Unraveling the Genome Diversity of Leishmania Parasites Using Next-Generation DNA Sequencing Strategies
Abstract
1. Introduction
2. Onset and Progress of Leishmania Genomics: From Sanger to NGS
3. The Impact of Unique Features of Leishmania Genomes on the Application of NGS Strategies
4. Characterizing the Genome Diversity of Parasites from the Leishmania (Leishmania) Subgenus
4.1. The L. donovani/infantum Species Complex
Study | Main Species * | Region * | Isolates | NGS Platform | Reference |
---|---|---|---|---|---|
Downing et al., 2011 | L. donovani | Indian Subcontinent | 17 | Roche’s 454 Illumina | [13] |
Downing et al., 2012 | L. donovani | Indian Subcontinent | 33 | Illumina | [47] |
Imamura et al., 2016 | L. donovani | Indian Subcontinent | 204 | Illumina | [43] |
Valdivia et al., 2017 | L. amazonesis L. infantum | Southeastern Brazil | 5 | Illumina | [51] |
S L Figueiredo et al., 2019 | L. braziliensis | Northeastern Brazil | 10 | Illumina | [52] |
Franssen et al., 2020 | L. donovani L. infatum | Worldwide | 151 | Illumina | [41] |
Patino et al., 2020 | L. braziliensis | Bolivia, Brazil, and Colombia | 21 | Illumina | [53] |
Patino et al., 2020 | L. panamensis | Colombia and Panama | 22 | Illumina | [54] |
Salloum et al., 2020 | L. tropica | Asia, Africa and the Middle East | 18 | Illumina | [55] |
Van den Broeck et al., 2020 | L.braziliensis L. peruviana | Peruvian Andes and Amazon Basin | 67 | Illumina | [11] |
Llanes et al., 2022 | L. panamensis | Colombia and Panama | 43 | Illumina | [39] |
Hadermann et al., 2023 | L. aethiopica | Ethiopia | 20 | Illumina | [44] |
Heeren et al., 2024 | L. braziliensis | Amazonian and Atlantic Forests | 257 | Illumina | [45] |
Talimi et al., 2024 | L. tropica | Morocco | 14 | Illumina | [56] |
Gonzalez-Garcia et al., 2025 | L. braziliensis | Colombia | 13 | Illumina | [57] |
Gonzalez-Garcia et al., 2025 | L. braziliensis L. guyanensis L. peruviana L. panamensis | Central and South America | 205 | Illumina, ONT | [46] |
4.2. Other L. (Leishmania) Species Complexes
5. Genome Diversity of Leishmania (Viannia) Parasites
5.1. The L. braziliensis/peruviana Complex
5.2. The L. panamensis/guyanensis Complex
5.3. Integrating the Main L. (Viannia) Species Complexes
6. Towards an Enhanced Characterization of Population Structure and Mode of Reproduction
7. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AmB | Amphotericin B |
CL | Cutaneous leishmaniasis |
CNV | Copy number variation |
DAPC | Discriminant analysis of principal components |
DDT | Dichlorodiphenyltrichloroethane |
EM | Expectation-Maximization |
IBD | Isolation by distance |
LD | Linkage disequilibrium |
LOH | Loss of heterozygosity |
MAPK | Mitogen-activated protein kinase |
MLEE | Multilocus enzyme electrophoresis |
MLMT | Multilocus microsatellite typing |
MLST | Multilocus sequence typing |
NGS | Next-generation sequencing |
MCL | Mucocutaneous leishmaniasis |
PCE | Predominant clonal evolution |
ONT | Oxford Nanopore Technologies |
PCA | Principal component analysis |
SNP | Single-nucleotide polymorphism |
VL | Visceral leishmaniasis |
References
