 1364–1372. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.; Yu, G.; Pu, J.; Tian, K.; Tang, X.; Du, Y.; Wu, H.; Hu, J.; Luo, X. Comparative analysis of the phenolic contents and antioxidant activities of different parts of two pomegranate (Punica granatum L.) Cultivars: ‘Tunisia’ and ‘Qingpi’. Front. Plant Sci. 2023, 14, 1265018. [Google Scholar] [CrossRef]
- Olchowik-Grabarek, E.; Sekowski, S.; Mierzwinska, I.; Zukowska, I.; Abdulladjanova, N.; Shlyonsky, V.; Zamaraeva, M. Cell Type-Specific Anti-and Pro-Oxidative Effects of Punica granatum L. Ellagitannins. Membranes 2024, 14, 218. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Imeh, U.; Khokhar, S. Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. J. Agric. Food Chem. 2002, 50, 6301–6306. [Google Scholar] [CrossRef]
- Olugbami, J.; Gbadegesin, M.; Odunola, O. In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. Afr. J. Med. Med. Sci. 2014, 43, 101. [Google Scholar]
- Castro, A.H.F.; Braga, K.d.Q.; Sousa, F.M.d.; Coimbra, M.C.; Chagas, R.C.R. Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Rev. Ciênc. Agron. 2016, 47, 143–151. [Google Scholar] [CrossRef]
- Salih, A.M.; Al-Qurainy, F.; Khan, S.; Tarroum, M.; Nadeem, M.; Shaikhaldein, H.O.; Alabdallah, N.M.; Alansi, S.; Alshameri, A. Mass propagation of Juniperus procera Hoechst. Ex Endl. From seedling and screening of bioactive compounds in shoot and callus extract. BMC Plant Biol. 2021, 21, 192. [Google Scholar] [CrossRef]
- Mahood, H.E.; Sarropoulou, V.; Tzatzani, T.-T. Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: Influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. Bioresour. Bioprocess. 2022, 9, 100. [Google Scholar] [CrossRef]
- Cong, L.; Yue, R.; Wang, H.; Liu, J.; Zhai, R.; Yang, J.; Wu, M.; Si, M.; Zhang, H.; Yang, C.; et al. 2,4-D-induced parthenocarpy in pear is mediated by enhancement of GA(4) biosynthesis. Physiol Plant 2019, 166, 812–820. [Google Scholar] [CrossRef]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Rasha, E.; Alkhulaifi, M.M.; AlOthman, M.; Khalid, I.; Doaa, E.; Alaa, K.; Awad, M.A.; Abdalla, M. Effects of zinc oxide nanoparticles synthesized using Aspergillus niger on Carbapenem-Resistant Klebsiella pneumonia in vitro and in vivo. Front. Cell. Infect. Microbiol. 2021, 11, 748739. [Google Scholar] [CrossRef]
- Dahham, S.S.; Ali, M.N.; Tabassum, H.; Khan, M. Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am. Eurasian J. Agric. Environ. Sci 2010, 9, 273–281. [Google Scholar]
- Liu, K.; Zhang, X.; Xie, L.; Deng, M.; Chen, H.; Song, J.; Long, J.; Li, X.; Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 2021, 164, 105373. [Google Scholar] [CrossRef]
- Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. Oxid. Med. Cell. Longev. 2015, 2015, 938475. [Google Scholar] [CrossRef]
- Stevens-Barrón, J.C.; Wall-Medrano, A.; Álvarez-Parrilla, E.; Olivas-Armendáriz, I.; Astiazaran-García, H.; Robles-Zepeda, R.E.; De la Rosa, L.A. Synergistic interactions between tocol and phenolic extracts from different tree nut species against human cancer cell lines. Molecules 2022, 27, 3154. [Google Scholar] [CrossRef]
