Spatial and Temporal Adaptations of Lowland Tapirs (Tapirus terrestris) to Environmental and Anthropogenic Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection
2.3. Camera Trap Data Analysis
2.4. Potentially Impacting Factors
2.5. Statistical Analysis
2.5.1. Count Data Analysis
2.5.2. Activity Data Analysis
3. Results
3.1. Trapping Success
3.2. Number of Tapirs
3.3. Activity of Tapirs
4. Discussion
4.1. Tourism
4.2. Settlements
4.3. Cattle
4.4. Habitat
4.5. Period
4.6. Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, M.A.; Böhning-Gaese, K.; Fagan, W.F.; Fryxell, J.M.; Van Moorter, B.; Alberts, S.C.; Ali, A.H.; Allen, A.M.; Attias, N.; Avgar, T.; et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 2018, 359, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vié, J.C.; Hilton-Taylor, C.; Stuart, S.N. The 2008 Review of the IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2009. [Google Scholar]
- Quintana, R.D. Seasonal effects on overlap trophic niche between capybara and livestock, and on throphic niche breadths in a rangeland of Central Entre Rios, Argentina. Mammalia 2003, 67, 33–40. [Google Scholar] [CrossRef]
- Chaikina, N.A.; Ruckstuhl, K.E. The Effect of Cattle Grazing on Native Ungulates: The Good, the Bad, and the Ugly. Rangelands 2006, 28, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Vila, A.R.; Beade, M.S.; Barrios Lamunière, D. Home range and habitat selection of pampas deer. J. Zool. 2008, 276, 95–102. [Google Scholar] [CrossRef]
- Kinnaird, M.F.; O’brien, T.G. Effects of Private-Land Use, Livestock Management, and Human Tolerance on Diversity, Distribution, and Abundance of Large African Mammals. Conserv. Biol. 2012, 26, 1026–1039. [Google Scholar] [CrossRef]
- Higginbottom, K. Wildlife Tourism: Impacts, Management and Planning; Common Ground Publishing Pty Ltd: Champaign, IL, USA, 2004. [Google Scholar]
- Krüger, O. The role of ecotourism in conservation: Panacea or Pandora’s box? Biodivers. Conserv. 2005, 14, 579–600. [Google Scholar] [CrossRef]
- Buckley, R.C.; Morrison, C.; Castley, J.G. Net Effects of Ecotourism on Threatened Species Survival. PLoS ONE 2016, 11, e0147988. [Google Scholar] [CrossRef] [Green Version]
- Oberosler, V.; Groff, C.; Iemma, A.; Pedrini, P.; Rovero, F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 2017, 87, 50–61. [Google Scholar] [CrossRef]
- Ouboter, D.A.; Kadosoe, V.S.; Ouboter, P.E. Impact of ecotourism on abundance, diversity and activity patterns of medium-large terrestrial mammals at Brownsberg Nature Park, Suriname. PLoS ONE 2021, 16, e0250390. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, P.W.; Fleming, P.A. Big city life: Carnivores in urban environments. J. Zool. 2012, 287, 1–23. [Google Scholar] [CrossRef]
- Selier, J.; Slotow, R.; Di Minin, E. Large Mammal Distribution in a Transfrontier Landscape: Trade-offs Between Resource Availability and Human Disturbance. Biotropica 2015, 47, 389–397. [Google Scholar] [CrossRef]
- Di Bitetti, M.S.; Paviolo, A.; Ferrari, C.A.; De Angelo, C.; Di Blanco, Y. Differential responses to hunting in two sympatric species of brocket deer (Mazama americana and M. nana). Biotropica 2008, 40, 636–645. [Google Scholar] [CrossRef]
- Cruz, P.; Iezzi, M.E.; De Angelo, C.; Varela, D.; Di Bitetti, M.S.; Paviolo, A. Effects of human impacts on habitat use, activity patterns and ecological relationships among medium and small felids of the Atlantic Forest. PLoS ONE 2018, 13, e0200806. [Google Scholar] [CrossRef] [Green Version]
- Massara, R.L.; Paschoal, A.M.D.O.; Bailey, L.L.; Doherty, P.F.; Barreto, M.D.F.; Chiarello, A.G. Effect ofhumans and pumas on the temporal activity of ocelots inprotected areas of Atlantic Forest. Mamm. Biol. 2018, 92, 86–93. [Google Scholar] [CrossRef]
- Di Bitetti, M.S.; Iezzi, M.E.; Cruz, P.; Varela, D.; de Angelo, C. Effects of cattle on habitat use and diel activity of large native herbivores in a South American rangeland. J. Nat. Conserv. 2020, 58, 125900. [Google Scholar] [CrossRef]
- Pardo, L.E.; Edwards, W.; Campbell, M.J.; Gómez-Valencia, B.; Clements, G.R.; Laurance, W.F. Effects of oil palmand human presence on activity patterns of terrestrial mammals in the Colombian Llanos. Mamm. Biol. 2021, 101, 775–789. [Google Scholar] [CrossRef]
- Ferreira, G.B.; Newbold, T.; Oliveira, M.J.R.; Pringle, H.; Pinheiro, M.S.; de Pinho, F.F.; Carbone, C.; Rowcliffe, M. Limited temporal response of Cerrado mammals to anthropogenic pressure in areas under distinct levels of protection. J. Zool. 2022, 317, 43–55. [Google Scholar] [CrossRef]
