Abstract
As one of the major sources of global carbon emissions, the manufacturing industry urgently requires green transformation. The utilization of renewable energy in production workshop offers a promising route toward zero-carbon manufacturing. However, renewable energy fluctuations and dynamic workshop events make efficient scheduling increasingly challenging. This paper introduces a low-carbon and energy-efficient dynamic flexible job shop scheduling problem oriented towards renewable energy integration, and develops a multi-agent deep reinforcement learning framework for dynamic and intelligent production scheduling. Inspired by the Proximal Policy Optimization (PPO) algorithm, a routing agent and a sequencing agent are designed for machine assignment and job sequencing, respectively. Customized state representations and reward functions are also designed to enhance learning performance and scheduling efficiency. Simulation results demonstrate that the proposed method achieves superior performance in multi-objective optimization, effectively balancing production efficiency, energy consumption, and carbon emission reduction across various job shop scheduling scenarios.