Strength Characteristics Prediction of the Metal Obtained by Wire Arc Additive Manufacturing
Abstract
1. Introduction
- Design of experiments;
- Execution of the experimental campaign;
- Verification through thermal field simulation and microstructural analysis;
- Correlation of process parameters with mechanical properties.
2. Materials and Methods
2.1. Materials
2.2. Experimental Samples and Examination Methods
- To perform a qualitative regression analysis of the results, a quasi-D-optimal design of experiments was applied for two factors (X1 and X2), along with a second-degree full polynomial regression model (Table 2) [51]. The arc current (X1) and the travel speed (X2) were used as the independent variables. The experiments were conducted using a Parweld XTM 211 D1 power source (Bewdley, England) and a modified Wanhao D12/500 3D printer (China), adapted for metal additive manufacturing.
- Changes in the microstructure of the printed metal during multilayer deposition were examined on metallographic cross-sections taken from the lower (area 1), middle (area 2), and upper (area 3) regions of the test samples (Figure 1b). The samples were prepared according to standard procedures, including grinding, polishing, and etching with a 5% HNO3 solution in C2H5OH. The analysis was conducted using a JENAVERT optical microscope (ZEISS, Oberkochen, Germany) equipped with a TOUCH VIEW digital camera.
- The influence of the deposition process on the microstructure at the sample cut locations was evaluated using a simulation model that solved the thermal problem for the deposited specimen.
- Tensile tests were conducted on the cut samples, and regression equations were derived based on the results obtained.
3. Results and Discussion
3.1. Analysis of Thermal Processes and Microstructure
3.2. Experimental Results of the Tensile Testing
3.3. Determining the Coefficients in Regression Equations
4. Conclusions
- New experimental data were obtained regarding the mechanical properties of metal produced by the WAAM process.
- Simulation modeling and metallographic analysis demonstrated that, after the deposition of the initial 5–6 layers, the process results in a nearly similar microstructure throughout the height of the specimen.
- Significant microstructural changes were observed only in the final (topmost) layer.
- Six new regression equations were derived, allowing the prediction of the mechanical properties of the deposited metal based on the parameters of the WAAM process.
- Thermal simulation modeling confirmed that the heat treatment resulting from the deposition of subsequent layers plays a crucial role in the formation and refinement of the microstructure.
- The resulting microstructure of the deposited layers is predominantly ferrite–pearlite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doumenc, G.; Couturier, L.; Courant, B.; Paillard, P.; Benoit, A.; Gautron, E.; Girault, B.; Pirling, T.; Cabeza, S.; Gloaguen, D. Investigation of microstructure, hardness and residual stresses of wire and arc additive manufactured 6061 aluminium alloy. Materialia 2022, 25, 101520. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, M.; Zeng, X.; Gao, M. Residual stress and tensile anisotropy of hybrid wire arc additive-milling subtractive manufacturing. J. Mater. Process. Technol. 2021, 293, 117077. [Google Scholar] [CrossRef]