Shoot Compounds | RT (min) | MW (g/mol) | Area % | Activity | Callus Compounds | RT (min) | MW (g/mol) | Area % | Activity |
---|---|---|---|---|---|---|---|---|---|
4,4-Dimethyl-cyclohex-2-en-1-ol | 7.399 | 126 | 1.47 | N/A | 9-Oxabicyclo[3.3.1]nonan-2-one | 10.197 | 156 | 0.49 | treating neurodegenerative [28] |
4-sec-Butoxy-2-butanone | 9.510 | 144 | 1.13 | N/A | 4H-Pyran-4-one | 11.806 | 144 | 6.40 | immunomodulatory, Antitumor, sarcoidosis, antioxidant, antibacterial [29,30] |
1-Heptanol, 2-propyl | 10.193 | 158 | 0.54 | Antimicrobial [31,32] | 7-Ethyl-4-decen-6-one | 18.436 | 182 | 1.78 | |
Levomenthol | 12.483 | 156 | 6.08 | Antipruritic, antitussive and antispasmodic drug [33] | d-Mannose | 20.800 | 180 | 15.42 | immunostimulatory, anti tumor and antibacterial activity [34,35] |
2-Decanone | 15.133 | 184 | 0.54 | L-Glucose | 24.489 | 180 | 9.20 | N/A | |
Undecanal | 16.962 | 170 | 2.09 | Antifungal [36] | l-Gala-l-ido-octonic lactone | 24.715 | 238 | 17.58 | Antibacterial. |
1-Octanol | 20.714 | 158 | 0.63 | N/A | Estra-1,3,5(10)-trien-17β-ol | 29.044 | 256 | 0.657 | N/A |
Propanoic acid | 21.218 | 200 | 1.54 | Hexadecanoic acid, methyl ester | 30.445 | 270 | 1.55 | Anti microbial Antioxidant and nematicides, [37,38,39] | |
1-Hexadecanol | 27.786 | 242 | 0.69 | Antioxdant [40,41] | n-Hexadecanoic acid | 31.167 | 256 | 4.09 | [39] |
1-Dodecanol | 29.940 | 228 | 0.93 | N/A | d-Gala-l-ido-octonic amide | 32.358 | 255 | 0.47 | N/A |
Tridecanoic acid | 30.466 | 228 | 3.40 | N/A | 7-Methyl-Z-tetradecen-1-ol acetate | 33.625 | 268 | 0.46 | N/A |
7-Hexadecenal | 33.988 | 238 | 4.03 | N/A | 9-Octadecenoic acid, | 33.768 | 282 | 1.00 | Cancer preventive and antiinflammatory [42,43] |
Neoisolongifolene-8-ol | 35.588 | 220 | 7.24 | N/A | 12-Methyl-E,E-2,13-octadecadien-1-ol | 34.481 | 280 | 3.68 | Preventative effect against cardiovascular diseases [44] |
9-Octadecenamide | 39.043 | 281 | 33.18 | Antimicrobial, [39] | trans-13-Octadecenoic acid | 34.940 | 282 | 0.62 | Anti-inflammatory, dermatitigenic, insecticides and flavour [45,46] |
Lupeol | 41.886 | 426 | 12.56 | antioxidant,anti-topoisomerase andantitumor [39,47,48,49] | Hexadecanoic acid | 40.750 | 330 | 24.44 | Antimicrobial [50] |
β-Sitosterol | 44.858 | 414 | 19.18 | Anticbacterial [51] | 6,9,12,15-Docosatetraenoic acid, methyl ester | 44.134 | 346 | 4.749 | Antimicrobial and antibiofilm [52,53] |
(2R,3R,4aR,5S,8aS)-2-Hydroxy-4a,5-dimethyl-3-(prop-1-en-2-yl)octahydronaphthalen-1(2H)-one | 47.006 | 236 | 4.67 | Antiinflammatory [42] | Octadecanoic acid | 44.632 | 358 | 6.88 | N/A |
Linolenic acid | 46.999 | 352 | 0.44 | N/A |
Shoot Compounds | Molecular Formula | Secondary Metabolites | Callus Compounds | Molecular Formula | Secondary Metabolites |
---|---|---|---|---|---|