- Nickel, B.A.; Suraci, J.P.; Allen, M.L.; Wilmers, C.C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Conserv. 2020, 241, 108383. [Google Scholar] [CrossRef]
- Li, X.; Hu, W.; Bleisch, W.V.; Li, Q.; Wang, H.; Lu, W.; Sun, J.; Zhang, F.; Ti, B.; Jiang, X. Functional diversity loss and change in nocturnal behavior of mammals under anthropogenic disturbance. Conserv. Biol. 2020, 36, e13839. [Google Scholar] [CrossRef] [PubMed]
- Suraci, J.P.; Gaynor, K.M.; Allen, M.L.; Alexander, P.; Brashares, J.S.; Cendejas-Zarelli, S.; Crooks, K.; Elbroch, L.M.; Forrester, T.; Green, A.M.; et al. Disturbance type and species life history predict mammal responses to humans. Glob. Chang. Biol. 2021, 27, 3718–3731. [Google Scholar] [CrossRef]
- O’Farrill, G.; Galetti, M.; Campos-Arceiz, A. Frugivory and seed dispersal by tapirs: An insight on their ecological role. Integr. Zool. 2013, 8, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Varela, D.; Flesher, K.; Cartes, J.L.; de Bustos, S.; Chalukian, S.; Ayala, G.; Richard-Hansen, C. Tapirus terrestris. The IUCN Red List of Threatened Species. 2019. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0169534705003320 (accessed on 28 April 2021).
- Flesher, K.M.; Medici, E.P. The distribution and conservation status of Tapirus terrestris in the South American Atlantic Forest. Neotrop. Biol. Conserv. 2022, 17, 1–19. [Google Scholar] [CrossRef]
- Burs, K.; Wistuba, R.; Schuchmann, K.-L.; Perazzi, P.R.; Marques, M.I. Response of mammals to ecotourism, cattle farming, and habitat structure in the Northern and Southern Brazilian Pantanal. Mastozool. Neotrop. 2020, 27, 282–297. [Google Scholar] [CrossRef]
- Eaton, D.P.; Keuroghlian, A.; Santos, M.C.A. Citizen scientists help unravel the nature of cattle impacts on native mammals and birds visiting fruiting trees in Brazil’s southern Pantanal. Biol. Conserv. 2017, 208, 29–39. [Google Scholar] [CrossRef]
- Medici, E.P.; Mezzini, S.; Fleming, C.H.; Calabrese, J.M.; Noonan, M.J. Movement ecology of vulnerable lowland tapirs between areas of varying human disturbance. Mov. Ecol. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Lermen, I.S. Efeitos do Risco de Predação na Ocorrência Local e no Padrão de Atividade de Tapirus terrestris no Nordeste do Pantanal, Brasil. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2021. [Google Scholar]
- Oliveira Santos, L.G.R. Ecologia e Conservação de Ungulados Florestais em uma Área do Pantanal. Master’s Thesis, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil, 2009. [Google Scholar]
- Cordeiro, J.L.P.; Fragoso, J.M.V.; Crawshaw, D.; Oliveira, L.F.B. Lowland tapir distribution and habitat loss in South America. PeerJ 2016, 4, e2456. [Google Scholar] [CrossRef] [Green Version]
- Ministério do Meio Ambiente. Available online: www.mma.gov.br/portalbio (accessed on 1 June 2019).
- Padovani, C.R. Conversão da Vegetação Natural do Pantanal para Uso Antrópico de 1976 até 2017 e Projeção para 2050; Comunicado Técnico 109; Embrapa Pantanal: Corumbá, Brazil, 2017. [Google Scholar]
- Thielen, D.; Ramoni-Perazzi, P.; Puche, M.L.; Márquez, M.; Quintero, J.I.; Rojas, W.; Soto-Werschitz, A.; Thielen, K.; Nunes, A.; Libonati, R. The Pantanal under Siege-On the Origin, Dynamics and Forecast of the Megadrought Severely Affecting the Largest Wetland in the World. Water 2021, 13, 3034. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci 1989, 106, 110–127. [Google Scholar]
- Hamilton, S.K.; Sippel, S.J.; Melack, M. Innundation patterns in the Pantanal wetland of South America determined by passive microwave remote sensing. Arch. Hydrobiol. 1996, 137, 1–23. [Google Scholar] [CrossRef]
- Hamilton, S.K. Potential effects of a major navigation project (Paraguay-Parana Hidrovia) on inundation in the Pantanal floodplains. Regul. Rivers Res. Manag. 1999, 15, 289–299. [Google Scholar] [CrossRef]
- Seidl, A.F.; De Silva, J.D.S.V.; Moraes, A.S. Cattle ranching and deforestation in the Brazilian Pantanal. Ecol. Econ. 2001, 36, 413–425. [Google Scholar] [CrossRef]
- Santos, S.A.; Cardoso, E.L.; Silva, R.A.; Pellegrin, A.O. Princípios Básicos para a Produção Sustentável de Bovinos de Corte no Pantanal; Documentos 37; Embrapa Pantanal: Corumbá, Brazil, 2002. [Google Scholar]
- Santos, S.A.; Crispim, S.M.A.; Comastri Filho, J.A.; Cardoso, E.L. Princípios de Agroecologia no Manejo das Pastagens Nativas do Pantanal; Documentos 63; Embrapa Pantanal: Corumbá, Brazil, 2004. [Google Scholar]
- Abreu, U.G.P.; McManus, C.; Santos, S.A. Cattle ranching, conservation and transhumance in the Brazilian Pantanal. Pastoralism 2010, 1, 99–114. [Google Scholar]
