Optimizing the Transformer Iron Core Cutting Stock Problem Using a Discrete Artificial Bee Colony Algorithm
Abstract
1. Introduction
- We propose a discrete artificial bee colony algorithm for the 2DCSP, extending the applicability of the artificial bee colony algorithm, and provide a reference for solving other combinational optimization problems.
- We introduce biased selection and a partially mapped crossover to the artificial bee colony, which improves the performance of the algorithm.
- We analyze the effect of the parameter on the performance of the algorithm and provide guidance for the combination of parameters.
- Extensive experiments involving more than one hundred instances are carried out to validate the proposed metaheuristic. It benefits readers to comprehensively understand the strengths and weaknesses of the proposed algorithm.
2. Literature Review
3. Problem Definition and Formulation
3.1. Problem Definition
3.2. Illustrative Example
4. The Discrete Artificial Bee Colony for 2DCSP
4.1. The Overview of the Algorithm
| Algorithm 1: DABC |
![]() |
4.2. Encoding and Neighbor Location Generation
4.3. Decoding Procedure
| Algorithm 2: Decoding Procedure |
![]() |
5. Numerical Experimental Results
5.1. Configuration of the DABC
5.2. The Performance of the Algorithm on Datasets
5.3. Statistical Significance of Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| The number type of width of strips; | |
| The number of coils; | |
| Index of strips; | |
| Index of coils; | |
| Index of sub-strips; | |
| Index of sub-coils; | |
| , | The vertical and horizontal length of input coil; |
| The edge-trimmed width; | |
| , | The vertical and horizontal length of demand strip; |
| The minimum width of the leftover strip in a pattern; | |
| The maximum surplus length of each strip in the pattern; | |
| The minimum length of each strip; | |
| Constant, maximum number of sub-strips that can be obtained. , where corresponds to the largest integer smaller than or equal to x; | |
| Integer variable, the horizontal length of the sub-strip, ; | |
| Constant, maximum number of sub-coils that can be split. , where corresponds to the largest integer smaller than or equal to x; | |
| Integer variable, the horizontal length of the sub-coil, ; | |
| Binary variable, equal to 1 if the sub-strip of strip is assigned to the sub-coil of coil , 0 otherwise; | |
| 1 = there is residual strip in sub-coil of coil , 0 = other; | |
| 1 = the sub-strip exists, 0 = other; |
References
- Duta, E.-A.; Jimeno-Morenilla, A.; Sanchez-Romero, J.-L.; Macia-Lillo, A.; Mora-Mora, H. An approach to apply the Jaya optimization algorithm to the nesting of irregular patterns. J. Comput. Des. Eng. 2024, 11, 112–121. [Google Scholar] [CrossRef]
- Fowler, R.J.; Paterson, M.S.; Tanimoto, S.L. Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 1981, 12, 133–137. [Google Scholar] [CrossRef]
- Yao, S.; Tang, C.; Zhang, H.; Wu, S.; Wei, L.; Liu, Q. An iteratively doubling binary search for the two-dimensional irregular multiple-size bin packing problem raised in the steel industry. Comput. Oper. Res. 2024, 162, 106476. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Wäscher, G. A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects. Eur. J. Oper. Res. 2020, 286, 867–882. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, S.; Liu, Q.; Wei, L.; Lin, L.; Leng, J. An exact approach for the constrained two-dimensional guillotine cutting problem with defects. Int. J. Prod. Res. 2023, 61, 2986–3003. [Google Scholar] [CrossRef]
