Entire Functions of Several Variables: Analogs of Wiman’s Theorem
Abstract
:1. Introduction
2. Notations and Lemmas
- (a)
- ;
- (b)
- ;
- (c)
- if , then, for every , one has ;
- (d)
- if , then .
- (i)
- A domain is called a polylinear domainin ([55], p. 294), if condition (c) from the above definition of exhaustion is satisfied;
- (ii)
- A polylinear domain G belongs to the class (for definition, see ([55], p. 299)) if there exist such that
- (iii)
- For ), the system of domains in ([55], p. 301), is called the system of A-like domains if (i.e., it is the translation of G by the vector ), and G is a polylinear domain.
3. Main Result: An Analog of Wiman’s Theorem
4. Corollaries: Entire Dirichlet Series
5. Discussion
- 1.
- Is the finiteness of the Lebesgue measure the best possible description of the exceptional set E in the case in Corollary 1?
- 2.
- Is the description the best possible description of the exceptional set E in the case in Theorem 3?
- 3.
- Is the description the best possible description of the exceptional set E in the case in Theorem 2?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wittich, H. Neuere Untersuchungen über Eindeutige Analytische Funktionen; Springer: Berlin-Göttingen-Heidelberg, Germany, 1955. [Google Scholar]
- Hayman, W.K. The local growth of power series: A survey of the Wiman–Valiron method. Can. Math. Bull. 1974, 17, 317–358. [Google Scholar] [CrossRef]
- Hayman, W.K. Subharmonic Functions; Academic Press: London, UK, 1990; Volume 2, XXI+591p, ISBN 978-012-334-802-9. [Google Scholar]
- Bergweiler, W. On meromorphic functions that share three values and on the exceptional set in Wiman-Valiron theory. Kodai Math. J. 1990, 13, 1–9. [Google Scholar] [CrossRef]
- Skaskiv, O.B.; Filevych, P.V. On the size of an exceptional set in the Wiman theorem. Mat. Stud. 1999, 12, 31–36. [Google Scholar]
- Skaskiv, O.B.; Zrum, O.V. On an exceptional set in the Wiman inequalities for entire functions. Mat. Stud. 2004, 21, 13–24. [Google Scholar]
- Salo, T.M.; Skaskiv, O.B.; Trakalo, O.M. On the best possible description of exceptional set in Wiman-Valiron theory for entire function. Mat. Stud. 2001, 16, 131–140. [Google Scholar]
- Kuryliak, A.O.; Skaskiv, O.B. Wiman’s type inequality in multiple-circular domain. Axioms 2021, 10, 348. [Google Scholar] [CrossRef]
- Grosse-Erdmann, K.-G. A note on the Wiman-Valiron inequality. Arch. Math. 2025, 124, 63–74. [Google Scholar] [CrossRef]
- Filevych, P.V. An exact estimate for the measure of the exceptional set in the Borel relation for entire functions. Ukr. Math. J. 2001, 53, 328–332. [Google Scholar] [CrossRef]
- Skaskiv, O.B.; Trakalo, O.M. Sharp estimate of exceptional set in Borel’s relation for entire functions of several complex variables. Mat. Studii 2002, 18, 53–56. [Google Scholar]
- Salo, T.M.; Skaskiv, O.B. Minimum modulus of lacunary power series and h-measure of exceptional sets. Ufa Math. J. 2017, 9, 135–144. [Google Scholar] [CrossRef]
- Skaskiv, O.B.; Salo, T.M. Entire Dirichlet series of rapid growth and new estimates for the measure of exceptional sets in theorems of the Wiman–Valiron type. Ukr. Math. J. 2001, 53, 978–991. [Google Scholar] [CrossRef]
- Salo, T.M.; Skaskiv, O.B.; Stasyuk, Y.Z. On a central exponent of entire Dirichlet series. Mat. Studii 2003, 19, 61–72. [Google Scholar]
- Skaskiv, O.B. A generalization of the little Picard theorem. J. Math. Sci. 1990, 48, 570–578. [Google Scholar] [CrossRef]
- Sheremeta, M.N. The Wiman-Valiron method for Dirichlet series. Ukr. Math. J. 1978, 30, 376–383. [Google Scholar] [CrossRef]
- Sheremeta, M.N. Asymptotic properties of entire functions defined by Dirichlet series and of their derivatives. Ukr. Math. J. 1979, 31, 558–564. [Google Scholar] [CrossRef]
- Mednykh, A.; Mednykh, I. On Wiman’s theorem for graphs. Discret. Math. 2015, 338, 1793–1800. [Google Scholar] [CrossRef]
- Kuryliak, A. Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents. Mat. Stud. 2023, 59, 178–186. [Google Scholar] [CrossRef]