- Espinosa, O.A.; Serrano, M.G.; Camargo, E.P.; Teixeira, M.M.G.; Shaw, J.J. An Appraisal of the Taxonomy and Nomenclature of Trypanosomatids Presently Classified as Leishmania and Endotrypanum. Parasitology 2018, 145, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Jariyapan, N.; Daroontum, T.; Jaiwong, K.; Chanmol, W.; Intakhan, N.; Sor-Suwan, S.; Siriyasatien, P.; Somboon, P.; Bates, M.D.; Bates, P.A. Leishmania (Mundinia) orientalis N. Sp. (Trypanosomatidae), a Parasite from Thailand Responsible for Localised Cutaneous Leishmaniasis. Parasit. Vectors 2018, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Calvillo, S.; Vizuet-De-Rueda, J.C.; Florencio-Martínez, L.E.; Manning-Cela, R.G.; Figueroa-Angulo, E.E. Gene Expression in Trypanosomatid Parasites. J. Biomed. Biotechnol. 2010, 2010, 525241. [Google Scholar] [CrossRef]
- Rogers, M.B.; Hilley, J.D.; Dickens, N.J.; Wilkes, J.; Bates, P.A.; Depledge, D.P.; Harris, D.; Her, Y.; Herzyk, P.; Imamura, H.; et al. Chromosome and Gene Copy Number Variation Allow Major Structural Change between Species and Strains of Leishmania. Genome Res. 2011, 21, 2129–2142. [Google Scholar] [CrossRef] [PubMed]
- Sterkers, Y.; Lachaud, L.; Bourgeois, N.; Crobu, L.; Bastien, P.; Pages, M.; Pagès, M. Novel Insights into Genome Plasticity in Eukaryotes: Mosaic Aneuploidy in Leishmania. Mol. Microbiol. 2012, 86, 15–23. [Google Scholar] [CrossRef]
- Dumetz, F.; Imamura, H.; Sanders, M.; Seblova, V.; Myskova, J.; Pescher, P.; Vanaerschot, M.; Meehan, C.J.; Cuypers, B.; De Muylder, G.; et al. Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different in Vitro and in Vivo Environments and Its Impact on Gene Expression. mBio 2017, 8, e00599-17. [Google Scholar] [CrossRef]
- Santi, A.M.M.; Murta, S.M.F. Impact of Genetic Diversity and Genome Plasticity of Leishmania Spp. In Treatment and the Search for Novel Chemotherapeutic Targets. Front. Cell. Infect. Microbiol. 2022, 12, 826287. [Google Scholar] [CrossRef]
- Grünebast, J.; Clos, J. Leishmania: Responding to Environmental Signals and Challenges without Regulated Transcription. Comput. Struct. Biotechnol. J. 2020, 18, 4016–4023. [Google Scholar] [CrossRef]
- Bussotti, G.; Piel, L.; Pescher, P.; Domagalska, M.A.; Rajan, K.S.; Cohen-Chalamish, S.; Doniger, T.; Hiregange, D.-G.; Myler, P.J.; Unger, R.; et al. Genome Instability Drives Epistatic Adaptation in the Human Pathogen Leishmania. Proc. Natl. Acad. Sci. USA 2021, 118, e2113744118. [Google Scholar] [CrossRef]
- Ivens, A.C.; Peacock, C.S.; Worthey, E.A.; Murphy, L.; Aggarwal, G.; Berriman, M.; Sisk, E.; Rajandream, M.-A.; Adlem, E.; Aert, R.; et al. The Genome of the Kinetoplastid Parasite, Leishmania Major. Science 2005, 309, 436–442. [Google Scholar] [CrossRef]
- Van den Broeck, F.; Savill, N.J.; Imamura, H.; Sanders, M.; Maes, I.; Cooper, S.; Mateus, D.; Jara, M.; Adaui, V.; Arevalo, J.; et al. Ecological Divergence and Hybridization of Neotropical Leishmania Parasites. Proc. Natl. Acad. Sci. USA 2020, 117, 25159–25168. [Google Scholar] [CrossRef]
- Schwabl, P.; Boité, M.C.; Bussotti, G.; Jacobs, A.; Andersson, B.; Moreira, O.; Freitas-Mesquita, A.L.; Meyer-Fernandes, J.R.; Telleria, E.L.; Traub-Csekö, Y.; et al. Colonization and Genetic Diversification Processes of Leishmania infantum in the Americas. Commun. Biol. 2021, 4, 139. [Google Scholar] [CrossRef]
