Resource Allocation and Minmax Scheduling Under Group Technology and Different Due-Window Assignments
Abstract
1. Introduction
2. Literature Review
3. Problem Statement
- Linear function for resource allocation:where indicates the normal processing time, indicates the compression factor, is the resource allocation amount, and is the upper bound of the resource allocation amount.
- Convex function for resource allocation:where is the job workload of , and k is a positive constant.
4. Constant Processing Times
| Algorithm 1: Constant processing times |
Step 1. Intra-job Sequence. For each group ← Any feasible order Step 2. Comprehensive Parameter. Determine for ← Equation (5) Step 3. Inter-group Sequence. In ascending order of ← Lemma 3 Step 4. Sub-problems Solution. Calculate , for each group ← Lemma 2 Calculate for each group ← Equation (4) Step 5. Global Solution. Calculate the objective function ← |
5. Linear Resource Consumption Function
5.1. Basic Properties
| Algorithm 2: Heuristic algorithm () |
Step 1. Critical Parameter Compute for ← Equation (5) Step 2. Intra-job Sequence For each group ← Lemma 5 Step 3. Inter-group Sequence Strategy A: Schedule groups in descending of Calculate the objective value Equation (7) Strategy B: Schedule groups in ascending of Calculate the objective value Equation (7) Strategy C: Schedule groups in descending of Calculate the objective value Equation (7) Step 4. Feasible Solution Selection Compute |
5.2. Lower Bounds
6. Convex Resource Consumption Function
6.1. Basic Properties
| Algorithm 3: Heuristic algorithm () |
Step 1. Critical Parameter Compute for ← Equation (5) Compute ← Step 2. Intra-job Sequence For each group ← Any feasible order Step 3. Inter-group Sequence Strategy A: Schedule groups in descending of Calculate the objective value Equation (17) Strategy B: Schedule groups in descending of Calculate the objective value Equation (17) Strategy C: Schedule groups in descending of Calculate the objective value Equation (17) Strategy D: Schedule groups in ascending of Calculate the objective value Equation (17) Strategy E: Schedule groups in ascending of Calculate the objective value Equation (17) Step 4. Feasible Solution Selection Compute |
6.2. Lower Bounds
7. Computational Algorithms
7.1. Branch-and-Bound () Algorithm
| Algorithm 4: |
Step 1. (Initial Solution Generation) Initial feasible solution Algorithm 2/Algorithm 3 Step 2. (Node Evalution and Pruning) For each node : If : Prune node and its subtree For each unfathomed schedule : If : Prune node and its subsequent branches Else: Complete the schedule to obtain Calculate If : Update: Else: Discard Step 3. (Termination) While there are nodes left to explore Perform the exploration process as outlined in Step 2 If all nodes have been explored Terminate the algorithm Output optimal inter-group sequence and |
7.2. Simulated Annealing () Algorithm
| Algorithm 5: |
Step 1. (Initial Solution Generation) Initial feasible solution Algorithm 2/Algorithm 3 Current solution Compute the objective function value Equation (9)/Equation (14) (starting temperature) (lower temperature limit) (cooling rate) (iterations) (random decision factor) Step 2. (Iterative Optimization) While and do: Randomly select positions If : , continue Else: Generate neighbor Swap and in If or : Accept If : Update temperature: Step 3. (Termination) Output best inter-group sequence and |