- Di, Y.; Zheng, Z.; Pang, S.; Li, J.; Zhong, Y. Dimension Prediction and Microstructure Study of Wire Arc Additive Manufactured 316L Stainless Steel Based on Artificial Neural Network and Finite Element Simulation. Micromachines 2024, 15, 615. [Google Scholar] [CrossRef]
- Denkena, B.; Wichmann, M.; Böß, V.; Malek, T. Technological simulation of the resulting bead geometry in the WAAM process using a machine learning model. Procedia CIRP 2024, 126, 627–632. [Google Scholar] [CrossRef]
- Shakil, S.; Smith, N.; Yoder, S.; Ross, B.; Alvarado, S.; Hadadzadeh, A.; Haghshenas, M. Post fabrication thermomechanical processing of additive manufactured metals: A review. J. Manuf. Proc. 2022, 73, 757–790. [Google Scholar] [CrossRef]
- Savyasachi, N.; Richard, S.; James, J.; Thomas, D.; Ashok, A. A Review on Wire and Arc Additive Manufacturing (WAAM). Int. Res. J. Eng. Technol. 2020, 7, 4985. [Google Scholar]
- Rodrigues, T.A.; Duarte, V.; Miranda, R.M.; Santos, T.G.; Oliveira, J.P. Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM). Materials 2019, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Sahu, V.K.; Biswal, R.; Davis, A.E.; Chen, X.; Williams, S.W.; Prangnell, P.B. β-Grain refinement in WAAM Ti-6Al-4 V processed with inter-pass ultrasonic impact peening. Materialia 2024, 38, 102236. [Google Scholar] [CrossRef]
- Davis, A.E.; Caballero, A.; Prangnell, P.B. Confirmation of rapid-heating β recrystallization in wire-arc additively manufactured Ti-6Al-4V. Materialia 2020, 13, 100857. [Google Scholar] [CrossRef]
- Ermakova, A.; Razavi, N.; Berto, F.; Mehmanparast, A. Uniaxial and multiaxial fatigue behavior of wire arc additively manufactured ER70S-6 low carbon steel components. Int. J. Fatigue 2023, 166, 107283. [Google Scholar] [CrossRef]
- Gornyakov, V.; Ding, J.; Sun, Y.; Williams, S. Understanding and designing post-build rolling for mitigation of residual stress and distortion in wire arc additively manufactured components. Mater. Des. 2022, 213, 110335. [Google Scholar] [CrossRef]
- Kovšca, D.; Starman, B.; Klobčar, D.; Halilovič, M.; Mole, N. Towards an automated framework for the finite element computational modelling of directed energy deposition. Finite Elem. Anal. Des. 2023, 221, 103949. [Google Scholar] [CrossRef]
- Haghighi, A.M.; Ding, J.; Sun, Y.; Wang, C.; Williams, S. Thermo-capillary-gravity bidirectional modelling for evaluation and design of wire-based directed energy deposition additive manufacturing. J. Manuf. Process. 2023, 107, 320–332. [Google Scholar] [CrossRef]
- Huang, C.; Kyvelou, P.; Gardner, L. Stress-strain curves for wire arc additively manufactured steels. Eng. Struct. 2023, 279, 115628. [Google Scholar] [CrossRef]
- Gardner, L. Metal additive manufacturing in structural engineering—Review, advances, opportunities and outlook. Structures 2023, 47, 2178–2193. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xuan, Y.; Guo, X.; Zhou, Q.; Peng, Y.; Wang, K. Investigation on deformation behavior of high strength laminated heterostructured materials of ER120S-G high strength steel and 316L stainless steel fabricated by Wire-arc DED. Mater. Sci. Eng. A 2025, 923, 147750. [Google Scholar] [CrossRef]