- Santos, S.A.; Desbiez, A.L.J.; Crispim, S.M.A.; Comastri Filho, J.A.; Abreu, U.G.P.; Rodela, L.G. Natural and cultivated pastures and their use by cattle. In The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; Pensoft Publisher: Moscow, Russia, 2010. [Google Scholar]
- Alho, C.J.R.; Sabino, J. A conservation agenda for the Pantanal’s biodiversity. Braz. J. Biol. 2011, 71, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Alho, C.J.R.; Silva, J.S.V. Effects of severe floods and droughts on wildlife of the Pantanal wetland (Brazil)—A review. Animals 2012, 2, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Padovani, C.R.; Dacruz, M.L.L.; Padovani, S.L.A.G. Desmatamento do Pantanal Brasileiro para o Ano 2000. IV Simpósio Sobre Recursos Naturais e Sócio-Econômicos do Pantanal; Embrapa Pantanal: Corumbá, Brazil, 2004. [Google Scholar] [CrossRef] [Green Version]
- Bergier, I. Effects of highland land-use over lowlands of the Brazilian Pantanal. Sci. Total Environ. 2013, 463–464, 1060–1066. [Google Scholar] [CrossRef]
- Araujo, A.G.J.; Obregón, G.O.; Sampaio, G.; Monteiro, A.M.V.; da Silva, L.T.; Soriano, B.; Padovani, C.; Rodriguez, D.A.; Maksic, J.; Farias, J.F.S. Relationships between variability in precipitation, river levels, and beef cattle production in the Brazilian Pantanal. Wetlands Ecol. Manag. 2018, 26, 829–848. [Google Scholar] [CrossRef]
- Thielen, D.; Schuchmann, K.-L.; Ramoni-Perazzi, P.; Marquez, M.; Rojas, W.; Quintero, J.I.; Marques, M.I. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS ONE 2020, 15, e0227437. [Google Scholar] [CrossRef] [Green Version]
- Libonati, R.; Belém, L.B.C.; Rodrigues, J.A.; Santos, F.L.M.; Sena, C.A.P.; Pinto, M.M.; Carvalho, I.A. Sistema ALARMES- Alerta da Área Queimada Pantanal, Situação Final de 2020; Laboratório de Aplicações de Satélites Ambientais—UFRJ: Rio de Janeiro, Brazil, 2021. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Leal, K.R.D.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; Baião, C.F.D.P.; Ângulo, E.C.; Almeida, E.K.; et al. Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Front. Water 2021, 3, 639204. [Google Scholar] [CrossRef]
- Taber, A.B.; Chalukian, S.C.; Altrichter, M.; Minkowski, K.; Lizárraga, L.; Sanderson, E.; Rumiz, D.; Ventincinque, E.; Moraes, A.; de Angelo, C.; et al. Range-Wide Status Analysis of Lowland Tapir (Tapirus terrestris) and White-Lipped Peccary (Tayassu pecari): Final Report; Wildlife Conservation Society (WCS): Buenos Aires, Argentina, 2008. [Google Scholar]
- Bodmer, R.E. Responses of ungulates to seasonal inundations in the amazon floodplain. J. Trop. Ecol. 1990, 6, 91–201. [Google Scholar] [CrossRef]
- Padilla, M.; Dowler, R.C. Tapirus terrestris. Mammalian Species. Am. Soc. Mammal. 1994, 481, 1–8. [Google Scholar]
- Medici, E.P. Assessing the Viability of Lowland Tapir Populations in a Fragmented Landscape. Ph.D. Thesis, University of Kent, Canterbury, UK, 2010. [Google Scholar]
- Soto, Q.G. Dieta del Tapir Tapirus terrestris y su Rol como Dispersor de Semillas en el Chaco (Cerro Cortado), Provincia Cordillera, Santa Cruz, Bolivia. Bachelor’s Thesis, Universidad Autonóma Gabriel René Moreno, Santa Cruz, Bolivia, 2002. [Google Scholar]
- Olmos, O. Tapirs as seed dispersers and predators. In Tapirs: Status Survey and Conservation Action Plan; Brooks, D., Bodmer, R., Matola, S., Eds.; IUCN/SSC Tapir Specialist Group (TSG): Gland, Switzerland, 1997; pp. 3–9. [Google Scholar]
- Galetti, M.; Keuroghlian, A.; Hanada, L.; Morato, M.I. Frugivory and seed dispersal by the lowland tapir (Tapirus terrestris) in southeast Brazil. Biotropica 2001, 33, 723–726. [Google Scholar] [CrossRef]
- Tófoli, C.F. Frugivoria e Dispersão de Sementes por Tapirus terrestris (Linnaeus, 1758) na Paisagem Fragmentada do Pontal do Paranapanema, São Paulo. Master’s Thesis, Universidade de São Paulo (USP), São Paulo, Brazil, 2006; p. 89. [Google Scholar]
- Ferreguetti, A.C.; Tomás, W.M.; Bergallo, H.G. Density, occupancy, and detectability of lowland tapirs, Tapirus terrestris, in Vale Natural Reserve, southeastern Brazil. J. Mammal. 2017, 98, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, J.L.P. Estrutura e Heterogeneidade da Paisagem de uma Unidade de Conservação no Nordeste do Pantanal (RPPN SESC Pantanal), Mato Grosso, Brasil: Efeitos Sobre a Distribuição e Densidade de Antas (Tapirus terrestris) e de Cervos-do-Pantanal (Blastocerus dichotomus). Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2004. [Google Scholar]