- Downing, T.; Imamura, H.; Decuypere, S.; Clark, T.G.; Coombs, G.H.; Cotton, J.A.; Hilley, J.D.; de Doncker, S.; Maes, I.; Mottram, J.C.; et al. Whole Genome Sequencing of Multiple Leishmania donovani clinical Isolates Provides Insights into Population Structure and Mechanisms of Drug Resistance. Genome Res. 2011, 21, 2143–2156. [Google Scholar] [CrossRef] [PubMed]
- Dumetz, F.; Cuypers, B.; Imamura, H.; Zander, D.; D’Haenens, E.; Maes, I.; Domagalska, M.A.; Clos, J.; Dujardin, J.-C.; De Muylder, G. Molecular Preadaptation to Antimony Resistance in Leishmania donovani on the Indian Subcontinent. mSphere 2018, 3, e00548-17. [Google Scholar] [CrossRef] [PubMed]
- Rastrojo, A.; García-Hernández, R.; Vargas, P.; Camacho, E.; Corvo, L.; Imamura, H.; Dujardin, J.-C.; Castanys, S.; Aguado, B.; Gamarro, F.; et al. Genomic and Transcriptomic Alterations in Leishmania donovani Lines Experimentally Resistant to Antileishmanial Drugs. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 246–264. [Google Scholar] [CrossRef] [PubMed]
- Urrea, D.A.; Duitama, J.; Imamura, H.; Álzate, J.F.; Gil, J.; Muñoz, N.; Villa, J.A.; Dujardin, J.-C.; Ramirez-Pineda, J.R.; Triana-Chavez, O. Genomic Analysis of Colombian Leishmania panamensis Strains with Different Level of Virulence. Sci. Rep. 2018, 8, 17336. [Google Scholar] [CrossRef]
- Patino, L.H.; Imamura, H.; Cruz-Saavedra, L.; Pavia, P.; Muskus, C.; Méndez, C.; Dujardin, J.C.; Ramírez, J.D. Major Changes in Chromosomal Somy, Gene Expression and Gene Dosage Driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Sci. Rep. 2019, 9, 9485. [Google Scholar] [CrossRef]
- Restrepo, C.M.; Llanes, A.; Cedeño, E.M.; Chang, J.H.; Álvarez, J.; Ríos, M.; Penagos, H.; Suárez, J.A.; Lleonart, R. Environmental Conditions May Shape the Patterns of Genomic Variations in Leishmania panamensis. Genes 2019, 10, 838. [Google Scholar] [CrossRef]
- Negreira, G.H.; Monsieurs, P.; Imamura, H.; Maes, I.; Kuk, N.; Yagoubat, A.; Van den Broeck, F.; Sterkers, Y.; Dujardin, J.-C.; Domagalska, M.A. High Throughput Single-Cell Genome Sequencing Gives Insights into the Generation and Evolution of Mosaic Aneuploidy in Leishmania donovani. Nucleic Acids Res. 2022, 50, 293–305. [Google Scholar] [CrossRef]
- El-Sayed, N.M.; Myler, P.J.; Blandin, G.; Berriman, M.; Crabtree, J.; Aggarwal, G.; Caler, E.; Renauld, H.; Worthey, E.A.; Hertz-Fowler, C.; et al. Comparative Genomics of Trypanosomatid Parasitic Protozoa. Science 2005, 309, 404–409. [Google Scholar] [CrossRef]
- Berriman, M.; Ghedin, E.; Hertz-Fowler, C.; Blandin, G.; Renauld, H.; Bartholomeu, D.C.; Lennard, N.J.; Caler, E.; Hamlin, N.E.; Haas, B.; et al. The Genome of the African Trypanosome Trypanosoma brucei. Science 2005, 309, 416–422. [Google Scholar] [CrossRef]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef]
- Peacock, C.S.; Seeger, K.; Harris, D.; Murphy, L.; Ruiz, J.C.; Quail, M.A.; Peters, N.; Adlem, E.; Tivey, A.; Aslett, M.; et al. Comparative Genomic Analysis of Three Leishmania Species That Cause Diverse Human Disease. Nat. Genet. 2007, 39, 839–847. [Google Scholar] [CrossRef]
- Real, F.; Vidal, R.O.; Carazzolle, M.F.; Mondego, J.M.C.; Costa, G.G.L.; Herai, R.H.; Würtele, M.; De Carvalho, L.M.; Carmona e Ferreira, R.; Mortara, R.A.; et al. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models. DNA Res. 2013, 20, 567–581. [Google Scholar] [CrossRef]