- Smismans, T.; Chernovol, N.; Lauwers, B.; Rymenant, P.V.; Talemi, R. Influence of post-heat treatments on fatigue response of low-alloyed carbon-manganese steel material manufactured by Direct Energy Deposition-Arc technique. Mater. Lett. 2021, 302, 130465. [Google Scholar] [CrossRef]
- Voelkel, J.; Kühne, R.; Bartsch, H.; Feldmann, M.; Oster, L.; Sharma, R.; Reisgen, U.; Pinger, T. Fatigue strength of hot-dip galvanized additively manufactured steel. Structures 2023, 58, 105364. [Google Scholar] [CrossRef]
- Bartsch, H.; Kühne, R.; Citarelli, S.; Schaffrath, S.; Feldmann, M. Fatigue analysis of wire arc additive manufactured (3D printed) components with unmilled surface. Structures 2021, 31, 576–589. [Google Scholar] [CrossRef]
- Morales, M.M.; Branco, R.; Tankova, T.; Rebelo, C. Assessment of cyclic deformation behaviour of wire arc additively manufactured carbon steel. Int. J. Fatigue 2024, 184, 108307. [Google Scholar] [CrossRef]
- Kovšca, D.; Starman, B.; Ščetinec, A.; Klobčar, D.; Mole, N. Advanced computational modelling of metallic wire-arc additive manufacturing. In Proceedings of the ESAFORM 2021 24th International Conference on Material Forming, Liege, Belgium, 14–16 April 2021. [Google Scholar] [CrossRef]
- Rani, K.U.; Kumar, R.; Mahapatra, M.M.; Mulik, R.S.; Świerczyńska, A.; Fydrych, D.; Pandey, C. Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses. Materials 2022, 15, 7094. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, A.; Razavi, N.; Crescenzo, R.; Berto, F.; Mehmanparast, A. Fatigue life assessment of wire arc additively manufactured ER100S-1 steel parts. Prog. Addit. Manuf. 2023, 8, 1329–1340. [Google Scholar] [CrossRef]
- Müller, J.; Hensel, J.; Dilger, K. Mechanical properties of wire and arc additively manufactured high-strength steel structures. Weld. World 2022, 66, 395–407. [Google Scholar] [CrossRef]
- Gordon, J.V.; Vinci, R.P.; Hochhalter, J.D.; Rollett, A.D.; Harlow, D.G. Quantification of location-dependence in a large-scale additively manufactured build through experiments and micromechanical modeling. Materialia 2019, 7, 100397. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Peleshenko, S.; Korzhyk, V.; Voitenko, O.; Khaskin, V.; Tkachuk, V. Analysis of the current state of additive welding technologies for manufacturing volume metallic products (review). East.-Eur. J. Enterp. Technol. 2017, 3, 42–52. [Google Scholar] [CrossRef]
- Suryakumar, S.; Karunakaran, K.P.; Bernard, A.; Chandrasekhar, U.; Raghavender, N.; Sharma, D. Weld bead modeling and process optimization in Hybrid Layered Manufacturing. Comput.-Aided Des. 2011, 43, 331–344. [Google Scholar] [CrossRef]
- Nguyen, L.; Buhl, J.; Bambach, M. Multi-bead overlapping models for tool path generation in wire-arc additive manufacturing processes. Procedia Manuf. 2020, 47, 1123–1128. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G.; Gao, H.; Wu, L. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing. Robot. Comput.-Integr. Manuf. 2013, 29, 417–423. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot. Comput.-Integr. Manuf. 2015, 31, 101–110. [Google Scholar] [CrossRef]
- Tongov, M.; Manilova, M.; Zaekova, R.; Georgiev, G. Bead formation during wire and arc additive manufacturing. In Proceedings of the XXI International Congress “Machines. Technologies. Materials”, Borovets, Bulgaria, 6–9 March 2024; Volume I; pp. 37–41, ISSN 2535-0021. [Google Scholar]