- Desbiez, A.L.J.; Bodmer, R.E.; Aparecida, S. Wildlife habitat selection and sustainable resources management in a Neotropical wetland. Biodivers. Conserv. 2009, 1, 11–20. [Google Scholar]
- Cañas, L.F.S. Uso do Espaço e Atividade de Tapirus terrestris em uma Área do Pantanal Sul. Master’s Thesis, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil, 2010. [Google Scholar]
- Castro, W.J.P. Probabilidade de Ocupação de Manchas Florestais por Médios e Grandes Mamíferos na Sub-Região da Nhecolândia, Pantanal, Mato Grosso do Sul, Brasil. Master’s Thesis, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil, 2015. [Google Scholar]
- Regolin, A.L.; Oliveira-Santos, L.G.; Ribeiro, M.C.; Bailey, L.L. Habitat quality, not habitat amount, drives mammalian habitat use in the Brazilian Pantanal. Landsc. Ecol. 2021, 36, 2519–2533. [Google Scholar] [CrossRef]
- García, M.J.; Medici, E.P.; Naranjo, E.J.; Novarino, W.; Leonardo, R.S. Distribution, habitat and adaptability of the genus Tapirus. Integr. Zool. 2012, 7, 346–355. [Google Scholar] [CrossRef]
- Licona, M.; McCleery, R.; Collier, B.; Brightsmith, D.J.; Lopez, R. Using ungulate occurrence to evaluate community-based conservation within a biosphere reserve model. Anim. Conserv. 2011, 14, 206–214. [Google Scholar] [CrossRef]
- Cruz, P.; Paviolo, A.; Bó, R.F.; Thompson, J.J.; Di Bitetti, M.S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 2014, 79, 376–383. [Google Scholar] [CrossRef]
- Blake, J.G.; Mosquera, D.; Loiselle, B.A.; Romo, D.; Swing, K. Effects of human traffic on use of trails by mammals in lowland forest of eastern Ecuador. Neotrop. Biodivers. 2017, 3, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Ayala, G.M.C. Monitoreo de Tapirus terrestris en el Izozog (Cerro Cortado) Mediante el Uso de Telemetria como Base para un Plan de Conservación. Master’s Thesis, Universidad Mayor de San Andres, Santa Cruz, Bolivia, 2003; p. 90. [Google Scholar]
- Coelho, I.P.; Oliveira, L.F.B. The importance of natural licks in predicting Lowland Tapir (Tapirus terrestris, Linnaeus 1758) occurrence in the Brazilian Pantanal. Tapir Conserv. 2008, 17, 5–10. [Google Scholar]
- Salas, L.A.; Fuller, T.K. Diet of the lowland tapir (Tapirus terrestris L.) in the Tabaro River valley, Southern Venezuela. Can. J. Zool. 1996, 74, 1444–1451. [Google Scholar] [CrossRef]
- Herrera, J.C.; Taber, A.B.; Wallace, R.B.; Painter, R.L.E. Lowland tapir (Tapirus terrestris) behavioral ecology in a southern Amazonian tropical forest. Vida Silv. Neotrop. 1999, 8, 31–37. [Google Scholar]
- Talamoni, S.A.; Assis, M.A.C. Feeding habit of the Brazilian tapir, Tapirus terrestris (Perissodactyla: Tapiridae) in a vegetation transition zone in southeastern Brazil. Zool. Curitiba Impresso 2009, 26, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Santos, L.G.R.; Machado-Filho, L.C.P.; Tortato, M.A.; Brusius, L. Influence of extrinsic variables on activity and habitat selection of lowland tapirs (Tapirus terrestris) in the coastal sand plain shrub, southern Brazil. Mamm. Biol. 2010, 75, 219–226. [Google Scholar] [CrossRef]
- Desbiez, A.L.J.; Bodmer, R.E.; Tomas, W.M. Mammalian Densities in a Neotropical Wetland Subject to Extreme Climatic Events. Biotropica 2010, 42, 372–378. [Google Scholar] [CrossRef]
- Burs, K. Ecology and Biodiversity of Terrestrial Mammals. Bachelor's Thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 2011. [Google Scholar]
- Adamoli, J.O. Pantanal e suas relações fitogeográficas com os cerrados. Discussão sobre o conceito de “Complexo do Pantanal”. In Anais do 32o Congresso Nacional de Botânica; Sociedade Botânica do Brasil: Teresina, Brazil, 1982; pp. 109–119. [Google Scholar]
- Nunes da Cunha, C.; Junk, W.J.; Leitão-Filho, H.F. Woody vegetation in the Pantanal of Mato Grosso, Brazil: A preliminary typology. Amazoniana 2007, 19, 159–184. [Google Scholar]
- Guerreiro, R.L.; Bergier, I.; McGlue, M.M.; Warren, L.V.; de Abreu, U.G.P.; Abrahão, J.; Assine, M.L. The soda lakes of Nhecolândia: A conservation opportunity for the Pantanal wetlands. PECON 2019, 17, 9–18. [Google Scholar] [CrossRef]
- Goncalves, H.C.; Mercante, M.A.; Santos, E.T. Hydrological cycle. Braz. J. Biol. 2011, 71, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.L.; Costa, M.; Tomas, W.M.; Camilo, A.R. Largescale habitat mapping of the Brazilian Pantanal wetland: A synthetic aperture radar approach. Remote Sens. Environ. 2014, 155, 89–108. [Google Scholar] [CrossRef]
- Beyer, H.L. Hawth’s Analysis Tools for ArcGIS. 2004. Available online: http://www.spatialecology.com/htools (accessed on 1 June 2010).
