Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer
Abstract
1. Introduction
2. The State of the Art
3. Methodology
4. Implementation
5. The Use Case
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chryssolouris, G. Manufacturing Systems: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 1-4757-2213-3. [Google Scholar]
- Mitra, A. Fundamentals of Quality Control and Improvement; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1-118-70514-9. [Google Scholar]
- Chryssolouris, G.; Papakostas, N.; Mavrikios, D. A Perspective on Manufacturing Strategy: Produce More with Less. CIRP J. Manuf. Sci. Technol. 2008, 1, 45–52. [Google Scholar] [CrossRef]
- Colledani, M.; Tolio, T.; Fischer, A.; Iung, B.; Lanza, G.; Schmitt, R.; Váncza, J. Design and Management of Manufacturing Systems for Production Quality. CIRP Ann. 2014, 63, 773–796. [Google Scholar] [CrossRef]
- Nikolakis, N.; Catti, P.; Chaloulos, A.; van de Kamp, W.; Coy, M.P.; Alexopoulos, K. A Methodology to Assess Circular Economy Strategies for Sustainable Manufacturing Using Process Eco-Efficiency. J. Clean. Prod. 2024, 445, 141289. [Google Scholar] [CrossRef]
- Raisul Islam, M.; Zakir Hossain Zamil, M.; Eshmam Rayed, M.; Mohsin Kabir, M.; Mridha, M.F.; Nishimura, S.; Shin, J. Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes. IEEE Access 2024, 12, 121449–121479. [Google Scholar] [CrossRef]
- Taatali, A.; Sadaoui, S.E.; Louar, M.A.; Mahiddini, B. On-Machine Dimensional Inspection: Machine Vision-Based Approach. Int. J. Adv. Manuf. Technol. 2024, 131, 393–407. [Google Scholar] [CrossRef]
- Khan, A.; Mineo, C.; Dobie, G.; Macleod, C.; Pierce, G. Vision Guided Robotic Inspection for Parts in Manufacturing and Remanufacturing Industry. J. Remanufactur. 2021, 11, 49–70. [Google Scholar] [CrossRef]
- Sioma, A. 3D Imaging Methods in Quality Inspection Systems. SPIE 2019, 11176, 111760L. [Google Scholar]
- Rezaei-Malek, M.; Mohammadi, M.; Dantan, J.-Y.; Siadat, A.; Tavakkoli-Moghaddam, R. A Review on Optimisation of Part Quality Inspection Planning in a Multi-Stage Manufacturing System. Int. J. Prod. Res. 2019, 57, 4880–4897. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect Inspection Technologies for Additive Manufacturing. Int. J. Extrem. Manuf. 2021, 3, 022002. [Google Scholar] [CrossRef]
- Verna, E.; Genta, G.; Galetto, M.; Franceschini, F. Planning Offline Inspection Strategies in Low-Volume Manufacturing Processes. Qual. Eng. 2020, 32, 705–720. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Wang, X.V.; Wang, L.; Gao, L. A Review on Recent Advances in Vision-Based Defect Recognition towards Industrial Intelligence. J. Manuf. Syst. 2022, 62, 753–766. [Google Scholar] [CrossRef]
- Neogi, N.; Mohanta, D.K.; Dutta, P.K. Review of Vision-Based Steel Surface Inspection Systems. J. Image Video Proc. 2014, 2014, 50. [Google Scholar] [CrossRef]
- Park, M.; Jeong, J. Design and Implementation of Machine Vision-Based Quality Inspection System in Mask Manufacturing Process. Sustainability 2022, 14, 6009. [Google Scholar] [CrossRef]
- Nascimento, R.; Martins, I.; Dutra, T.A.; Moreira, L. Computer Vision Based Quality Control for Additive Manufacturing Parts. Int. J. Adv. Manuf. Technol. 2023, 124, 3241–3256. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Konz, N. Computer Vision Techniques in Manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 105–117. [Google Scholar] [CrossRef]