- Llanes, A.; Restrepo, C.M.; Vecchio, G.D.; Anguizola, F.J.; Lleonart, R.; Del Vecchio, G.; Anguizola, F.J.; Lleonart, R. The Genome of Leishmania panamensis: Insights into Genomics of the L. (Viannia) Subgenus. Sci. Rep. 2015, 5, 8550. [Google Scholar] [CrossRef]
- Coughlan, S.; Taylor, A.S.; Feane, E.; Sanders, M.; Schonian, G.; Cotton, J.A.; Downing, T. Leishmania naiffi and Leishmania guyanensis Reference Genomes Highlight Genome Structure and Gene Evolution in the Viannia Subgenus. R. Soc. Open Sci. 2018, 5, 172212. [Google Scholar] [CrossRef]
- Raymond, F.; Boisvert, S.; Roy, G.; Ritt, J.-F.; Légaré, D.; Isnard, A.; Stanke, M.; Olivier, M.; Tremblay, M.J.; Papadopoulou, B.; et al. Genome Sequencing of the Lizard Parasite Leishmania tarentolae Reveals Loss of Genes Associated to the Intracellular Stage of Human Pathogenic Species. Nucleic Acids Res. 2012, 40, 1131–1147. [Google Scholar] [CrossRef]
- Coughlan, S.; Mulhair, P.; Sanders, M.; Schonian, G.; Cotton, J.A.; Downing, T. The Genome of Leishmania adleri from a Mammalian Host Highlights Chromosome Fission in Sauroleishmania. Sci. Rep. 2017, 7, 43747. [Google Scholar] [CrossRef]
- Butenko, A.; Kostygov, A.Y.; Sádlová, J.; Kleschenko, Y.; Bečvář, T.; Podešvová, L.; Macedo, D.H.; Žihala, D.; Lukeš, J.; Bates, P.A.; et al. Comparative Genomics of Leishmania (Mundinia). BMC Genom. 2019, 20, 726. [Google Scholar] [CrossRef]
- Otto, T.D.; Sanders, M.; Berriman, M.; Newbold, C. Iterative Correction of Reference Nucleotides (iCORN) Using Second Generation Sequencing Technology. Bioinformatics 2010, 26, 1704–1707. [Google Scholar] [CrossRef]
- Hunt, M.; Kikuchi, T.; Sanders, M.; Newbold, C.; Berriman, M.; Otto, T.D. REAPR: A Universal Tool for Genome Assembly Evaluation. Genome Biol. 2013, 14, R47. [Google Scholar] [CrossRef]
- Tsai, I.J.; Otto, T.D.; Berriman, M. Improving Draft Assemblies by Iterative Mapping and Assembly of Short Reads to Eliminate Gaps. Genome Biol. 2010, 11, R41. [Google Scholar] [CrossRef]
- Assefa, S.; Keane, T.M.; Otto, T.D.; Newbold, C.; Berriman, M. ABACAS: Algorithm-Based Automatic Contiguation of Assembled Sequences. Bioinformatics 2009, 25, 1968–1969. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- González-de la Fuente, S.; Peiró-Pastor, R.; Rastrojo, A.; Moreno, J.; Carrasco-Ramiro, F.; Requena, J.M.; Aguado, B. Resequencing of the Leishmania infantum (strain JPCM5) Genome and de Novo Assembly into 36 Contigs. Sci. Rep. 2017, 7, 18050. [Google Scholar] [CrossRef]
- Cotton, J.A.; Van den Broeck, F.; Myler, P.J.; Akopyants, N.S.; Berriman, M.; Beverley, S.M. Hybrid Reference Genome Assemblies for Leishmania (Viannia) braziliensis, a Primary Agent of Mucocutaneous Leishmaniasis. Microbiol. Resour. Announc. 2025, 14, e0131724. [Google Scholar] [CrossRef]
- Fabrega, A.; Ortega, A.C.; Pardo, L.; Restrepo, C.M.; Llanes, A. Improved Assembly of the Leishmania panamensis Strain PSC-1 Genome. Microbiol. Resour. Announc. 2025, 14, e0062725. [Google Scholar] [CrossRef]
- Sterkers, Y.; Lachaud, L.; Crobu, L.; Bastien, P.; Pagès, M. FISH Analysis Reveals Aneuploidy and Continual Generation of Chromosomal Mosaicism in Leishmania major. Cell. Microbiol. 2011, 13, 274–283. [Google Scholar] [CrossRef]