- Kim, K.; Kim, B.-I.; Cho, H. Multiple-choice knapsack-based heuristic algorithm for the two-stage two-dimensional cutting stock problem in the paper industry. Int. J. Prod. Res. 2014, 52, 5675–5689. [Google Scholar] [CrossRef]
- Parreño, F.; Alvarez-Valdes, R. Mathematical models for a cutting problem in the glass manufacturing industry. Omega 2021, 103, 102432. [Google Scholar] [CrossRef]
- Luo, Q.; Du, B.; Rao, Y.; Guo, X. Metaheuristic algorithms for a special cutting stock problem with multiple stocks in the transformer manufacturing industry. Expert Syst. Appl. 2022, 210, 118578. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University, Engineering Faculty, Computer Engineering Department: Kayseri, Türkiye, 2005; pp. 1–10. [Google Scholar]
- Akay, B.; Karaboga, D.; Gorkemli, B.; Kaya, E. A survey on the Artificial Bee Colony algorithm variants for binary, integer and mixed integer programming problems. Appl. Soft Comput. 2021, 106, 107351. [Google Scholar] [CrossRef]
- Lei, D.; Cui, Z.; Li, M. A dynamical artificial bee colony for vehicle routing problem with drones. Eng. Appl. Artif. Intell. 2022, 107, 104510. [Google Scholar] [CrossRef]
- Han, Z.; Chen, M.; Shao, S.; Wu, Q. Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning. Aerosp. Sci. Technol. 2022, 122, 107374. [Google Scholar] [CrossRef]
- Ravelo, S.V.; Meneses, C.N.; Santos, M.O. Meta-heuristics for the one-dimensional cutting stock problem with usable leftover. J. Heuristics 2020, 26, 585–618. [Google Scholar] [CrossRef]
- Karaca, T.K.; Samanlioglu, F.; Altay, A. Solution approaches for the bi-objective Skiving Stock Problem. Comput. Ind. Eng. 2023, 179, 109164. [Google Scholar] [CrossRef]
- Campello, B.S.C.; Ghidini, C.T.L.S.; Ayres, A.O.C.; Oliveira, W.A. A residual recombination heuristic for one-dimensional cutting stock problems. TOP 2022, 30, 194–220. [Google Scholar] [CrossRef]
- Furini, F.; Malaguti, E.; Durán, R.M.; Persiani, A.; Toth, P. A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size. Eur. J. Oper. Res. 2012, 218, 251–260. [Google Scholar] [CrossRef]
- Furini, F.; Malaguti, E. Models for the two-dimensional two-stage cutting stock problem with multiple stock size. Comput. Oper. Res. 2013, 40, 1953–1962. [Google Scholar] [CrossRef]
- Salem, K.H.; Silva, E.; Oliveira, J.F.; Carravilla, M.A. Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry. Eur. J. Oper. Res. 2023, 306, 549–566. [Google Scholar] [CrossRef]
- Polyakovskiy, S.; M’hAllah, R. A lookahead matheuristic for the unweighed variable-sized two-dimensional bin packing problem. Eur. J. Oper. Res. 2022, 299, 104–117. [Google Scholar] [CrossRef]
- Libralesso, L.; Fontan, F. An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem. Eur. J. Oper. Res. 2021, 291, 883–893. [Google Scholar] [CrossRef]
- Parreño, F.; Alonso, M.; Alvarez-Valdes, R. Solving a large cutting problem in the glass manufacturing industry. Eur. J. Oper. Res. 2020, 287, 378–388. [Google Scholar] [CrossRef]