4,4-Dimethyl-cyclohex-2-en-1-ol | C8H14O | Alicyclic alcohol | 9-Oxabicyclo[3.3.1]nonan-2-one | C8H12O3 | bicyclic ether |
4-sec-Butoxy-2-butanone | C8H16O2 | Ketone | 4H-Pyran-4-one | C6H8O4 | Pyranone |
1-Heptanol, 2-propyl | C10H22O | Branched alcohol | 7-Ethyl-4-decen-6-one | C12H22O | ketone |
Levomenthol | C10H20O | Monoterpenoid | d-Mannose | C6H12O6 | Aldose |
2-Decanone | C12H24O | Ketone | L-Glucose | C6H12O6 | Aldose |
Undecanal | C11H22O | Aliphatic aldehyde | l-Gala-l-ido-octonic lactone | C8H14O8 | carbohydrate derivative |
1-Octanol | C10H22O | Aliphatic alcohol | Estra-1,3,5(10)-trien-17β-ol | C18H24O | estrogen |
Propanoic acid | C12H24O2 | Carboxylic acid | Hexadecanoic acid, methyl ester | C17H34O2 | Fatty acid |
1-Hexadecanol | C16H34O | Fatty alcohol | n-Hexadecanoic acid | C16H32O2 | saturated fatty acid |
1-Dodecanol | C15H32O | Fatty alcohol | d-Gala-l-ido-octonic amide | C8H17NO8 | A carbohydrate derivative |
Tridecanoic acid | C14H28O2 | saturated fatty acid. | 7-Methyl-Z-tetradecen-1-ol acetate | C17H32O2 | lipids |
7-Hexadecenal | C16H30O | Unsaturated aldehyde | 9-Octadecenoic acid, | C18H34O2 | monounsaturated fatty acid |
Neoisolongifolene-8-ol | C15H24O | Cyclic alcohol | 12-Methyl-E,E-2,13-octadecadien-1-ol | C19H36O | Unsaturated alcohol |
9-Octadecenamide | C18H35NO | Unsaturated fatty acid amide | trans-13-Octadecenoic acid | C18H34O2 | trans-fatty acid. |
Lupeol | C30H50O | Triterpenoid | Hexadecanoic acid | C19H38O4 | Fatty acid |
β-Sitosterol | C29H50O | phytosterol | 6,9,12,15-Docosatetraenoic acid, methyl ester | C23H38O2 | polyunsaturated fatty acid ester |
(2R,3R,4aR,5S,8aS)-2-Hydroxy-4a,5-dimethyl-3-(prop-1-en-2-yl)octahydronaphthalen-1(2H)-one | C15H24O2 | sesquiterpenoid | Octadecanoic acid | C21H42O4 | Saturated fatty acid |
Linolenic acid | C21H36O4 | Fatty acid |
Pomegranate | Shoot Extract | Callus Extract | Control (CAZ 30 µg) | |
---|---|---|---|---|
Bacteria | ||||
S. aureus | 20 ± 1.0 a | 15 ± 0.7 a | 0 | |
E. coli | 8 ± 0.4 b | 10 ± 0.5 b | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, A.M.; Alattas, N.M.; Alsubaie, Q.D.; Anifowose, S.O. Bidah Pomegranate Landrace: Chemical Composition, Antioxidant, Antibacterial, and Anticancer Activity. Life 2025, 15, 489. https://doi.org/10.3390/life15030489
Salih AM, Alattas NM, Alsubaie QD, Anifowose SO. Bidah Pomegranate Landrace: Chemical Composition, Antioxidant, Antibacterial, and Anticancer Activity. Life. 2025; 15(3):489. https://doi.org/10.3390/life15030489
Chicago/Turabian StyleSalih, Abdalrhaman M., Nada M. Alattas, Qasi D. Alsubaie, and Saheed O. Anifowose. 2025. "Bidah Pomegranate Landrace: Chemical Composition, Antioxidant, Antibacterial, and Anticancer Activity" Life 15, no. 3: 489. https://doi.org/10.3390/life15030489
APA StyleSalih, A. M., Alattas, N. M., Alsubaie, Q. D., & Anifowose, S. O. (2025). Bidah Pomegranate Landrace: Chemical Composition, Antioxidant, Antibacterial, and Anticancer Activity. Life, 15(3), 489. https://doi.org/10.3390/life15030489