- Swojak, N.; Wieczorowski, M.; Jakubowicz, M. Assessment of Selected Metrological Properties of Laser Triangulation Sensors. Measurement 2021, 176, 109190. [Google Scholar] [CrossRef]
- Álvarez, I.; Enguita, J.M.; Frade, M.; Marina, J.; Ojea, G. On-Line Metrology with Conoscopic Holography: Beyond Triangulation. Sensors 2009, 9, 7021–7037. [Google Scholar] [CrossRef]
- Huang, W.; Kovacevic, R. A Laser-Based Vision System for Weld Quality Inspection. Sensors 2011, 11, 506–521. [Google Scholar] [CrossRef]
- Brosed, F.J.; Aguilar, J.J.; Guillomía, D.; Santolaria, J. 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot. Sensors 2010, 11, 90–110. [Google Scholar] [CrossRef]
- Huo, L.; Liu, Y.; Yang, Y.; Zhuang, Z.; Sun, M. Review: Research on Product Surface Quality Inspection Technology Based on 3D Point Cloud. Adv. Mech. Eng. 2023, 15, 16878132231159523. [Google Scholar] [CrossRef]
- Belšak, R.; Gotlih, J.; Karner, T. Simulating and Verifying a 2D/3D Laser Line Sensor Measurement Algorithm on CAD Models and Real Objects. Sensors 2024, 24, 7396. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, X.; Jiang, X.; Hong, T. Research on Point Cloud Processing of Gear 3D Measurement Based on Line Laser. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 645. [Google Scholar] [CrossRef]
- Heczko, D.; Oščádal, P.; Kot, T.; Huczala, D.; Semjon, J.; Bobovský, Z. Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors 2021, 21, 2890. [Google Scholar] [CrossRef]
- So, E.W.Y.; Michieletto, S.; Menegatti, E. Calibration of a Dual-Laser Triangulation System for Assembly Line Completeness Inspection. In Proceedings of the 2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings, Magdeburg, Germany, 16–18 November 2012; IEEE: Magdeburg, Germany, 2012; pp. 138–143. [Google Scholar]
- Denayer, M.; De Winter, J.; Bernardes, E.; Vanderborght, B.; Verstraten, T. Comparison of Point Cloud Registration Techniques on Scanned Physical Objects. Sensors 2024, 24, 2142. [Google Scholar] [CrossRef]
- Liu, J. An Adaptive Process of Reverse Engineering from Point Clouds to CAD Models. Int. J. Comput. Integr. Manuf. 2020, 33, 840–858. [Google Scholar] [CrossRef]
- Sundaram, S.; Zeid, A. Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines 2023, 14, 570. [Google Scholar] [CrossRef]
- Papacharalampopoulos, A.; Alexopoulos, K.; Catti, P.; Stavropoulos, P.; Chryssolouris, G. Learning More with Less Data in Manufacturing: The Case of Turning Tool Wear Assessment through Active and Transfer Learning. Processes 2024, 12, 1262. [Google Scholar] [CrossRef]
- Alexopoulos, K.; Catti, P.; Kanellopoulos, G.; Nikolakis, N.; Blatsiotis, A.; Christodoulopoulos, K.; Kaimenopoulos, A.; Ziata, E. Deep Learning for Estimating the Fill-Level of Industrial Waste Containers of Metal Scrap: A Case Study of a Copper Tube Plant. Appl. Sci. 2023, 13, 2575. [Google Scholar] [CrossRef]
- Cerquitelli, T.; Nikolakis, N.; O’Mahony, N.; Macii, E.; Ippolito, M.; Makris, S. (Eds.) Predictive Maintenance in Smart Factories: Architectures, Methodologies, and Use-Cases; Information Fusion and Data Science; Springer: Singapore, 2021; ISBN 9789811629396. [Google Scholar]
- Zhang, Y.; Feng, W.; Quan, Y.; Ye, G.; Dauphin, G. Dynamic Spatial–Spectral Feature Optimization-Based Point Cloud Classification. Remote Sens. 2024, 16, 575. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. arXiv 2019, arXiv:1904.07601. [Google Scholar]