8. Numerical Experiments
9. Summary and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Case 1. , for job , we have
- Case 2. , for job , we have
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
References
- Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. No-idle flow shop scheduling with deteriorating jobs and common due date under dominating machines. Asia-Pac. J. Oper. Res. 2024, 41, 2450003. [Google Scholar] [CrossRef]
- Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]
- He, X.; Pan, Q.K.; Gao, L.; Neufeld, J.S.; Gupta, J.N.D. Historical information based iterated greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent setup times. Omega 2024, 123, 102997. [Google Scholar] [CrossRef]
- Shabtay, D.; Steiner, G. Optimal due date assignment and resource allocation to minimize the weighted number of tardy jobs on a single machine. Manuf. Serv. Oper. Manag. 2007, 9, 332–350. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Liu, T.; Wang, J.; Geng, X.-N. Single-machine scheduling simultaneous consideration of resource allocations and exponential time-dependent learning effects. J. Oper. Res. Soc. 2025, 76, 528–540. [Google Scholar] [CrossRef]
- Janiak, A.; Janiak, W.A.; Krysiak, T.; Kwiatkowski, T. A survey on scheduling problems with due windows. Eur. J. Oper. Res. 2015, 242, 347–357. [Google Scholar] [CrossRef]
- Chen, X.; Liang, Y.; Sterna, M.; Wang, W.; Blazewicz, J. Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date. Eur. J. Oper. Res. 2020, 284, 67–74. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W. Delivery scheduling with variable processing times and due date assignments. Bull. Malays. Math. Sci. Soc. 2025, 48, 76. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Tang, X.-M. The two single-machine scheduling problems with slack due date to minimize total early work and late work. J. Oper. Res. Soc. China 2024. [Google Scholar] [CrossRef]
- Hoffmann, J.; Neufeld, J.S.; Buscher, U. Minimizing the earliness–tardiness for the customer order scheduling problem in a dedicated machine environment. J. Sched. 2024, 27, 525–543. [Google Scholar] [CrossRef]
- Bai, B.; Wei, C.-M.; He, H.-Y.; Wang, J.-B. Study on single-machine common/slack due-window assignment scheduling with delivery times, variable processing times and outsourcing. Mathematics 2024, 12, 2833. [Google Scholar] [CrossRef]
- Zhao, S. Resource allocation flowshop scheduling with learning effect and slack due window assignment. J. Ind. Manag. Optim. 2021, 17, 2817. [Google Scholar] [CrossRef]
- Lu, Y.-Y.; Zhang, S.; Tao, J.-Y. Earliness-tardiness scheduling with delivery times and deteriorating jobs. Asia-Pac. J. Oper. Res. 2025, 42, 2450009. [Google Scholar] [CrossRef]
- Qiu, X.-Y.; Wang, J.-B. Single-machine scheduling with mixed due-windows and deterioration effects. J. Appl. Math. Comput. 2025, 71, 2527–2542. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, T. Due-window assignment scheduling in the proportionate flow shop setting. Ann. Oper. Res. 2020, 292, 113–131. [Google Scholar] [CrossRef]
- Wang, J.-B.; Lv, D.-Y.; Wan, C. Proportionate flow shop scheduling with job-dependent due windows and position-dependent weights. Asia-Pac. J. Oper. Res. 2025, 42, 2450011. [Google Scholar] [CrossRef]