- Llanes, A.; Cruz, G.; Morán, M.; Vega, C.; Pineda, V.J.; Ríos, M.; Penagos, H.; Suárez, J.A.; Saldaña, A.; Lleonart, R.; et al. Genomic Diversity and Genetic Variation of Leishmania panamensis within Its Endemic Range. Infect. Genet. Evol. 2022, 103, 105342. [Google Scholar] [CrossRef]
- Iantorno, S.A.; Durrant, C.; Khan, A.; Sanders, M.J.; Beverley, S.M.; Warren, W.C.; Berriman, M.; Sacks, D.L.; Cotton, J.A.; Grigg, M.E. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage. mBio 2017, 8, e01393-17. [Google Scholar] [CrossRef]
- Franssen, S.U.; Durrant, C.; Stark, O.; Moser, B.; Downing, T.; Imamura, H.; Dujardin, J.-C.; Sanders, M.J.; Mauricio, I.; Miles, M.A.; et al. Global Genome Diversity of the Leishmania donovani Complex. eLife 2020, 9, e51243. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Imamura, H.; Downing, T.; van den Broeck, F.; Sanders, M.J.; Rijal, S.; Sundar, S.; Mannaert, A.; Vanaerschot, M.; Berg, M.; de Muylder, G.; et al. Evolutionary Genomics of Epidemic Visceral Leishmaniasis in the Indian Subcontinent. eLife 2016, 5, e12613. [Google Scholar] [CrossRef]
- Hadermann, A.; Heeren, S.; Maes, I.; Dujardin, J.-C.; Domagalska, M.A.; Van den Broeck, F. Genome Diversity of Leishmania aethiopica. Front. Cell. Infect. Microbiol. 2023, 13, 1147998. [Google Scholar] [CrossRef]
- Heeren, S.; Sanders, M.; Shaw, J.J.; Pinto Brandão-Filho, S.; Côrtes Boité, M.; Motta Cantanhêde, L.; Chourabi, K.; Maes, I.; Llanos-Cuentas, A.; Arevalo, J.; et al. Evolutionary Genomics of Leishmania braziliensis across the Neotropical Realm. Commun. Biol. 2024, 7, 1587. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, L.N.; Rodriguez, M.P.; Parra-Muñoz, M.; Clavijo, A.M.; Levy, L.; Ovalle-Bracho, C.; Colorado, C.; Camargo, C.; Quiceno, E.; Moncada, M.J.; et al. Genetic Diversity and Comparative Genomics across Leishmania (Viannia) Species. Commun. Biol. 2025, 8, 925. [Google Scholar] [CrossRef]
- Downing, T.; Stark, O.; Vanaerschot, M.; Imamura, H.; Sanders, M.; Decuypere, S.; de Doncker, S.; Maes, I.; Rijal, S.; Sundar, S.; et al. Genome-Wide SNP and Microsatellite Variation Illuminate Population-Level Epidemiology in the Leishmania donovani Species Complex. Infect. Genet. Evol. 2012, 12, 149–159. [Google Scholar] [CrossRef]
- Kuhls, K.; Keilonat, L.; Ochsenreither, S.; Schaar, M.; Schweynoch, C.; Presber, W.; Schönian, G. Multilocus Microsatellite Typing (MLMT) Reveals Genetically Isolated Populations between and within the Main Endemic Regions of Visceral Leishmaniasis. Microbes Infect. 2007, 9, 334–343. [Google Scholar] [CrossRef]
- Alam, M.Z.; Kuhls, K.; Schweynoch, C.; Sundar, S.; Rijal, S.; Shamsuzzaman, A.K.M.; Raju, B.V.S.; Salotra, P.; Dujardin, J.-C.; Schönian, G. Multilocus Microsatellite Typing (MLMT) Reveals Genetic Homogeneity of Leishmania donovani Strains in the Indian Subcontinent. Infect. Genet. Evol. 2009, 9, 24–31. [Google Scholar] [CrossRef]
- Bhattarai, N.R.; Dujardin, J.C.; Rijal, S.; De Doncker, S.; Boelaert, M.; Van der Auwera, G. Development and Evaluation of Different PCR-Based Typing Methods for Discrimination of Leishmania donovani Isolates from Nepal. Parasitology 2010, 137, 947–957. [Google Scholar] [CrossRef]
- Valdivia, H.O.; Almeida, L.V.; Roatt, B.M.; Reis-Cunha, J.L.; Pereira, A.A.S.; Gontijo, C.; Fujiwara, R.T.; Reis, A.B.; Sanders, M.J.; Cotton, J.A.; et al. Comparative Genomics of Canine-Isolated Leishmania (Leishmania) amazonensis from an Endemic Focus of Visceral Leishmaniasis in Governador Valadares, Southeastern Brazil. Sci. Rep. 2017, 7, 40804. [Google Scholar] [CrossRef]