- Li, G.; Liu, C.; Gao, X.; Xiao, H.; Ling, B.W.-K. AFpoint: Adaptively Fusing Local and Global Features for Point Cloud. Multimed. Tools Appl. 2024, 83, 79093–79115. [Google Scholar] [CrossRef]
- Meng, X.; Lu, X.; Ye, H.; Yang, B.; Cao, F. A New Self-Augment CNN for 3D Point Cloud Classification and Segmentation. Int. J. Mach. Learn. Cyber. 2024, 15, 807–818. [Google Scholar] [CrossRef]
- Sun, T.; Liu, M.; Ye, H.; Yeung, D.-Y. Point-Cloud-Based Place Recognition Using CNN Feature Extraction. IEEE Sens. J. 2019, 19, 12175–12186. [Google Scholar] [CrossRef]
- Tong, G.; Shao, Y.; Peng, H. Learning Local Contextual Features for 3D Point Clouds Semantic Segmentation by Attentive Kernel Convolution. Vis. Comput. 2024, 40, 831–847. [Google Scholar] [CrossRef]
- Haznedar, B.; Bayraktar, R.; Ozturk, A.E.; Arayici, Y. Implementing PointNet for Point Cloud Segmentation in the Heritage Context. Herit. Sci. 2023, 11, 2. [Google Scholar] [CrossRef]
- Liu, H.; Tian, S. Deep 3D Point Cloud Classification and Segmentation Network Based on GateNet. Vis. Comput. 2024, 40, 971–981. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Liu, Y. Three-Dimensional Point Cloud Segmentation Based on Context Feature for Sheet Metal Part Boundary Recognition. IEEE Trans. Instrum. Meas. 2023, 72, 2513710. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Lin, W.; Fan, W.; Liu, H.; Xu, Y.; Wu, J. Classification of Handheld Laser Scanning Tree Point Cloud Based on Different KNN Algorithms and Random Forest Algorithm. Forests 2021, 12, 292. [Google Scholar] [CrossRef]
- Luo, N.; Wang, Y.; Gao, Y.; Tian, Y.; Wang, Q.; Jing, C. kNN-Based Feature Learning Network for Semantic Segmentation of Point Cloud Data. Pattern Recognit. Lett. 2021, 152, 365–371. [Google Scholar] [CrossRef]
- Li, L.; Sung, M.; Dubrovina, A.; Yi, L.; Guibas, L.J. Supervised Fitting of Geometric Primitives to 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2647–2655. [Google Scholar]
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement: Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/50461.html (accessed on 10 December 2024).
- Pant, M.; Nagdeve, L.; Moona, G.; Kumar, H. Estimation of Measurement Uncertainty of Additive Manufacturing Parts to Investigate the Influence of Process Variables. MAPAN 2022, 37, 765–775. [Google Scholar] [CrossRef]
- Giulietti, N.; Chiariotti, P.; Revel, G.M. Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm. Sensors 2023, 23, 4023. [Google Scholar] [CrossRef] [PubMed]
- Khakpour, R.; Ebrahimi, A.; Seyed-Hosseini, S.-M. An Integrated Approach of Zero Defect Manufacturing and Process Mining to Avoid Defect Occurrence in Production and Improve Sustainability. Int. J. Lean Six Sigma, 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Pham, A.-D.; Ahn, H.-J. High Precision Reducers for Industrial Robots Driving 4th Industrial Revolution: State of Arts, Analysis, Design, Performance Evaluation and Perspective. Int. J. Precis. Eng. Manuf.-Green Technol. 2018, 5, 519–533. [Google Scholar] [CrossRef]
- Abreu, N.; Pinto, A.; Matos, A.; Pires, M. Procedural Point Cloud Modelling in Scan-to-BIM and Scan-vs-BIM Applications: A Review. ISPRS Int. J. Geo-Inf. 2023, 12, 260. [Google Scholar] [CrossRef]
Product Type | Repeatability Point Clouds | Reproducibility Point Clouds | Total Number of Point Clouds per Product Type |
---|---|---|---|
SM | 15 | 15 | 30 |
SN | 16 | 20 | 36 |
SJ | 80 | 80 | 160 |
Measurements | Tolerances (mm) |