- Tian, Y. Single-machine due-window assignment scheduling with resource allocation and generalized earliness/tardiness penalties. Asia-Pac. J. Oper. Res. 2022, 39, 2150041. [Google Scholar] [CrossRef]
- Wang, J.-B.; Sun, Z.-W.; Gao, M. Research on single-machine scheduling with due-window assignment and resource allocation under total resource consumption cost is bounded. J. Appl. Math. Comput. 2025, 71, 7905–7927. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Wang, J.; Pan, L. Slack due window assignment scheduling in the single-machine with controllable processing times. J. Ind. Manag. Optim. 2024, 20, 15–35. [Google Scholar] [CrossRef]
- Qian, J.; Chang, G.; Zhang, X. Single-machine common due-window assignment and scheduling with position-dependent weights, delivery time, learning effect and resource allocations. J. Appl. Math. Comput. 2024, 70, 1965–1994. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia-Pac. J. Oper. Res. 2024, 41, 2350026. [Google Scholar] [CrossRef]
- Weng, W.; Chu, C.; Wu, P. Resource allocation to minimize the makespan with multi-resource operations. J. Syst. Sci. Complex. 2024, 37, 2054–2070. [Google Scholar] [CrossRef]
- Sarpatwar, K.; Schieber, B.; Shachnai, H. The preemptive resource allocation problem. J. Sched. 2024, 27, 103–118. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, D.-Y.; Huang, X. Properties for due window assignment scheduling on a two-machine no-wait proportionate flow shop with learning effects and resource allocation. J. Oper. Res. Soc. 2025, 1–17. [Google Scholar] [CrossRef]
- Shabtay, D.; Itskovich, Y.; Yedidsion, L.; Oron, D. Optimal due date assignment and resource allocation in a group technology scheduling environment. Comput. Oper. Res. 2010, 37, 2218–2228. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X. Group technology scheduling with due-date assignment and controllable processing times. Processes 2023, 11, 1271. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Zhang, G.; Cheng, Y. On optimal due date assignment without restriction and resource allocation in group technology scheduling. J. Comb. Optim. 2023, 45, 64. [Google Scholar] [CrossRef]
- Chen, K.; Han, S.; Huang, H.; Ji, M. A group-dependent due window assignment scheduling problem with controllable learning effect. Asia-Pac. J. Oper. Res. 2023, 40, 2250025. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W. Single machine group scheduling jobs with resource allocations subject to unrestricted due date assignments. J. Appl. Math. Comput. 2024, 70, 6283–6308. [Google Scholar] [CrossRef]
- Yin, N.; Gao, M. Single-machine group scheduling with general linear deterioration and truncated learning effects. Comput. Appl. Math. 2024, 43, 386. [Google Scholar] [CrossRef]
- Yin, N.; He, H.; Zhao, Y.; Chang, Y.; Wang, N. Integrating group setup time deterioration effects and job processing time learning effects with group technology in single-machine green scheduling. Axioms 2025, 14, 480. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Xu, Y.X.; Qian, B.; Hu, R.; Wu, F.C.; Wang, L. An enhanced estimation of distribution algorithm with problem-specific knowledge for distributed no-wait flowshop group scheduling problems. Swarm Evol. Comput. 2024, 87, 101559. [Google Scholar] [CrossRef]