- Figueiredo de Sá, B.S.L.; Rezende, A.M.; Melo Neto, O.P.D.; Brito, M.E.F.D.; Brandão Filho, S.P. Identification of Divergent Leishmania (Viannia) braziliensis Ecotypes Derived from a Geographically Restricted Area through Whole Genome Analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007382. [Google Scholar] [CrossRef]
- Patino, L.H.; Muñoz, M.; Cruz-Saavedra, L.; Muskus, C.; Ramírez, J.D. Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Front. Cell. Infect. Microbiol. 2020, 10, 582192. [Google Scholar] [CrossRef]
- Patino, L.H.; Muñoz, M.; Muskus, C.; Méndez, C.; Ramírez, J.D. Intraspecific Genomic Divergence and Minor Structural Variations in Leishmania (Viannia) panamensis. Genes 2020, 11, 252. [Google Scholar] [CrossRef]
- Salloum, T.; Moussa, R.; Rahy, R.; Al Deek, J.; Khalifeh, I.; El Hajj, R.; Hall, N.; Hirt, R.P.; Tokajian, S. Expanded Genome-Wide Comparisons Give Novel Insights into Population Structure and Genetic Heterogeneity of Leishmania tropica Complex. PLoS Negl. Trop. Dis. 2020, 14, e0008684. [Google Scholar] [CrossRef]
- Talimi, H.; Daoui, O.; Bussotti, G.; Mhaidi, I.; Boland, A.; Deleuze, J.-F.; Fissoune, R.; Lemrani, M.; Späth, G.F. A Comparative Genomics Approach Reveals a Local Genetic Signature of Leishmania tropica in Morocco. Microb. Genom. 2024, 10, 001230. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, L.N.; Rodríguez-Guzmán, A.M.; Vargas-León, C.M.; Aponte, S.; Bonilla-Valbuena, L.A.; Matiz-González, J.M.; Clavijo-Vanegas, A.M.; Duarte-Olaya, G.A.; Aguilar-Buitrago, C.; Urrea, D.A.; et al. Genomic Characterization of Leishmania (V.) braziliensis Associated with Antimony Therapeutic Failure and Variable in Vitro Tolerance to Amphotericin B. Sci. Rep. 2025, 15, 12973. [Google Scholar] [CrossRef]
- Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.; Murray, H.W. Failure of Pentavalent Antimony in Visceral Leishmaniasis in India: Report from the Center of the Indian Epidemic. Clin. Infect. Dis. 2000, 31, 1104–1107. [Google Scholar] [CrossRef]
- Sundar, S.; Jha, T.K.; Thakur, C.P.; Bhattacharya, S.K.; Rai, M. Oral Miltefosine for the Treatment of Indian Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2006, 100 (Suppl. 1), S26–S33. [Google Scholar] [CrossRef]
- Bañuls, A.-L.; Hide, M.; Prugnolle, F. Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Adv. Parasitol. 2007, 64, 1–109. [Google Scholar] [CrossRef]
- Tibayrenc, M.; Ayala, F.J. Leishmania and the Model of Predominant Clonal Evolution. Microorganisms 2021, 9, 2409. [Google Scholar] [CrossRef]
- Grünwald, N.J.; Everhart, S.E.; Knaus, B.J.; Kamvar, Z.N. Best Practices for Population Genetic Analyses. Phytopathology 2017, 107, 1000–1010. [Google Scholar] [CrossRef]
- Ferreira, T.R. At the Genetic Crossroads of Leishmania: Emerging Hybrids Reshaping Disease Patterns. PLoS Pathog. 2025, 21, e1013213. [Google Scholar] [CrossRef]
- Rogers, M.B.; Downing, T.; Smith, B.A.; Imamura, H.; Sanders, M.; Svobodova, M.; Volf, P.; Berriman, M.; Cotton, J.A.; Smith, D.F. Genomic Confirmation of Hybridisation and Recent Inbreeding in a Vector-Isolated Leishmania Population. PLoS Genet. 2014, 10, e1004092. [Google Scholar] [CrossRef]