---|---|
V27 Top Diameter | |
V27 Bottom Diameter | |
V7 Bottom Left Diamer | |
V7 Top Left Diameter | |
V7 Bottom Middle Diam. | |
V7 Top Middle Diam. | |
V7 Bottom Right Diam. | |
V7 Top Right Diam. | |
Middle Holes Distance | |
V5 Bottom | |
V5 Top | |
V6 Bottom | |
V6 Top | |
V8 Left | <6 |
V8 Right | <6 |
Dimensional Features | Mean | Uncertainty | Confidence Intervals | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standard | Expanded | Lower | Upper | |||||||||||||
Measurements (mm) | SN | SM | SJ | SN | SM | SJ | SN | SM | SJ | SN | SM | SJ | SN | SM | SJ | |
Radiuses of holes | V27 Top | 11.9 | 12.3 | 12.1 | 0.006 | 0.010 | 0.02 | 0.012 | 0.020 | 0.041 | 11.8 | 12.2 | 12 | 11.9 | 12.3 | 12 |
V27 Bottom | 12.4 | 12.1 | 12 | 0.057 | 0.024 | 0.009 | 0.115 | 0.049 | 0.019 | 12.3 | 12 | 12 | 12.5 | 12.1 | 12 | |
V7 Top Left | 6.8 1 | 6.5 | 6.9 | 0.012 | 0.025 | 0.027 | 0.024 | 0.051 | 0.055 | 6.7 | 6.5 | 6.9 | 6.8 | 6.6 | 7 | |
V7 Top Right | 6.6 | 6.5 | 6.8 | 0.011 | 0.009 | 0.025 | 0.023 | 0.018 | 0.050 | 6.6 | 6.5 | 6.7 | 6.6 | 6.5 | 6 | |
V7 Bottom Right | 6.8 | 6.5 | 6.7 | 0.072 | 0.013 | 0.022 | 0.143 | 0.026 | 0.045 | 6.6 | 6.5 | 6.7 | 6.9 | 6.5 | 6 | |
V7 Bottom Left | 6.8 | 6.5 | 7 | 0.008 | 0.020 | 0.026 | 0.016 | 0.040 | 0.053 | 6.8 | 6.4 | 6.9 | 6.8 | 6.5 | 7 | |
V7 Top Middle | 6.7 | N/A 2 | 6.8 | 0.014 | N/A | 0.025 | 0.028 | N/A | 0.05 | 6.6 | N/A | 6.8 | 6.7 | N/A | 6.9 | |
V7 Bottom Middle | 6.6 | N/A | 6.8 | 0.010 | N/A | 0.025 | 0.020 | N/A | 0.05 | 6.6 | N/A | 6.7 | 6.6 | N/A | 6.8 | |
Distances | Middle Holes | 104.1 | 103.9 | 104 | 0.037 | 0.022 | 0.027 | 0.074 | 0.043 | 0.054 | 104 | 103 | 103 | 104 | 104 | 104 |
V5 Top | 64.1 | 42.15 | 64.4 | 0.105 | 0.065 | 0.086 | 0.211 | 0.130 | 0.173 | 63.9 | 42 | 64.2 | 64.4 | 42 | 64.6 | |
V5 Bottom | 67.4 | 42.1 | 62.8 | 0.105 | 0.082 | 0.052 | 0.210 | 0.165 | 0.056 | 67.2 | 42 | 62.7 | 67.6 | 42 | 62.9 | |
V6 Top Side | 141.3 | 142.6 | 140 | 0.014 | 0.055 | 0.028 | 0.028 | 0.110 | 0.126 | 141 | 142 | 139.9 | 141 | 142 | 140 | |
V6 Bottom Side | 141.4 | 142.7 | 140.1 | 0.038 | 0.081 | 0.024 | 0.075 | 0.162 | 0.048 | 141 | 142 | 140.1 | 141 | 142 | 140.2 | |
V8 Left | 0.7 | 3.1 | 1.8 | 0.063 | 0.072 | 0.063 | 0.126 | 0.143 | 0.126 | 0.6 | 3.0 | 1.7 | 0.86 | 3.3 | 2.0 | |
V8 Right | 5.8 | 3.3 | 2.9 | 0.150 | 0.069 | 0.054 | 0.300 | 0.138 | 0.108 | 5.5 | 3.2 | 2.8 | 6.16 | 3.4 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoulmperis, M.; Discepolo, S.; Castellini, P.; Catti, P.; Nikolakis, N.; van de Kamp, W.; Alexopoulos, K. Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer. Machines 2025, 13, 88. https://doi.org/10.3390/machines13020088
Ntoulmperis M, Discepolo S, Castellini P, Catti P, Nikolakis N, van de Kamp W, Alexopoulos K. Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer. Machines. 2025; 13(2):88. https://doi.org/10.3390/machines13020088
Chicago/Turabian StyleNtoulmperis, Michalis, Silvia Discepolo, Paolo Castellini, Paolo Catti, Nikolaos Nikolakis, Wilhelm van de Kamp, and Kosmas Alexopoulos. 2025. "Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer" Machines 13, no. 2: 88. https://doi.org/10.3390/machines13020088
APA StyleNtoulmperis, M., Discepolo, S., Castellini, P., Catti, P., Nikolakis, N., van de Kamp, W., & Alexopoulos, K. (2025). Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer. Machines, 13(2), 88. https://doi.org/10.3390/machines13020088