- Li, M.; Goossens, D. Grouping and scheduling multiple sports leagues: An integrated approach. J. Oper. Res. Soc. 2025, 76, 739–757. [Google Scholar] [CrossRef]
- Ren, J.F.; Yang, Y. Common due-window assignment and minmax scheduling with resource allocation and group technology on a single machine. Eng. Optim. 2022, 54, 1819–1834. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Single-machine group technology scheduling with resource allocation and slack due window assignment including minmax criterion. J. Oper. Res. Soc. 2025, 76, 1696–1712. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. J. Oper. Res. Soc. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Research on two-machine flow shop scheduling problem with release dates and truncated learning effects. Eng. Optim. 2025, 57, 1828–1848. [Google Scholar] [CrossRef]
- Fasihi, M.; Tavakkoli-Moghaddam, R.; Jolai, F. A bi-objective re-entrant permutation flow shop scheduling problem: Minimizing the makespan and maximum tardiness. Oper. Res. 2023, 23, 29. [Google Scholar] [CrossRef]
- Sun, Y.; He, H.; Zhao, Y.; Wang, J.-B. Minimizing makespan scheduling on a single machine with general positional deterioration effects. Axioms 2025, 14, 290. [Google Scholar] [CrossRef]
- Cheng, T.C.E.; Kravchenko, S.A.; Lin, B.M.T. On scheduling of step-improving jobs to minimize the total weighted completion time. J. Oper. Res. Soc. 2024, 75, 720–730. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Chen, F.-F.; Zhang, X.-D. Single-machine scheduling with times-based and job-dependent learning effect. J. Oper. Res. Soc. 2017, 68, 809–815. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.-B. Single-machine scheduling with simultaneous learning effects and delivery times. Mathematics 2024, 12, 2522. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
| Case | Parameter Relations | ||
|---|---|---|---|
| 1 | 0 | 0 | |
| 2 | and | 0 | |
| 3 |
| Parameter | Value | Parameter | Value |
|---|---|---|---|
| n | 50, 100, 150, 200, 250 | g | 8, 10, 12, 14, 16 |
| s | |||
| n | g | Nodes | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
| 50 | 8 | 10.40 | 47.83 | 261.68 | 328.70 | 94.71 | 126.94 | 1500.85 | 1892 |
| 10 | 11.98 | 18.29 | 337.25 | 584.34 | 716.25 | 996.36 | 11,374.15 | 13,699 | |
| 12 | 18.35 | 25.14 | 452.59 | 712.68 | 7136.56 | 7858.21 | 98,086.90 | 108,029 | |
| 14 | 19.39 | 37.03 | 580.96 | 942.05 | 70,350.38 | 74,647.81 | 941,418.85 | 986,409 | |
| 16 | 23.92 | 36.99 | 719.25 | 1369.44 | 721,905.69 | 751,165.10 | 9,610,224.00 | 9,864,100 | |
| 100 | 8 | 12.65 | 19.01 | 793.29 | 1111.82 | 124.40 | 184.74 | 1374.35 | 1899 |
| 10 | 16.44 | 24.01 | 979.47 | 1288.74 | 907.79 | 1141.79 | 9551.70 | 12,378 | |
| 12 | 24.41 | 61.06 | 1360.63 | 2345.14 | 8565.56 | 10,878.36 | 86,617.80 | 109,592 | |
| 14 | 27.31 | 45.67 | 1445.52 | 2019.04 | 83,773.23 | 98,276.67 | 831,766.10 | 973,168 | |
| 16 | 35.65 | 48.08 | 1829.78 | 2549.44 | 945,233.51 | 1,048,307.79 | 8,893,636.50 | 9,829,462 | |
| 150 | 8 | 17.22 | 35.38 | 1536.94 | 2021.34 | 133.86 | 202.43 | 1225.00 | 1772 |
| 10 | 21.16 | 44.19 | 1976.31 | 2806.55 | 1107.47 | 1565.28 | 9440.20 | 13,049 | |
| 12 | 33.51 | 93.40 | 2387.00 | 3033.55 | 9248.30 | 13,024.85 | 74,996.65 | 105,688 | |
| 14 | 41.67 | 111.40 | 2872.30 | 3937.72 | 89,381.03 | 123,125.28 | 723,740.80 | 982,882 | |