- Akopyants, N.S.S.; Kimblin, N.; Secundino, N.; Patrick, R.; Peters, N.; Lawyer, P.; Dobson, D.E.; Beverley, S.M.; Sacks, D.L. Demonstration of Genetic Exchange during Cyclical Development of Leishmania in the Sand Fly Vector. Science 2009, 324, 265–268. [Google Scholar] [CrossRef]
- Romano, A.; Inbar, E.; Debrabant, A.; Charmoy, M.; Lawyer, P.; Ribeiro-Gomes, F.; Barhoumi, M.; Grigg, M.; Shaik, J.; Dobson, D.; et al. Cross-Species Genetic Exchange between Visceral and Cutaneous Strains of Leishmania in the Sand Fly Vector. Proc. Natl. Acad. Sci. USA 2014, 111, 16808–16813. [Google Scholar] [CrossRef]
- Inbar, E.; Shaik, J.; Iantorno, S.A.; Romano, A.; Nzelu, C.O.; Owens, K.; Sanders, M.J.; Dobson, D.; Cotton, J.A.; Grigg, M.E.; et al. Whole Genome Sequencing of Experimental Hybrids Supports Meiosis-like Sexual Recombination in Leishmania. PLoS Genet. 2019, 15, e1008042. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Inbar, E.; Shaik, J.; Jeffrey, B.M.; Ghosh, K.; Dobson, D.E.; Beverley, S.M.; Sacks, D. Self-Hybridization in Leishmania major. mBio 2022, 13, e0285822. [Google Scholar] [CrossRef]
- Louradour, I.; Ferreira, T.R.; Duge, E.; Karunaweera, N.; Paun, A.; Sacks, D. Stress Conditions Promote Leishmania Hybridization in Vitro Marked by Expression of the Ancestral Gamete Fusogen HAP2 as Revealed by Single-Cell RNA-Seq. eLife 2022, 11, e73488. [Google Scholar] [CrossRef]
- Douanne, N.; Dong, G.; Amin, A.; Bernardo, L.; Blanchette, M.; Langlais, D.; Olivier, M.; Fernandez-Prada, C. Leishmania Parasites Exchange Drug-Resistance Genes through Extracellular Vesicles. Cell Rep. 2022, 40, 111121. [Google Scholar] [CrossRef]
- Puechmaille, S.J. The Program Structure Does Not Reliably Recover the Correct Population Structure When Sampling Is Uneven: Subsampling and New Estimators Alleviate the Problem. Mol. Ecol. Resour. 2016, 16, 608–627. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, And/or Sexual Reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Lawson, D.J.; Hellenthal, G.; Myers, S.; Falush, D. Inference of Population Structure Using Dense Haplotype Data. PLoS Genet. 2012, 8, e1002453. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Janke, A. Gene Flow Analysis Method, the D-Statistic, Is Robust in a Wide Parameter Space. BMC Bioinform. 2018, 19, 10. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanes, A.; Restrepo, C.M.; Lleonart, R. Unraveling the Genome Diversity of Leishmania Parasites Using Next-Generation DNA Sequencing Strategies. Life 2025, 15, 1590. https://doi.org/10.3390/life15101590
Llanes A, Restrepo CM, Lleonart R. Unraveling the Genome Diversity of Leishmania Parasites Using Next-Generation DNA Sequencing Strategies. Life. 2025; 15(10):1590. https://doi.org/10.3390/life15101590
Chicago/Turabian StyleLlanes, Alejandro, Carlos M. Restrepo, and Ricardo Lleonart. 2025. "Unraveling the Genome Diversity of Leishmania Parasites Using Next-Generation DNA Sequencing Strategies" Life 15, no. 10: 1590. https://doi.org/10.3390/life15101590
APA StyleLlanes, A., Restrepo, C. M., & Lleonart, R. (2025). Unraveling the Genome Diversity of Leishmania Parasites Using Next-Generation DNA Sequencing Strategies. Life, 15(10), 1590. https://doi.org/10.3390/life15101590