- Arora, H.; Singh, R.; Brar, G.S. Thermal and structural modelling of arc welding processes: A literature review. Meas. Control 2019, 52, 955–969. [Google Scholar] [CrossRef]
- Barath Kumar, M.D.; Manikandan, M. Assessment of process, parameters, residual stress mitigation, post treatments and finite element analysis simulations of wire arc additive manufacturing technique. Met. Mater. Int. 2022, 28, 54–111. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zhang, W.; DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017, 126, 360–372. [Google Scholar] [CrossRef]
- Jia, X.; Xua, J.; Liua, Z.; Huanga, S.; Fana, Y.; Sun, Z. A new method to estimate heat source parameters in gas metal arc welding simulation process. Fusion Eng. Des. 2014, 89, 40–48. [Google Scholar] [CrossRef]
- Chen, X.; Shang, X.; Zhou, Z.; Chen, S.G. A Review of the Development Status of Wire Arc Additive Manufacturing Technology. Adv. Mater. Sci. Eng. 2022, 5757484. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Gong, H.; Wu, Y.; Chen, X.; Zhang, X. Study on location-related thermal cycles and microstructure variation of additively manufactured inconel 718. J. Mater. Res. Technol. 2022, 18, 3056–3072. [Google Scholar] [CrossRef]
- Tongov, M.; Petkov, V. A Thermal model for wire arc additive manufacturing. Environ. Technol. Resour. 2023, 3, 262–270. [Google Scholar] [CrossRef]
- Tongov, M.; Anguelov, V. Practice oriented heat source model calibration. Environ. Technol. Resour. 2023, 3, 257–261. [Google Scholar] [CrossRef]
- Tongov, M.; Petkov, V.; Tashev, P. Influence of Heat Input on Formation of Layers in WAAM. C. R. Acad. Bulg. Sci. 2024, 77, 1639–1645. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Santos, T.G.; Miranda, R.M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog. Mater. Sci. 2020, 107, 100590. [Google Scholar] [CrossRef]
- Yildiz, A.S.; Davut, K.; Koc, B.; Yilmaz, O. Wire Arc Additive Manufacturing of High-Strength Low Alloy Steels: Study of Process Parameters and Their Influence on the Bead Geometry and Mechanical Characteristics. Int. J. Adv. Manuf. Technol. 2020, 108, 3391–3404. [Google Scholar] [CrossRef]
- Dinovitzer, M.; Chen, X.; Laliberte, J.; Huang, X.; Frei, H. Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure. Addit. Manuf. 2019, 26, 138–146. [Google Scholar] [CrossRef]
- Suryakumar, S.; Karunakaran, U.P.; Chandrasekhar, U.; Somashekara, M.A. A Study of the Mechanical Properties of Objects Built through Weld-Deposition. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 1138–1147. [Google Scholar] [CrossRef]
- Hackenhaar, W.; Mazzaferro, J.A.E.; Mazzaferro, C.C.P.; Grossi, N.; Campatelli, G. Effects of different WAAM current deposition modes on the mechanical properties of AISI H13 tool steel. Weld. World 2022, 66, 2259–2269. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H. Effects of Heat Accumulation on Microstructure and Mechanical Properties of Ti6Al4V Alloy Deposited by Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 23, 151–160. [Google Scholar] [CrossRef]
- ISO 14341:2010; Welding Consumables—Wire Electrodes and Weld Deposits for Gas Shielded Metal Arc Welding of Non Alloy and Fine Grain Steels—Classification. ISO: Geneva, Switzerland, 2010.
- BS EN 10025-1:2004; Hot Rolled Products of Structural Steels. BSI: London, UK, 2004.
- EN ISO 6892-1:2019; Metallic Materials—Tensile Testing. ISO: Geneva, Switzerland, 2019.