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Noss, A.J.; Cuellar, R.L.; Barrientos, J. A camera trapping and radio telemetry Study of Lowland Tapir (Tapirus terrestris) in bolivian dry forests. Newsl. IUCN/SSC Tapir Spec. Gr. 2003, 12, 24–32. [Google Scholar]
- Montenegro, O.L. Observaciones sobre la estructura de una población de tapires (Tapirus terrestris) en el sureste de la Amazonía peruana. In Manejo y Conservación de Fauna Silvestre en América Latina; Fang, T., Montenegro, O.L., Bodmer, R.E., Eds.; Instituto de Ecología: La Paz, Bolivia, 1999; pp. 437–442. [Google Scholar]
- Holden, J.; Yanuar, A.; Martyr, D.J. The Asian tapir in Kerinci Seblat National Park, Sumatra: Evidence collected through photo-trapping. Oryx 2003, 37, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Trolle, M.; Noss, A.J.; Cordeiro, J.L.P.; Oliveira, L.F.B. Brazilian Tapir Density in the Pantanal: A Comparison of Systematic Camera-Trapping and Line-Transect Surveys. Biotropica 2008, 40, 211–217. [Google Scholar] [CrossRef]
- Eisenberg, J.F. Introduction. In Tapirs: Status Survey and Conservation Action Plan; Brooks, D.M., Bodmer, R.E., Matola, S., Eds.; IUCN/SSC Tapir Specialist Group (TSG)—IUCN: Gland, Switzerland, 1997; pp. 5–7. [Google Scholar]
- Heckman, C.W. The Pantanal of Poconé; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Grueber, C.E.; Nakagawa, S.; Laws, R.J.; Jamieson, I.G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 2011, 24, 699–711. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. JOSS 2021, 6, 3139. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. (Eds.) An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bartoń K MuMIn: Multi-Model Inference. R Package Version 1.43.17. 2020. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 1 July 2021).
- Rowcliffe M Activity: Animal Activity Statistics. R Package Version 1.3.1. 2021. Available online: https://CRAN.R-project.org/package=activity (accessed on 1 September 2021).
- Rowcliffe, J.M.; Kays, R.; Kranstauber, B.; Carbone, C.; Jansen, P.A. Quantifying levels of animal activity using camera trap data. MME 2014, 5, 1170–1179. [Google Scholar] [CrossRef] [Green Version]
- Ridout, M.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. JABES 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Meredith, M.; Ridout, M. Overview of the Overlap Package. R Project. 2014. Available online: https://cran.r-project.org/web/packages/overlap/vignettes/overlap.pdf (accessed on 30 October 2019).
- Lund, U.; Agostinelli, C. CircStats: Circular Statistics, from “Topics in Circular Statistics”. R Package Version 0.2-6. 2018. Available online: https://CRAN.R-project.org/package=CircStats (accessed on 22 December 2019).
