You are currently viewing a new version of our website. To view the old version click .
Machines
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

17 December 2025

Adaptive Multi-Objective Reinforcement Learning for Real-Time Manufacturing Robot Control

Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Las Sophoras 165, Estación Central, Santiago 9170020, Chile
This article belongs to the Section Advanced Manufacturing

Abstract

Modern manufacturing robots must dynamically balance multiple conflicting objectives amid rapidly evolving production demands. Traditional control approaches lack the adaptability required for real-time decision-making in Industry 4.0 environments. This study presents an adaptive multi-objective reinforcement learning (MORL) framework integrating dynamic preference weighting with Pareto-optimal policy discovery for real-time adaptation without manual reconfiguration. Experimental validation employed a UR5 manipulator with RG2 gripper performing quality-aware object sorting in CoppeliaSim with realistic physics (friction μ = 0.4, Bullet engine), manipulating 12 objects across four geometric types on a dynamic conveyor. Thirty independent runs per algorithm (seven baselines, 30,000+ manipulation cycles) demonstrated +24.59% to +34.75% improvements (p < 0.001, d = 0.89–1.52), achieving hypervolume 0.076 ± 0.015 (19.7% coefficient of variation—lowest among all methods) and 95% optimal performance within 180 episodes—five times faster than evolutionary baselines. Four independent verification methods (WFG, PyMOO, Monte Carlo, HSO) confirmed measurement reliability (<0.26% variance). The framework maintains edge computing compatibility (<2 GB RAM, <50 ms latency) and seamless integration with Manufacturing Execution Systems and digital twins. This research establishes new benchmarks for adaptive robotic control in sustainable Industry 4.0/5.0 manufacturing.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.