- Vuchkov, I. Optimal Planning of Experimental Research; Tekhnika: Sofia, Bulgaria, 1978; 232p. (In Bulgarian) [Google Scholar]
- Yi, H.; Wang, Q.; Zhang, W.; Cao, H. Wire-arc directed energy deposited Mg-Al alloy assisted by ultrasonic vibration: Improving properties via controlling grain structures. J. Mater. Process. Technol. 2023, 321, 118134. [Google Scholar] [CrossRef]
Material | C | Mn | Si | P | S | Ni | Cr | V | Cu | N |
---|---|---|---|---|---|---|---|---|---|---|
wire | 0.08 | 0.43 | 0.83 | 0.006 | 0.010 | 0.02 | 0.03 | 0.004 | 0.03 | 0.0099 |
Substrate | 0.024 | 1.6 | 0.55 | 0.035 | 0.035 | 0.55 | 0.012 |
No | X1 | X2 | No | X1 | X2 | No | X1 | X2 | No | X1 | X2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 6 | 0.447 | −1 | 11 | −0.447 | 0.447 | 16 | −1 | −1 |
2 | 1 | −1 | 7 | −0.447 | 0.447 | 12 | 0.447 | −0.447 | 17 | 1 | −1 |
3 | −1 | 1 | 8 | −0.447 | −1 | 13 | −0.447 | −0.447 | 18 | 1 | 1 |
4 | −1 | −1 | 9 | 1 | 0.447 | 14 | 0.447 | 0.447 | |||
5 | 0.447 | 1 | 10 | −0.447 | 1 | 15 | −1 | 1 |
Test No | Ia, A | Vs, cm/min | Ua, V | E, GPa | ReH, MPa | ReL, MPa | Rm, MPa | Ag, % | At, % |
---|---|---|---|---|---|---|---|---|---|
1 | 170 | 30 | 19.4 | 198.00 | 375.00 | 347.00 | 466.00 | 14.38 | 22.60 |
2 | 170 | 12 | 19.4 | 203.00 | 353.00 | 341.00 | 477.00 | 12.93 | 19.40 |
3 | 70 | 30 | 15.2 | 242.00 | 380.67 | 369.33 | 489.67 | 13.62 | 22.07 |
4 | 70 | 12 | 15.2 | 211.00 | 372.00 | 345.00 | 488.00 | 15.35 | 24.40 |
5 | 142 | 30 | 17.9 | 203.00 | 353.00 | 343.00 | 460.50 | 14.22 | 22.10 |
6 | 142 | 12 | 17.9 | 205.00 | 344.00 | 321.00 | 464.00 | 13.70 | 20.20 |
7 | 98 | 25 | 16.4 | 196.50 | 355.00 | 348.50 | 462.00 | 14.25 | 22.10 |
8 | 98 | 12 | 16.4 | 210.50 | 356.50 | 342.00 | 470.50 | 15.75 | 25.05 |
9 | 170 | 25 | 19.4 | 202.00 | 352.00 | 337.00 | 466.00 | 13.86 | 22.00 |
10 | 98 | 30 | 16.4 | 205.00 | 366.50 | 355.00 | 474.00 | 14.42 | 22.25 |
11 | 98 | 25 | 16.4 | 195.50 | 370.50 | 363.00 | 486.50 | 13.41 | 21.20 |
12 | 142 | 17 | 17.9 | 170.00 | 336.00 | 326.00 | 452.00 | 15.80 | 22.90 |
13 | 98 | 17 | 16.4 | 206.00 | 359.00 | 349.00 | 473.00 | 13.98 | 21.30 |
14 | 142 | 25 | 17.9 | 195.00 | 335.00 | 328.50 | 452.50 | 13.97 | 22.00 |
15 | 70 | 30 | 15.2 | 210.67 | 400.00 | 393.00 | 512.33 | 9.90 | 15.97 |
16 | 70 | 12 | 15.2 | 205.00 | 370.00 | 357.00 | 492.00 | 14.47 | 24.40 |
17 | 170 | 12 | 19.4 | 183.00 | 352.00 | 342.00 | 478.00 | 14.40 | 20.90 |
18 | 170 | 30 | 19.4 | 202.00 | 361.00 | 348.00 | 466.00 | 14.70 | 23.10 |
Test No | E, GPa | ReH, MPa | ReL, MPa | Rm, MPa | Ag, % | At, % |
---|---|---|---|---|---|---|
C1 | 202 | 377 | 353 | 478 | 15.48 | 22.8 |
C2 | 211 | 364 | 347 | 477 | 13.85 | 19.9 |
C3 | 218 | 392 | 362 | 483 | 13.8 | 20.1 |