- Sugiura, N. Further analysts of the data by akaikes information criterion and the nite corrections. Commun. Stat. B Simul. Comput. 1978, 7, 13–26. [Google Scholar] [CrossRef]
- Tobler, M.W. The Ecology of the Lowland Tapir in Madre de Dios, Peru: Using New Technologies to Study Large Rainforest Mammals. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2008. [Google Scholar]
- Wallace, R.B.; Ayala, G.; Viscarra, M. Lowland tapir (Tapirus terrestris) distribution, activity patterns and relative abundance in the greater Madidi-Tambopata landscape. Integr. Zool. 2012, 7, 407–419. [Google Scholar] [CrossRef]
- Espinosa, S.; Salvador, J. Hunters’ landscape accessibility and daily activity of ungulates in Yasuní Biosphere Reserve, Ecuador. Therya 2017, 1, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Peral, C.; Landman, M.; Kerley, G.I.H. The inappropriate use of time-to-independence biases estimates of activity patterns of free-ranging mammals derived from camera traps. Ecol. Evol. 2022, 12, e9408. [Google Scholar] [CrossRef] [PubMed]
- Salvador, S.; Clavero, M.; Leite Pitman, R. Large mammal species richness and habitat use in an upper Amazonian forest used for ecotourism. Mamm. Biol. 2011, 76, 115–123. [Google Scholar] [CrossRef]
- Kays, R.; Parsons, A.W.; Baker, M.C.; Kalies, E.L.; Forrester, T.; Costello, R.; Rota, C.T.; Millspaugh, J.J.; McShea, W.J. Does hunting or hiking affect wildlife communities in protected areas? J. Appl. Ecol. 2016, 54, 242–252. [Google Scholar] [CrossRef]
- Higham, J.E.S.; Shelton, E.J. Tourism and wildlife habituation: Reduced population fitness or cessation of impact? Tour. Manag. 2011, 32, 1290–1298. [Google Scholar] [CrossRef]
- Geffroy, B.; Samia, D.S.M.; Bessa, E.; Blumstein, D.T. How Nature-Based Tourism Might Increase Prey Vulnerability to Predators. Tree 2015, 30, 755–765. [Google Scholar] [CrossRef]
- Ferreira, G.B.; Collen, B.; Newbold, T.; Oliveira, M.J.R.; Pinheiro, M.S.; de Pinho, F.F.; Rowcliffe, M.; Carbone, C. Strict protected areas are essential for the conservation of larger and threatened mammals in a priority region of the Brazilian Cerrado. Biol. Conserv. 2020, 251, 108762. [Google Scholar] [CrossRef]
- Campos, B.M. Uso de Habitat e Padrões de Atividade da Anta (Tapirus terrestris) em um dos Maiores Remanescentes de Mata Atlântica do Brasil. Master’s Thesis, Universidade de Minas Gerais, Belo Horizonte, Brazil, 2021. [Google Scholar]
- Pérez Flores, J.; Weissenberger, H.; López-Cen, A.; Calmé, S. Environmental Factors Influencing the Occurrence of Unhealthy Tapirs in the Southern Yucatan Peninsula. Ecohealth 2020, 17, 359–369. [Google Scholar] [CrossRef]
- Rivera, L.; Martinuzzi, S.; Politi, N.; Bardavid, S.; De Bustos, S.; Chalukian, S.; Lizárraga, L.; Radeloff, V.; Pidgeon, A. National parks influence habitat use of lowland tapirs in adjacent private lands in the Southern Yungas of Argentina. Oryx 2021, 55, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.P.; Tomás, W.M.; Ragusa-Netto, J. Estrutura do Sub-Bosque em Manchas Florestais no Pantanal da Nhecolândia, Mato Grosso do Sul; Comunicado Técnico 74; Embrapa Pantanal: Corumbá, Brazil, 2008. [Google Scholar]
- Desbiez, A.L.J.; Santos, S.A.; Alvarez, J.M.; Tomas, W.M. Forage use in domestic cattle (Bos indicus), capybara (Hydrochoerus hydrochaeris) and pampas deer (Ozotoceros bezoarticus) in a seasonal Neotropical wetland. Mamm. Biol. 2011, 76, 351–357. [Google Scholar] [CrossRef]
- Tomas, W.M.; Mourão, G.; Campos, Z.; Salis, S.; Santos, S.A. Intervenções Humanas na Paisagem e Nos Habitats do Pantanal; Embrapa Pantanal: Corumbá, Brazil, 2009. [Google Scholar]