- Chen, Y.; Song, X.; Ouelhadj, D.; Cui, Y. A heuristic for the skiving and cutting stock problem in paper and plastic film industries. Int. Trans. Oper. Res. 2019, 26, 157–179. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, F.; Zhou, L.; Liang, Z. Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation. Eur. J. Oper. Res. 2020, 286, 547–563. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Hu, X. Manufacturing-oriented silicon steel coil lengthwise cutting stock problem with useable leftover. Eng. Comput. 2022, 39, 477–492. [Google Scholar] [CrossRef]
- Lin, W.-C.; Xu, J.; Bai, D.; Chung, I.-H.; Liu, S.-C.; Wu, C.-C. Artificial bee colony algorithms for the order scheduling with release dates. Soft Comput. 2019, 23, 8677–8688. [Google Scholar] [CrossRef]
- Lei, D.; Yang, H. Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-colony artificial bee colony. Appl. Soft Comput. 2022, 125, 109154. [Google Scholar] [CrossRef]
- Lei, D.; He, S. An adaptive artificial bee colony for unrelated parallel machine scheduling with additional resource and maintenance. Expert Syst. Appl. 2022, 205, 117577. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, D. A Hybrid Discrete Artificial Bee Colony Algorithm for Imaging Satellite Mission Planning. IEEE Access 2023, 11, 40006–40017. [Google Scholar] [CrossRef]
- Gilmore, P.C.; Gomory, R.E. A linear programming approach to the cutting-stock problem. Oper. Res. 1961, 9, 849–859. [Google Scholar] [CrossRef]
- Khan, R.; Pruncu, C.I.; Khan, A.S.; Naeem, K.; Abas, M.; Khalid, Q.S.; Aziz, A. A Mathematical Model for Reduction of Trim Loss in Cutting Reels at a Make-to-Order Paper Mill. Appl. Sci. 2020, 10, 5274. [Google Scholar] [CrossRef]
- Bezerra, V.M.R.; Leao, A.A.S.; Oliveira, J.F.; Santos, M.O. Models for the two-dimensional level strip packing problem—A review and a computational evaluation. J. Oper. Res. Soc. 2020, 71, 606–627. [Google Scholar] [CrossRef]
- Lodi, A.; Martello, S.; Vigo, D. Models and Bounds for Two-Dimensional Level Packing Problems. J. Comb. Optim. 2004, 8, 363–379. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Lingle, D. Alleles, Loci, and the Traveling Saleman Problem. In Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications, Los Angeles, CA, USA, 24–26 July 1985; pp. 154–159. [Google Scholar] [CrossRef]
- Veček, N.; Mernik, M.; Filipič, B.; Črepinšek, M. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. 2016, 372, 446–469. [Google Scholar] [CrossRef]








| Author | Stock | Item | Objective | Method | Application | Other |
|---|---|---|---|---|---|---|
| Ravelo et al. [13] | SSB | × | Number of retails; Material loss | Heuristic, metaheuristic | Paper tubes, plastic films | 1D, bi-objective |
| Karaca et al. [14] | SSB | × | Trim loss; number of skives | Exact solver, heuristic | Paper industry | 1D, bi-objective |
| Campello et al. [15] | SSB; MSB | × | Number of stocks; costs of waste and storage | Heuristic | Paper tubes, plastic films | 1D, two types of problem |
| Furini et al. [16] | MSS | × | Area of used sheets | Heuristic | Paper, wood, glass | 2D, two-staged guillotine |
| Furini et al. [17] | MSS | × | Area of used sheets | Exact algorithm | Paper, wood, glass | 2D, two-staged guillotine |