| 16 | 41.91 | 82.14 | 3523.62 | 4867.36 | 1,034,780.75 | 1,287,990.71 | 7,809,412.10 | 9,819,852 | |
| 200 | 8 | 22.22 | 42.16 | 2672.56 | 3958.94 | 173.44 | 253.26 | 1225.50 | 1696 |
| 10 | 29.94 | 72.26 | 3465.05 | 4382.45 | 1370.70 | 1928.64 | 9621.80 | 13,020 | |
| 12 | 36.14 | 124.32 | 4100.38 | 4979.95 | 11,117.56 | 15,048.06 | 77,699.30 | 104,005 | |
| 14 | 38.88 | 55.61 | 4861.51 | 5817.98 | 104,464.00 | 144,581.22 | 692,756.95 | 963,355 | |
| 16 | 50.57 | 96.06 | 5804.69 | 8137.41 | 1,061,290.91 | 1,461,491.02 | 6,819,379.45 | 9,308,702 | |
| 250 | 8 | 24.22 | 52.39 | 3787.02 | 5697.26 | 216.57 | 292.49 | 1361.05 | 1866 |
| 10 | 33.76 | 63.23 | 4649.48 | 5099.51 | 1495.39 | 2063.83 | 9234.75 | 12,808 | |
| 12 | 39.99 | 57.28 | 6174.39 | 8234.44 | 13,055.42 | 17,401.15 | 78,403.35 | 102,607 | |
| 14 | 44.30 | 95.61 | 7324.76 | 9199.85 | 104,936.87 | 170,952.85 | 606,957.70 | 979,429 | |
| 16 | 55.86 | 113.98 | 8089.89 | 9614.34 | 1,162,401.69 | 1,729,859.56 | 6,690,851.15 | 9,843,037 | |
| n | g | Nodes | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
| 50 | 8 | 13.33 | 24.62 | 198.03 | 335.01 | 135.46 | 271.48 | 2214.75 | 4288 |
| 10 | 21.65 | 51.43 | 358.35 | 521.33 | 2048.21 | 7456.58 | 28,782.30 | 108,729 | |
| 12 | 25.72 | 46.54 | 419.04 | 712.50 | 9706.27 | 31,632.38 | 121,436.15 | 406,079 | |
| 14 | 38.89 | 78.51 | 545.90 | 965.10 | 27,812.52 | 96,358.71 | 308,153.50 | 1,144,365 | |
| 16 | 49.28 | 100.54 | 695.15 | 1311.70 | 323,517.41 | 1,831,347.75 | 3,771,107.55 | 22,458,196 | |
| 100 | 8 | 16.16 | 27.18 | 542.09 | 922.93 | 121.25 | 256.94 | 1414.25 | 3269 |
| 10 | 24.53 | 42.71 | 689.08 | 996.35 | 2396.36 | 7114.47 | 25,312.65 | 79,011 | |
| 12 | 32.74 | 51.20 | 928.15 | 1568.26 | 6078.90 | 32,493.67 | 59,554.25 | 343,880 | |
| 14 | 47.26 | 91.84 | 1113.99 | 1651.02 | 24,268.20 | 88,708.04 | 228,015.50 | 881,809 | |
| 16 | 58.75 | 98.93 | 1318.04 | 1937.90 | 298,974.43 | 1,464,102.06 | 2,701,465.70 | 13,617,284 | |
| 150 | 8 | 22.60 | 39.56 | 923.40 | 1310.42 | 119.49 | 361.05 | 1180.10 | 4115 |
| 10 | 36.58 | 61.80 | 1149.65 | 1411.81 | 1331.48 | 4434.83 | 11,949.45 | 43,386 | |
| 12 | 56.55 | 110.52 | 1635.13 | 2798.47 | 6620.55 | 39,937.48 | 54,686.10 | 339,390 | |
| 14 | 60.86 | 89.73 | 1930.03 | 2667.85 | 78,435.71 | 475,830.98 | 620,264.15 | 3,910,555 | |
| 16 | 75.16 | 171.55 | 2353.79 | 3021.36 | 182,035.52 | 509,891.81 | 1,369,440.60 | 4,290,117 | |
| 200 | 8 | 23.95 | 36.13 | 1375.99 | 1858.15 | 156.14 | 394.07 | 1438.60 | 3967 |
| 10 | 41.45 | 74.52 | 1872.75 | 2904.67 | 2992.69 | 25,719.16 | 23,824.55 | 231,010 | |
| 12 | 60.28 | 166.55 | 2569.09 | 3127.52 | 16,585.21 | 61,037.05 | 117,811.45 | 466,274 | |
| 14 | 63.38 | 96.01 | 3125.64 | 3743.12 | 65,066.32 | 298,498.88 | 454,241.80 | 2,172,835 | |
| 16 | 76.49 | 132.24 | 3528.66 | 5277.97 | 205,795.66 | 791,336.43 | 1,402,518.30 | 5,751,726 | |
| 250 | 8 | 26.33 | 51.89 | 1881.27 | 2924.48 | 101.24 | 345.64 | 776.65 | 2933 |
| 10 | 47.13 | 81.54 | 2565.02 | 3198.36 | 2068.82 | 14,850.63 | 15,534.00 | 117,703 | |
| 12 | 57.52 | 152.68 | 3281.27 | 4090.30 | 10,446.19 | 45,463.10 | 72,803.70 | 337,235 | |
| 14 | 87.35 | 271.89 | 3934.30 | 5643.88 | 28,128.76 | 140,645.31 | 171,181.70 | 869,376 | |
| 16 | 99.10 | 157.78 | 4548.41 | 5569.42 | 110,168.81 | 414,937.14 | 652,411.00 | 2,517,969 | |