- Alho, C.J.R. Biodiversity of the Pantanal: Response to seasonal flooding regime and to environmental degradation. Braz. J. Biol. 2008, 68, 957–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamede, S.B.; Alho, C.J.R. Response of wild mammals to seasonal shrinking-and-expansion of habitats due to flooding regime of the Pantanal, Brazil. Braz. J. Biol. 2006, 66, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.A. Caracterização dos Recursos Forrageiros Nativos da Sub-Região da Nhecolandia, Pantanal, Mato Grosso do Sul, Brasil. Ph.D. Thesis, Faculdade de Medicina Veterinária em Zootecnia—UNESP, Botucatu, Brazil, 2001. [Google Scholar]
- Desbiez, A.L.J.; Santos, S.A.; Keuroghlian, A.; Bodmer, R.E. Niche Partitioning among White-Lipped Peccaries (Tayassu pecari), Collared Peccaries (Pecari tajacu), and Feral Pigs (Sus scrofa). J. Mammal. 2009, 90, 119–128. [Google Scholar] [CrossRef]
- Foerster, C.R.; Vaughan, C. Home range, habitat use, and activity of Baird’s tapir in Costa Rica. Biotropica 2002, 34, 423–437. [Google Scholar] [CrossRef]
- Naranjo, E.J. Abundancia y uso de hábitat del tapir (Tapirus bairdii) en un bosque tropical húmedo de Costa Rica. Vida Silv. Neotrop. 1995, 4, 20–31. [Google Scholar]
- Naranjo, E.J. Ecology and conservation of Baird’s tapir in Mexico. Trop. Conserv. Sci. 2009, 2, 140–158. [Google Scholar] [CrossRef]
- Terwilliger, V.J. Natural history of Baird’s tapir on Barro Colorado Island, Panamá Canal Zone. Biotropica 1978, 10, 211–220. [Google Scholar] [CrossRef]
- Tobler, M.W.; Carrillo-Percasteguia, S.E.; Powell, G. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J.Trop. Ecol. 2009, 25, 261–270. [Google Scholar] [CrossRef]
- Monette, V.D.; Kelly, M.J.; Buchholz, R. Human disturbance and the activity patterns and temporal overlap of tapirs and jaguars in reserves of NW Belize. Biotropica 2020, 52, 1262–1274. [Google Scholar] [CrossRef]
Model | AIC | ΔAIC | AIC Weight | Log Likelihood | k |
---|---|---|---|---|---|
SESC | |||||
hab + sett + tour + fresh + (1|siteID) + (1|smpID) | 2202.5 | 0 | 0.13 | −1093.24 | 8 |
hab + sett + tour + (1|siteID) + (1|smpID) | 2202.9 | 0.46 | 0.1 | −1094.47 | 7 |
hab + sett + fresh + (1|siteID) + (1|smpID) | 2203 | 0.51 | 0.1 | −1094.49 | 7 |
hab + sett + (1|siteID) + (1|smpID) | 2204.1 | 1.66 | 0.06 | −1096.07 | 6 |
hab + per + sett + tour + fresh + (1|siteID) + (1|smpID) | 2204.2 | 1.75 | 0.05 | −1093.11 | 9 |
catt + hab + sett + tour + fresh + (1|siteID) + (1|smpID) | 2204.5 | 1.99 | 0.05 | −1093.24 | 9 |
FBA | |||||
catt + hab + (1|siteID) + (1|smpID) | 2196.3 | 0 | 0.06 | −1092.16 | 6 |
(1|siteID) + (1|smpID) | 2196.6 | 0.33 | 0.05 | −1094.33 | 4 |
catt + (1|siteID) + (1|smpID) | 2197.3 | 1.01 | 0.03 | −1093.66 | 5 |
catt + hab + per + (1|siteID) + (1|smpID) | 2197.6 | 1.33 | 0.03 | −1091.82 | 7 |
per + (1|siteID) + (1|smpID) | 2197.7 | 1.4 | 0.03 | −1093.86 | 5 |
sett + (1|siteID) + (1|smpID) | 2197.8 | 1.47 | 0.03 | −1093.89 | 5 |
catt + hab + sett + (1|siteID) + (1|smpID) | 2198 | 1.72 | 0.02 | −1092.02 | 7 |
hab + (1|siteID) + (1|smpID) | 2198.1 | 1.83 | 0.02 | −1094.07 | 5 |
catt + hab + tour + (1|siteID) + (1|smpID) | 2198.2 | 1.86 | 0.02 | −1092.09 | 7 |
catt + hab + salt + (1|siteID) + (1|smpID) | 2198.2 | 1.91 | 0.02 | −1092.11 | 7 |
catt + hab + fresh + (1|siteID) + (1|smpID) | 2198.3 | 1.98 | 0.02 | −1092.15 | 7 |
Model | AICc | ΔAICc | AICc Weight | Log Likelihood | k |
---|---|---|---|---|---|
(A) | |||||
SESC | |||||
catt + per + (1|siteID) + (1|smpID) | 262.6 | 0 | 0.26 | −126.19 | 5 |
catt + per + fresh + (1|siteID) + (1|smpID) | 264.4 | 1.79 | 0.11 | −126.05 | 6 |
FBA | |||||
(1|siteID) + (1|smpID) | 230.3 | 0 | 0.07 | −112.11 | 3 |
hab + (1|siteID) + (1|smpID) | 231 | 0.75 | 0.05 | −111.46 | 4 |
catt + (1|siteID) + (1|smpID) | 231.3 | 1 | 0.04 | −111.58 | 4 |
per + (1|siteID) + (1|smpID) | 231.5 | 1.2 | 0.04 | −111.68 | 4 |
hab + per + (1|siteID) + (1|smpID) | 231.9 | 1.59 | 0.03 | −110.85 | 5 |
fresh + (1|siteID) + (1|smpID) | 232.3 | 1.97 | 0.03 | −112.07 | 4 |