C4 | 192 | 347 | 335 | 465 | 12.41 | 18.8 |
C5 | 204 | 352 | 345 | 473 | 11.88 | 17.6 |
C6 | 203 | 357 | 351 | 478 | 14.72 | 22.2 |
Test | ||||||
---|---|---|---|---|---|---|
No | 1 | |||||
1 | 1 | 170 | 30 | 5100 | 28,900 | 900 |
2 | 1 | 170 | 12 | 2040 | 28,900 | 144 |
3 | 1 | 70 | 30 | 2100 | 4900 | 900 |
4 | 1 | 70 | 12 | 840 | 4900 | 144 |
5 | 1 | 142 | 30 | 4260 | 20,164 | 900 |
6 | 1 | 142 | 12 | 1704 | 20,164 | 144 |
7 | 1 | 98 | 25 | 2450 | 9604 | 625 |
8 | 1 | 98 | 12 | 1176 | 9604 | 144 |
9 | 1 | 170 | 25 | 4250 | 28,900 | 625 |
10 | 1 | 98 | 30 | 2940 | 9604 | 900 |
11 | 1 | 98 | 25 | 2450 | 9604 | 625 |
12 | 1 | 142 | 17 | 2414 | 20,164 | 289 |
13 | 1 | 98 | 17 | 1666 | 9604 | 289 |
14 | 1 | 142 | 25 | 3550 | 20,164 | 625 |
15 | 1 | 70 | 30 | 2100 | 4900 | 900 |
16 | 1 | 70 | 12 | 840 | 4900 | 144 |
17 | 1 | 170 | 12 | 2040 | 28,900 | 144 |
18 | 1 | 170 | 30 | 5100 | 28,900 | 900 |
Coefficient | E, GPa | ReH, MPa | ReL, MPa | Rm, MPa | Ag, % | At, % |
---|---|---|---|---|---|---|
298.510 | 500.0496 | 423.578 | 599.320 | 15.497 | 32.064 | |
−0.756 | −1.9517 | −1.618 | −1.984 | 0.064 | −0.013 | |
−5.403 | −3.0916 | 1.521 | −0.540 | −0.435 | −0.790 | |
−0.002 | −0.0027 | −0.012 | −0.012 | 0.002 | 0.004 | |
0.003 | 0.0073 | 0.007 | 0.008 | 0.000 | 0.000 | |
0.146 | 0.1002 | 0.021 | 0.048 | 0.003 | 0.005 |
No | Calculated Parameter | |||
---|---|---|---|---|
1 | Young’s modulus, E | 133.5359 | 77.6 | 1.7208 |
2 | Upper yield point, ReH | 63.5664 | 286.167 | 0.22213 |
3 | Lower yield point, ReL | 71.9466 | 80.9667 | 0.88859 |
4 | Tensile strength, Rm | 58.2805 | 37.4667 | 1.5555 |
5 | Uniform elongation, Ag | 1.12594 | 1.84344 | 0.6108 |
6 | Total strain at break, At | 2.5040 | 3.914667 | 0.6396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tongov, E.; Petkov, V.; Dyakova, V.; Simeonova, T.; Tongov, M. Strength Characteristics Prediction of the Metal Obtained by Wire Arc Additive Manufacturing. Machines 2025, 13, 396. https://doi.org/10.3390/machines13050396
Tongov E, Petkov V, Dyakova V, Simeonova T, Tongov M. Strength Characteristics Prediction of the Metal Obtained by Wire Arc Additive Manufacturing. Machines. 2025; 13(5):396. https://doi.org/10.3390/machines13050396
Chicago/Turabian StyleTongov, Evgeny, Vladimir Petkov, Vanya Dyakova, Tatiana Simeonova, and Manahil Tongov. 2025. "Strength Characteristics Prediction of the Metal Obtained by Wire Arc Additive Manufacturing" Machines 13, no. 5: 396. https://doi.org/10.3390/machines13050396
APA StyleTongov, E., Petkov, V., Dyakova, V., Simeonova, T., & Tongov, M. (2025). Strength Characteristics Prediction of the Metal Obtained by Wire Arc Additive Manufacturing. Machines, 13(5), 396. https://doi.org/10.3390/machines13050396