On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions
Abstract
:1. Introduction
- The subclass was defined and studied by Soköl et al. [6] by setting the function .
- The subclass of starlike functions associated with a crescent-shaped region was investigated by Raina et al. [7] by taking .
- The subclass of starlike functions related to cardioid shape domain was introduced and explored by Sharma et al. [8] by taking .
- The subclass , which contain the functions whose image domain is bounded by a symmetric region. This class was established and studied by Cho et al. [9] by selecting .
- The subclass was introduced by Kumar et al. [10] by setting the function .
- The subclass associated with nephroid shaped region was introduced by Wani et al. [11], by taking .
2. Set of Lemmas
3. Main Results
- (1)
- Interior points of cuboid
- (2)
- On the six faces of the cuboid
- (3)
- On the twelve edges of the cuboid
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindelöf, E. Mémoire sur certaines inégalités dans la théorie des functions monogénses et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d’unpoint singulier essentiel. Ann. Soc. Sci. Fenn. 1909, 35, 1–35. [Google Scholar]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Bieberbach, L. Über dié Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955. [Google Scholar]
- Branges, L.D. A proof of Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; International Press: New York, NY, USA, 1992. [Google Scholar]
- Soköł, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Raina, R.K.; Soköł, J. On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Kumar, S.S.; Arora, K. Starlike function associated with a petal shaped domain. arXiv 2020, arXiv:2010.10072. [Google Scholar]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Charlier, C.; Deano, A. Asymptotics for Hankel determinants associated to a Hermite weight with a varying discontinuity. Symmetry Integr. Geom. Methods Appl. 2018, 14, 018. [Google Scholar] [CrossRef]
- Min, C.; Chen, Y. Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight. Math. Methods Appl. Sci. 2019, 42, 301–321. [Google Scholar] [CrossRef]
- Min, C.; Chen, Y. Painlevé V and the Hankel determinant for a singularly perturbed Jacobi weight. Nucl. Phys. 2020, 961, 115221. [Google Scholar] [CrossRef]
- Hayman, W.K. On second Hankel determinant of mean univalent function. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Babalola, K.O. On third order Hankel determinant for some classes of univalent function. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl. 2013, 2013, 412. [Google Scholar] [CrossRef]
- Mishra, A.K.; Prajapat, J.K.; Maharana, S. Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points. Cogent Math. 2016, 3, 1160557. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, H.; Ma, L.N. Upper bound of third Hankel determinant for a class of analytic functions. Pure Appl. Math. 2017, 33, 211–220. [Google Scholar]
- Murugusundaramoorthy, G.; Bulboacă, T. Hankel determinants for new subclasses of analytic functions related to a shell-shaped region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Zaprawa, P.; Obradovi, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2021, 115, 49. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Moorthy, G.M.; Chinram, R.; Mashwani, W.K. Applications of modified sigmoid functions to a class of starlike functions. J. Funct. Spaces 2020, 2020, 8844814. [Google Scholar] [CrossRef]
- Khan, M.G.; Cho, N.E.; Shaba, T.G.; Ahmad, B.; Mashwani, W.K. Coefficient functional for a class of bounded turning functions related to modified sigmoid function. AIMS Math. 2021, 7, 3133–3149. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain coefficient estimate problems for three-leaf-type starlike functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N. Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli. Mathematics 2019, 7, 848. [Google Scholar] [CrossRef]
- Tang, H.; Murugusundaramoorthy, G.; Li, S.H.; Ma, L.N. Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Math. 2022, 7, 6365–6380. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Smiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Ullah, K.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. A study of sharp coefficient bounds for a new subfamily of starlike functions. J. Inequal. Appl. 2021, 1, 194. [Google Scholar] [CrossRef]
- Arif, M.; Barukab, O.M.; Khan, S.A.; Abbas, M. The sharp bounds of Hankel determinants for the families of three-leaf-type analytic functions. Fractal Fract. 2022, 6, 291. [Google Scholar] [CrossRef]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, S.M. The sharp bounds of the third order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Jawarneh, Y.; Naeem, M.; Iqbal, N.; Kafle, J. Some sharp results on coefficient estimate problems for four-leaf-type bounded turning functions. J. Funct. Spaces 2022, 2022, 8356125. [Google Scholar] [CrossRef]
- Tang, H.; Ahmad, A.; Rasheed, A.; Ali, A.; Hussain, S.; Noor, S. Sharp coefficient and Hankel problems related to a symmetric domain. Symmetry 2023, 15, 1865. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel determinants and coefficient estimates for starlike functions related to symmetric booth lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rath, B. The Sharp bound of the third Hankel determinant for the inverse of bounded turning functions. Contemp. Math. 2023, 4, 30–41. [Google Scholar]
- Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed, A.; Hussain, S.; Ali, A. Analytic functions related to a balloon-shaped domain. Fractal Fract. 2023, 7, 865. [Google Scholar] [CrossRef]
- Kumar, S.; Breaz, D.; Cotîrlă, L.-I.; Çetinkaya, A. Hankel determinants of normalized analytic functions associated with hyperbolic secant function. Symmetry 2024, 16, 1303. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, V.S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Tang, H.; Arif, M.; Haq, M.; Khan, N.; Khan, M.; Ahmad, K.; Khan, B. Fourth Hankel determinant problem based on certain analytic functions. Symmetry 2022, 14, 663. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, H. A study of fourth-order Hankel determinants for starlike functions connected with the sine function. J. Funct. Spaces 2021, 2021, 9991460. [Google Scholar] [CrossRef]
- Arif, M.; Ullah, I.; Raza, M.; Zaprawa, P. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings. Math. Slovaca 2020, 70, 319–328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Ahmad, A.; Ikhlas, H.; Hussain, S.; Noor, S.; Tang, H. On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions. Axioms 2025, 14, 191. https://doi.org/10.3390/axioms14030191
Liu D, Ahmad A, Ikhlas H, Hussain S, Noor S, Tang H. On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions. Axioms. 2025; 14(3):191. https://doi.org/10.3390/axioms14030191
Chicago/Turabian StyleLiu, Dong, Adeel Ahmad, Huma Ikhlas, Saqib Hussain, Saima Noor, and Huo Tang. 2025. "On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions" Axioms 14, no. 3: 191. https://doi.org/10.3390/axioms14030191
APA StyleLiu, D., Ahmad, A., Ikhlas, H., Hussain, S., Noor, S., & Tang, H. (2025). On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions. Axioms, 14(3), 191. https://doi.org/10.3390/axioms14030191