| Hadj Salem et al. [18] | MSS | × | Number of used sheets; number of cutting patterns | Exact algorithm | Home textile | 2D, bi-objective, two-staged guillotine |
| Polyakovskiy et al. [19] | MSS | × | Area of used sheets | Metaheuristic | Paper and glass | 2D, unrestricted guillotine |
| Parreño et al. [21] | SSS | × | Area of waste | Beam search | Glass industry | 2D, three-staged guillotine |
| Parreño et al. [7] | SSS | × | Area of waste | Exact algorithm | Glass industry | 2D, three-staged guillotine |
| Libralesso et al. [20] | SSS | × | Area of waste | Tree search | Glass industry | 2D, three-staged guillotine |
| Chen et al. [22] | MSC | × | Area of stock used | Heuristic | Paper and plastic film | 2D |
| Wang et al. [23] | MSC | × | Material cost; number of setups | Column-and-row generation | Steel industry | 2D, bi-objective |
| Li et al. [24] | MSC | √ | Costs of coil and production | Heuristic | Iron core | 2D |
| Lin et al. [25] | / | / | Number of tardy orders | ABC | Order scheduling | / |
| Lei et al. [11] | / | / | Overall operational cost | ABC | VRP with drones | / |
| Han et al. [12] | / | / | Total cost | ABC | Path planning | / |
| Lei et al. [27] | / | / | Makespan | ABC | Scheduling | / |
| Lei et al. [26] | / | / | Makespan and total tardiness | ABC | Scheduling | bi-objective |
| Yang et al. [28] | / | / | / | ABC | ISMP | / |
| Akay et al. [10] | / | / | / | ABC | / | Survey |
| This paper | MSC | √ | Number of strips | DABC | Transformer industry | 2D, two-stage guillotine |
| Solution | Surplus (Length) | Number of Strips | Pattern Number | Usable Leftover | |||
|---|---|---|---|---|---|---|---|
| s1 | s2 | s3 | s4 | ||||
| Cutting plan 1 | 20 | 5 | 15 | 10 | 11 | 3 | 1 |
| Cutting plan 2 | 0 | 0 | 0 | 5 | 8 | 2 | 1 |
| Parameter | Range | Value |
|---|---|---|
| 500~1000 | 600 | |
| 0.05~0.30 | 0.10 | |
| 5~30 | 20 | |
| 0.15~0.65 | 0.35 |
| Indicator | Method | Set11 | Set12 | Set13 | Set21 | Set22 | Set23 | Set31 | Set32 | Set33 |
|---|---|---|---|---|---|---|---|---|---|---|
| Min | VNS | 13.53 | 13.47 | 13.87 | 51.07 | 41.60 | 44.20 | 75.20 | 76.60 | 87.53 |
| DGWO | 13.53 | 13.53 | 13.87 | 51.47 | 41.93 | 44.47 | 76.07 | 77.60 | 87.60 | |
| BGA | 13.53 | 13.53 | 13.87 | 48.27 | 39.47 | 42.13 | 70.13 | 70.33 | 80.80 | |
| bABC | 13.13 | 13.33 | 13.60 | 50.20 | 41.47 | 44.07 | 69.60 | 73.40 | 83.93 | |
| mABC | 13.13 | 13.33 | 13.60 | 49.27 | 40.40 | 43.20 | 67.93 | 70.73 | 81.80 | |
| DABC | 13.13 | 13.33 | 13.60 | 46.27 | 38.33 | 40.93 | 64.13 | 65.47 | 74.80 | |
| Mean | VNS | 13.56 | 13.54 | 13.89 | 54.76 | 44.09 | 46.82 | 79.45 | 80.24 | 92.10 |
| DGWO | 13.55 | 13.53 | 13.87 | 55.47 | 44.45 | 47.05 | 79.68 | 80.81 | 92.45 | |
| BGA | 13.56 | 13.53 | 13.87 | 51.08 | 41.16 | 43.94 | 73.44 | 74.16 | 85.68 | |
| bABC | 13.13 | 13.33 | 13.61 | 53.14 | 43.07 | 46.01 | 72.50 | 76.99 | 87.65 | |
| mABC | 13.13 | 13.34 | 13.63 | 51.50 | 41.78 | 44.90 | 70.33 | 73.72 | 85.40 | |
| DABC | 13.13 | 13.41 | 13.70 | 48.12 | 39.41 | 41.99 | 65.55 | 67.31 | 76.82 | |
| Max | VNS | 13.67 | 13.60 | 13.93 | 58.73 | 46.80 | 49.40 | 82.87 | 83.80 | 95.47 |
| DGWO | 13.60 | 13.53 | 13.87 | 58.20 | 46.33 | 49.27 | 82.40 | 83.53 | 95.47 | |
| BGA | 13.60 | 13.53 | 13.93 | 53.73 | 43.27 | 45.80 | 77.00 | 77.60 | 89.73 | |