| n | g | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
| 50 | 8 | 0.058311 | 0.189976 | 0.001819 | 0.019022 | 0.001070 | 0.008466 | 0.001670 | 0.017365 |
| 10 | 0.086511 | 0.306536 | 0.000913 | 0.018251 | 0.000218 | 0.001954 | 0.000849 | 0.016983 | |
| 12 | 0.094729 | 0.304596 | 0.002965 | 0.022467 | 0.001326 | 0.006325 | 0.002501 | 0.019864 | |
| 14 | 0.119070 | 0.352619 | 0.007845 | 0.037220 | 0.002388 | 0.012976 | 0.006726 | 0.029332 | |
| 16 | 0.106064 | 0.266561 | 0.010157 | 0.030139 | 0.005101 | 0.014097 | 0.009238 | 0.030139 | |
| 100 | 8 | 0.077988 | 0.209544 | 0.000000 | 0.000000 | 0.001919 | 0.006534 | 0.000000 | 0.000000 |
| 10 | 0.090127 | 0.315157 | 0.001207 | 0.015567 | 0.001768 | 0.007214 | 0.000699 | 0.007010 | |
| 12 | 0.073293 | 0.205789 | 0.001432 | 0.016744 | 0.000141 | 0.001243 | 0.001016 | 0.011891 | |
| 14 | 0.105351 | 0.256325 | 0.004740 | 0.025903 | 0.000316 | 0.003565 | 0.004395 | 0.023051 | |
| 16 | 0.084286 | 0.338228 | 0.004135 | 0.028901 | 0.000714 | 0.002897 | 0.003608 | 0.020566 | |
| 150 | 8 | 0.059653 | 0.266275 | 0.020917 | 0.049250 | 0.001863 | 0.009341 | 0.005280 | 0.023770 |
| 10 | 0.090026 | 0.402509 | 0.023521 | 0.071000 | 0.001015 | 0.003365 | 0.012194 | 0.042977 | |
| 12 | 0.098340 | 0.252502 | 0.023891 | 0.059370 | 0.000252 | 0.001546 | 0.013690 | 0.038843 | |
| 14 | 0.090227 | 0.217173 | 0.029296 | 0.072437 | 0.000595 | 0.005124 | 0.019308 | 0.044734 | |
| 16 | 0.086428 | 0.180037 | 0.023364 | 0.059435 | 0.000101 | 0.001531 | 0.017165 | 0.054697 | |
| 200 | 8 | 0.050210 | 0.257090 | 0.027229 | 0.056757 | 0.002140 | 0.009634 | 0.004087 | 0.013051 |
| 10 | 0.063347 | 0.224024 | 0.024704 | 0.052984 | 0.002726 | 0.012464 | 0.011261 | 0.025237 | |
| 12 | 0.076003 | 0.189812 | 0.030258 | 0.081978 | 0.004235 | 0.028946 | 0.016266 | 0.042087 | |
| 14 | 0.086726 | 0.320629 | 0.024707 | 0.056276 | 0.000030 | 0.000600 | 0.017063 | 0.040967 | |
| 16 | 0.112612 | 0.347074 | 0.029451 | 0.073682 | 0.006067 | 0.061520 | 0.020039 | 0.048155 | |
| 250 | 8 | 0.064933 | 0.191195 | 0.012995 | 0.032237 | 0.008958 | 0.054512 | 0.003906 | 0.016916 |
| 10 | 0.066409 | 0.198319 | 0.024536 | 0.060480 | 0.009480 | 0.056186 | 0.011257 | 0.023049 | |
| 12 | 0.065265 | 0.159173 | 0.024540 | 0.052761 | 0.001308 | 0.005666 | 0.013953 | 0.032658 | |
| 14 | 0.122378 | 0.329899 | 0.026507 | 0.055438 | 0.002109 | 0.003450 | 0.015493 | 0.032750 | |
| 16 | 0.086707 | 0.181180 | 0.022480 | 0.052985 | 0.003931 | 0.065452 | 0.016488 | 0.039344 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-H.; Wang, J.-B. Resource Allocation and Minmax Scheduling Under Group Technology and Different Due-Window Assignments. Axioms 2025, 14, 827. https://doi.org/10.3390/axioms14110827
Zhang L-H, Wang J-B. Resource Allocation and Minmax Scheduling Under Group Technology and Different Due-Window Assignments. Axioms. 2025; 14(11):827. https://doi.org/10.3390/axioms14110827
Chicago/Turabian StyleZhang, Li-Han, and Ji-Bo Wang. 2025. "Resource Allocation and Minmax Scheduling Under Group Technology and Different Due-Window Assignments" Axioms 14, no. 11: 827. https://doi.org/10.3390/axioms14110827
APA StyleZhang, L.-H., & Wang, J.-B. (2025). Resource Allocation and Minmax Scheduling Under Group Technology and Different Due-Window Assignments. Axioms, 14(11), 827. https://doi.org/10.3390/axioms14110827