- Sheremeta, M.M.; Gal’, Y.M. On some properties of the maximal term of series in systems of functions. Mat. Stud. 2024, 62, 46–53. [Google Scholar] [CrossRef]
- Bergweiler, W. The size of Wiman-Valiron Discs. Complex Var. Elliptic Equ. 2010, 56, 13–33. [Google Scholar] [CrossRef]
- Fenton, P.C.; Lingham, E.F. The size of Wiman-Valiron discs for subharmonic functions of a certain type. Complex Var. Elliptic Equ. 2016, 61, 456–468. [Google Scholar] [CrossRef]
- Waterman, J. Wiman-Valiron Discs and the Dimension of Julia Sets. Int. Math. Res. Not. 2021, 2021, 9545–9566. [Google Scholar] [CrossRef]
- Langley, J.K.; Rossi, J. Wiman-Valiron Theory for a Class of Functions Meromorphic in the Unit Disc. Math. Proc. R. Ir. Acad. 2014, 114A, 137–148. [Google Scholar] [CrossRef]
- Ishizaki, K.; Yanagihara, N. Wiman-Valiron method for difference equations. Nagoya Math. J. 2004, 175, 75–102. [Google Scholar] [CrossRef]
- Cao, T.B.; Dai, H.X.; Wang, J. Nevanlinna Theory for Jackson Difference Operators and Entire Solutions of q-Difference Equations. Anal. Math. 2021, 47, 529–557. [Google Scholar] [CrossRef]
- Wen, Z.-T.; Ye, Z. Wiman-Valiron theorem for q-differences. Ann. Acad. Sci. Fenn. Math. 2016, 41, 305–312. [Google Scholar] [CrossRef]
- Gao, L. The growth order of solutions of systems of complex difference equations. Acta Math. Sci. 2013, 33, 814–820. [Google Scholar] [CrossRef]
- Liu, K.; Yang, L.; Laine, I. Complex Delay-Differential Equations; De Gruyter Studies in Mathematics; De Gruyter Academic Publishing: Berlin, Germany, 2021; Volume 78, pp. 1–302. [Google Scholar] [CrossRef]
- Chyzhykov, I.E.; Semochko, N.S. On estimates of a fractional counterpart of the logarithmic derivative of a meromorphic function. Mat. Stud. 2013, 39, 107–112. [Google Scholar]
- Cheng, K.H. Wiman–Valiron theory for a polynomial series based on the Wilson operator. J. Approx. Theory 2019, 239, 174–209. [Google Scholar] [CrossRef]
- Cheng, K.H.; Chiang, Y.M. Wiman–Valiron Theory for a Polynomial Series Based on the Askey–Wilson Operator. Constr. Approx. 2021, 2021 54, 259–294. [Google Scholar] [CrossRef]
- Fenton, P.C.; Rossi, J. ODE’s and Wiman-Valiron theory in the unit disc. J. Math. Anal. Appl. 2010, 367, 137–145. [Google Scholar] [CrossRef]
- Fenton, P.C.; Rossi, J. Wiman-Valiron theory in simply connected domains. Comput. Methods Funct. Theory 2011, 11, 229–235. [Google Scholar] [CrossRef]
- Chyzhykov, I.; Filevych, P.; Gröhn, J.; Heittokangas, J.; Rättyä, J. Irregular finite order solutions of complex LDE’s in unit disc. J. Math. Pures Appl. 2022, 160, 158–201. [Google Scholar] [CrossRef]
- Hamouda, S. The possible orders of growth of solutions to certain linear differential equations near a singular point. J. Math. Anal. Appl. 2017, 458, 992–1008. [Google Scholar] [CrossRef]
- Conte, R.; Ng, T.-W.; Wu, C. Closed-form meromorphic solutions of some third order boundary layer ordinary differential equations. Bull. Sci. Math. 2022, 174, 103096. [Google Scholar] [CrossRef]
- Ishizaki, K.; Yanagihara, N. Entire functions of small order of growth. Comput. Methods Funct. Theory 2011, 11, 301–308. [Google Scholar] [CrossRef]
- Ostrovskii, I.; Üreyen, A.E. On maximum modulus points and zero sets of entire functions of regular growth. Rocky Mt. J. Math. 2008, 38, 583–618. [Google Scholar] [CrossRef]
- Fedynyak, S.I.; Filevych, P.V. Distance between a maximum modulus point and zero set of an analytic function. Mat. Stud. 2019, 52, 10–23. [Google Scholar] [CrossRef]
- Fenton, P.C.; Rossi, J. A non-power series approach to Wiman-Valiron type theorems. Ann. Acad. Sci. Fenn. Math. 2016, 41, 343–355. [Google Scholar] [CrossRef]
- Fenton, P.C. Wiman-Valiron theory in several variables. Ann. Acad. Sci. Fenn. Math. 2013, 38, 29–47. [Google Scholar] [CrossRef]
- Fenton, P.C. Wiman-Valiron theory in two variables. Trans. Am. Math. Soc. 1995, 347, 4403–4412. [Google Scholar] [CrossRef]