(B) | |||||
SESC | |||||
sett + tour + (1|siteID) + (1|smpID) | 384.2 | 0 | 0.09 | −187 | 5 |
(1|siteID) + (1|smpID) | 385.2 | 1.03 | 0.06 | −189.58 | 3 |
catt + sett + tour + (1|siteID) + (1|smpID) | 385.5 | 1.23 | 0.05 | −186.57 | 6 |
sett + tour + fresh + (1|siteID) + (1|smpID) | 385.5 | 1.23 | 0.05 | −186.57 | 6 |
per + sett + tour + (1|siteID) + (1|smpID) | 386 | 1.76 | 0.04 | −186.84 | 6 |
sett + (1|siteID) + (1|smpID) | 386 | 1.82 | 0.04 | −188.95 | 4 |
sett + fresh + (1|siteID) + (1|smpID) | 386.1 | 1.88 | 0.04 | −187.94 | 5 |
FBA | |||||
(1|siteID) + (1|smpID) | 367.3 | 0 | 0.04 | −180.59 | 3 |
catt + hab + (1|siteID) + (1|smpID) | 367.3 | 0.07 | 0.04 | −178.55 | 5 |
catt + (1|siteID) + (1|smpID) | 367.4 | 0.1 | 0.04 | −179.6 | 4 |
catt + sett + (1|siteID) + (1|smpID) | 367.4 | 0.12 | 0.04 | −178.57 | 5 |
catt + hab + sett + (1|siteID) + (1|smpID) | 367.7 | 0.47 | 0.03 | −177.7 | 6 |
tour + (1|siteID) + (1|smpID) | 368 | 0.73 | 0.03 | −179.92 | 4 |
catt + tour + (1|siteID) + (1|smpID) | 368.1 | 0.8 | 0.03 | −178.92 | 5 |
catt + hab + tour + (1|siteID) + (1|smpID) | 368.2 | 0.9 | 0.03 | −177.92 | 6 |
sett + (1|siteID) + (1|smpID) | 368.7 | 1.4 | 0.02 | −180.26 | 4 |
catt + sett + tour + (1|siteID) + (1|smpID) | 368.9 | 1.65 | 0.02 | −178.3 | 6 |
salt + sett + (1|siteID) + (1|smpID) | 369 | 1.76 | 0.02 | −178.35 | 6 |
hab + (1|siteID) + (1|smpID) | 369.3 | 2 | 0.02 | −180.55 | 4 |
(C) | |||||
SESC | |||||
hab + per + (1|siteID) + (1|smpID) | 414.1 | 0 | 0.09 | −201.97 | 5 |
catt + per + (1|siteID) + (1|smpID) | 415.1 | 0.97 | 0.05 | −202.46 | 5 |
per + (1|siteID) + (1|smpID) | 415.1 | 0.97 | 0.05 | −203.49 | 4 |
(1|siteID) + (1|smpID) | 415.4 | 1.3 | 0.05 | −204.68 | 3 |
per + sett + (1|siteID) + (1|smpID) | 415.5 | 1.4 | 0.04 | −202.67 | 5 |
hab + per + fresh + (1|siteID) + (1|smpID) | 415.8 | 1.61 | 0.04 | −201.74 | 6 |
hab + per + sett + (1|siteID) + (1|smpID) | 415.9 | 1.76 | 0.04 | −201.81 | 6 |
catt + hab + per + (1|siteID) + (1|smpID) | 416 | 1.84 | 0.03 | −201.85 | 6 |
FBA | |||||
(1|siteID) + (1|smpID) | 407.9 | 0 | 0.05 | −200.9 | 3 |
per + (1|siteID) + (1|smpID) | 408.4 | 0.48 | 0.04 | −200.12 | 4 |
sett + (1|siteID) + (1|smpID) | 409 | 1.14 | 0.03 | −200.45 | 4 |
tour + (1|siteID) + (1|smpID) | 409.1 | 1.17 | 0.03 | −200.46 | 4 |
catt + hab + (1|siteID) + (1|smpID) | 409.1 | 1.17 | 0.03 | −199.43 | 5 |
catt + (1|siteID) + (1|smpID) | 409.1 | 1.23 | 0.03 | −200.49 | 4 |
catt + hab + per + (1|siteID) + (1|smpID) | 409.2 | 1.28 | 0.02 | −198.44 | 6 |
catt + sett + (1|siteID) + (1|smpID) | 409.3 | 1.39 | 0.02 | −199.53 | 5 |
hab + (1|siteID) + (1|smpID) | 409.6 | 1.67 | 0.02 | −200.71 | 4 |
per + tour + (1|siteID) + (1|smpID) | 409.6 | 1.69 | 0.02 | −199.69 | 5 |
catt + per + (1|siteID) + (1|smpID) | 409.6 | 1.7 | 0.02 | −199.69 | 5 |
catt + hab + sett + (1|siteID) + (1|smpID) | 409.6 | 1.73 | 0.02 | −198.66 | 6 |
fresh + (1|siteID) + (1|smpID) | 409.7 | 1.76 | 0.02 | −200.76 | 4 |
per + sett + (1|siteID) + (1|smpID) | 409.7 | 1.8 | 0.02 | −199.74 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burs, K.; Möcklinghoff, L.; Marques, M.I.; Schuchmann, K.-L. Spatial and Temporal Adaptations of Lowland Tapirs (Tapirus terrestris) to Environmental and Anthropogenic Impacts. Life 2023, 13, 66. https://doi.org/10.3390/life13010066
Burs K, Möcklinghoff L, Marques MI, Schuchmann K-L. Spatial and Temporal Adaptations of Lowland Tapirs (Tapirus terrestris) to Environmental and Anthropogenic Impacts. Life. 2023; 13(1):66. https://doi.org/10.3390/life13010066
Chicago/Turabian StyleBurs, Kathrin, Lydia Möcklinghoff, Marinez Isaac Marques, and Karl-L. Schuchmann. 2023. "Spatial and Temporal Adaptations of Lowland Tapirs (Tapirus terrestris) to Environmental and Anthropogenic Impacts" Life 13, no. 1: 66. https://doi.org/10.3390/life13010066