| bABC | 13.13 | 13.33 | 13.67 | 55.60 | 44.47 | 47.80 | 75.20 | 79.73 | 90.33 | |
| mABC | 13.13 | 13.47 | 13.73 | 53.47 | 43.00 | 46.13 | 73.33 | 76.60 | 88.47 | |
| DABC | 13.13 | 13.47 | 13.73 | 49.13 | 40.00 | 42.80 | 66.60 | 68.47 | 78.27 | |
| Std. | VNS | 0.05 | 0.03 | 0.03 | 1.93 | 1.35 | 1.32 | 1.88 | 1.83 | 2.02 |
| DGWO | 0.03 | 0.00 | 0.00 | 1.66 | 1.12 | 1.26 | 1.62 | 1.55 | 1.88 | |
| BGA | 0.01 | 0.00 | 0.00 | 2.13 | 1.19 | 1.22 | 2.89 | 3.79 | 4.81 | |
| bABC | 0.00 | 0.00 | 0.03 | 1.34 | 0.78 | 0.92 | 1.35 | 1.59 | 1.55 | |
| mABC | 0.00 | 0.03 | 0.04 | 1.02 | 0.74 | 0.79 | 1.34 | 1.37 | 1.66 | |
| DABC | 0.00 | 0.05 | 0.03 | 0.83 | 0.53 | 0.60 | 0.73 | 0.80 | 1.01 |
| Dataset | Solver | VNS | DGWO | BGA | bABC | mABC | DABC | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Gap | Mean | Gap | Mean | Gap | Mean | Gap | Mean | Gap | Mean | Gap | ||
| Set11 | 12.93 | 13.56 | 4.88% | 13.55 | 4.507% | 13.56 | 4.59% | 13.13 | 1.52% | 13.13 | 1.52% | 13.13 | 1.52% |
| Set12 | 13.40 | 13.54 | 1.03% | 13.53 | 0.99% | 13.53 | 0.99% | 13.33 | −0.50% | 13.34 | −0.43% | 13.41 | 0.05% |
| Set13 | 13.47 | 13.89 | 3.13% | 13.87 | 2.88% | 13.87 | 2.90% | 13.61 | 1.08% | 13.63 | 1.17% | 13.70 | 1.70% |
| Compared Algorithm | Indicator | Set11 | Set12 | Set13 | Set21 | Set22 | Set23 | Set31 | Set32 | Set33 |
|---|---|---|---|---|---|---|---|---|---|---|
| BGA | Min | 0.102 | 0.083 | 0.180 | 0.005 | 0.055 | 0.013 | 0.001 | 0.002 | 0.001 |
| Mean | 0.066 | 0.269 | 0.593 | 0.005 | 0.002 | 0.003 | 0.001 | 0.001 | 0.001 | |
| Max | 0.059 | 0.564 | 0.317 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | |
| Std. | 0.317 | 0.180 | 0.655 | 0.009 | 0.035 | 0.035 | 0.001 | 0.001 | 0.001 | |
| bABC | Min | 1.000 | 1.000 | 1.000 | 0.002 | 0.006 | 0.008 | 0.002 | 0.001 | 0.001 |
| Mean | 1.000 | 0.180 | 0.180 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | |
| Max | 1.000 | 0.157 | 0.317 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | |
| Std. | 1.000 | 0.180 | 0.655 | 0.013 | 0.023 | 0.009 | 0.001 | 0.001 | 0.008 | |
| mABC | Min | 1.000 | 1.000 | 1.000 | 0.004 | 0.011 | 0.008 | 0.003 | 0.003 | 0.003 |
| Mean | 1.000 | 0.180 | 0.180 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | |
| Max | 1.000 | 1.000 | 1.000 | 0.002 | 0.002 | 0.005 | 0.001 | 0.001 | 0.001 | |
| Std. | 1.000 | 0.180 | 0.655 | 0.075 | 0.028 | 0.041 | 0.001 | 0.003 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Tang, Z.; Pan, C. Optimizing the Transformer Iron Core Cutting Stock Problem Using a Discrete Artificial Bee Colony Algorithm. Machines 2025, 13, 1106. https://doi.org/10.3390/machines13121106
Luo Q, Tang Z, Pan C. Optimizing the Transformer Iron Core Cutting Stock Problem Using a Discrete Artificial Bee Colony Algorithm. Machines. 2025; 13(12):1106. https://doi.org/10.3390/machines13121106
Chicago/Turabian StyleLuo, Qiang, Zuogan Tang, and Chunrong Pan. 2025. "Optimizing the Transformer Iron Core Cutting Stock Problem Using a Discrete Artificial Bee Colony Algorithm" Machines 13, no. 12: 1106. https://doi.org/10.3390/machines13121106
APA StyleLuo, Q., Tang, Z., & Pan, C. (2025). Optimizing the Transformer Iron Core Cutting Stock Problem Using a Discrete Artificial Bee Colony Algorithm. Machines, 13(12), 1106. https://doi.org/10.3390/machines13121106