- Constales, D.; de Almeida, R.; Kraußhar, R.S. Basics of a generalized Wiman-Valiron theory for monogenic Taylor series of finite convergence radius. Math. Z. 2010, 266, 665–681. [Google Scholar] [CrossRef]
- Constales, D.; De Almeida, R.; Kraußhar, R.S. Wiman–Valiron theory for the Dirac-Hodge equation on upper half-space of Rn+1. J. Math. Anal. Appl. 2011, 378, 238–251. [Google Scholar] [CrossRef]
- De Almeidam, R.; Kraußhar, R.S. Wiman-Valiron theory for higher dimensional polynomial Cauchy-Riemann equations. Math. Methods Appl. Sci. 2018, 41, 15–27. [Google Scholar] [CrossRef]
- Yuan, H.; Karachik, V.; Wang, D.; Ji, T. On the Growth Orders and Types of Biregular Functions. Mathematics 2024, 12, 3804. [Google Scholar] [CrossRef]
- Farajli, D.E. On Wiman-Valiron type estimations for parabolic equations. In Transactions of National Academy of Sciences of Azerbaijan; Series of Physical-Technical and Mathematical Sciences; Institute of Mathematics and Mechanics: Bakı, Azerbaijan, 2019; Volume 39, pp. 57–61. [Google Scholar]
- Suleymanov, N.M.; Farajli, D.E.; Khalilov, V.S. Probability method and Wiman–Valiron type estimations for differential equations. In Transactions of National Academy of Sciences of Azerbaijan; Series of Physical-Technical and Mathematical Sciences; Institute of Mathematics and Mechanics: Bakı, Azerbaijan, 2017; Volume 37, pp. 168–175. [Google Scholar]
- Suleimanov, N.M.; Farajli, D.E. Estimates of Wiman–Valiron type for evolution equations. Differ. Equ. 2017, 53, 1062–1069. [Google Scholar] [CrossRef]
- Suleymanov, N.M.; Farajli, D. On an example of Wiman–Valiron type application of general estimation in mathematical physics. In Transactions of National Academy of Sciences of Azerbaijan; Series of Physical-Technical and Mathematical Sciences; Institute of Mathematics and Mechanics: Bakı, Azerbaijan, 2024; Volume 44, pp. 132–137. [Google Scholar]
- Fenton, P.C.; Rossi, J. Two-variable Wiman-Valiron theory and PDES. Ann. Acad. Sci. Fenn. Math. 2010, 35, 571–580. [Google Scholar] [CrossRef]
- Dang, G. New exact solutions of the sixth-order thin-film equation with complex method. Partial. Differ. Equ. Appl. Math. 2021, 4, 100116. [Google Scholar] [CrossRef]
- Oryshchyn, O.G. Analogues of Wiman’s theorem for entire multiple Dirichlet series. Visn. LDU. Quest. Algebra Math. Phys. 1996, 43, 20–23. [Google Scholar]
- Strelitz, S.I. Asymptotic Properties of the Analytic Solutions of Differential Equations; Mintis: Vilnius, Lithuania, 1972. (In Russian) [Google Scholar]
- Dubey, S.I.; Skaskiv, O.B. On the main relation of the Wiman-Valiron theory and asymptotic h-density of an exceptional sets. Precarpathian Bull. Shevchenko Sci. Soc. Number 2024, 19, 18–23. [Google Scholar] [CrossRef]
- Laurinčikas, A. Universality of the Hurwitz zeta-function in short intervals. Bol. Soc. Mat. Mex. 2025, 31, 17. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals. Symmetry 2024, 16, 1707. [Google Scholar] [CrossRef]
- Gerges, H.; Laurinčikas, A.; Macaitienė, R. A Joint Limit Theorem for Epstein and Hurwitz Zeta-Functions. Mathematics 2024, 12, 1922. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skaskiv, O.; Bandura, A.; Salo, T.; Dubei, S. Entire Functions of Several Variables: Analogs of Wiman’s Theorem. Axioms 2025, 14, 216. https://doi.org/10.3390/axioms14030216
Skaskiv O, Bandura A, Salo T, Dubei S. Entire Functions of Several Variables: Analogs of Wiman’s Theorem. Axioms. 2025; 14(3):216. https://doi.org/10.3390/axioms14030216
Chicago/Turabian StyleSkaskiv, Oleh, Andriy Bandura, Tetyana Salo, and Sviatoslav Dubei. 2025. "Entire Functions of Several Variables: Analogs of Wiman’s Theorem" Axioms 14, no. 3: 216. https://doi.org/10.3390/axioms14030216
APA StyleSkaskiv, O., Bandura, A., Salo, T., & Dubei, S. (2025). Entire Functions of Several Variables: Analogs of Wiman’s Theorem. Axioms, 14(3), 216. https://doi.org/10.3390/axioms14030216