Inverse and Logarithmic Coefficient Bounds of Concave Univalent Functions
Abstract
1. Introduction
2. Bounds of Initial Coefficients and Bounds of Difference Between the Successive Coefficients for the Class of Concave Univalent Functions
3. Bounds of Hankel Determinants of Inverse and Logarithmic Coefficients for the Class of Concave Univalent Functions
3.1. Bounds of Hankel Determinants of Inverse Coefficients
3.2. Bounds of Hankel Determinants of Logarithmic Coefficients
4. Bounds of Toeplitz Determinants of Inverse and Logarithmic Coefficients for the Class of Concave Univalent Functions
4.1. Bounds of Toeplitz Determinants of Inverse Coefficients
4.2. Bounds of Toeplitz Determinants of Logarithmic Coefficients
5. Bounds of Vandermonde Determinants of Inverse and Logarithmic Coefficients for the Class of Concave Univalent Functions
5.1. Bounds of Vandermonde Determinant of Inverse Coefficients
5.2. Bounds of Vandermonde Determinants of Logarithmic Coefficients
6. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; p. 259. [Google Scholar]
- Kayumov, I.R. On Brannan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Lecko, A.; Partyka, D. Successive logarithmic coefficients of univalent functions. Comput. Methods Funct. Theory 2024, 24, 693–705. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Sharma, N.L.; Wirths, K.J. Logarithmic coefficients problems in families related to starlike and convex functions. J. Aust. Math. Soc. 2020, 109, 230–249. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
- Ye, K.; Lim, L.H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, S.S. A Conjecture on H3(1) for certain Starlike Functions. Math. Slovaca 2023, 73, 1197–1206. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. On H3,1(f)) Hankel determinant for concave univalent functions. Creat. Math. Inform. 2016, 25, 11–14. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter. J. Inequalities Appl. 2014, 2014, 65. [Google Scholar] [CrossRef]
- Mundalia, M.; Kumar, S.S. Coefficient problems for certain close-to-convex functions. Bull. Iran. Math. Soc. 2023, 49, 5. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Shi, L.; Abbas, M.; Raza, M.; Arif, M.; Kumam, P. Inverse logarithmic coefficient bounds for starlike functions subordinated to the exponential functions. J. Inequalities Appl. 2024, 2024, 17. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Srivastava, H.M.; Arif, M.; Liu, Z.-H.; Ullah, K. Sharp bounds on Hankel determinants of bounded turning functions involving the hyperbolic tangent function. Appl. Anal. Discret. Math. 2024, 18, 551–571. [Google Scholar] [CrossRef]
- Giri, S.; Kumar, S.S. Toeplitz determinants in one and higher dimensions. Acta Math. Sci. 2024, 44, 1931–1944. [Google Scholar] [CrossRef]
- Macon, N.; Spitzbart, A. Inverses of Vandermonde matrices. Amer. Math. Mon. 1958, 65, 95–100. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.P.; Bulut, S.; Sudharsan, T.V. Vandermonde determinant for a certain Sakaguchi type function in Limaçon domain. Asian-Eur. J. Math. 2022, 15, 2250212. [Google Scholar] [CrossRef]
- Avkhadiev, F.G.; Pommerenke, C.; Wirths, K.J. Sharp inequalities for the coefficients of concave schlicht functions. Comment. Math. Helv. 2006, 81, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.; Pommerenke, C. On concave univalent functions. Complex Var. Elliptic Equ. 2007, 52, 153–159. [Google Scholar] [CrossRef]
- Bhowmik, B.; Ponnusamy, S.; Wirths, K.J. Characterization and the pre-Schwarzian norm estimate for concave univalent functions. Monatshefte Math. 2010, 161, 59–75. [Google Scholar] [CrossRef]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakthivel, K.; Cho, N.E.; Sivasubramanian, S. Inverse and Logarithmic Coefficient Bounds of Concave Univalent Functions. Axioms 2025, 14, 553. https://doi.org/10.3390/axioms14080553
Sakthivel K, Cho NE, Sivasubramanian S. Inverse and Logarithmic Coefficient Bounds of Concave Univalent Functions. Axioms. 2025; 14(8):553. https://doi.org/10.3390/axioms14080553
Chicago/Turabian StyleSakthivel, Kuppusami, Nak Eun Cho, and Srikandan Sivasubramanian. 2025. "Inverse and Logarithmic Coefficient Bounds of Concave Univalent Functions" Axioms 14, no. 8: 553. https://doi.org/10.3390/axioms14080553
APA StyleSakthivel, K., Cho, N. E., & Sivasubramanian, S. (2025). Inverse and Logarithmic Coefficient Bounds of Concave Univalent Functions. Axioms, 14(8), 553. https://doi.org/10.3390/axioms14080553