Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain
Abstract
1. Introduction and Definitions
2. Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Noor, K.I.; Malik, S.N. On a new class of analytic functions associated with conic domain. Comput. Math. Appl. 2011, 62, 367–375. [Google Scholar] [CrossRef]
- Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient bounds for p-valent close-to-convex functions associated with vertical strip domain. Korean J. Math. 2021, 329, 95–407. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Tran. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions; Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. I 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. J. 2019, 70, 1727–1740. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Matematiche 2013, 68, 107–122. [Google Scholar]
- Zainab, S.; Raza, M.; Sokół, J.; Malik, S.N. On starlike functions associated with cardiod domain. Nouvelle série Tome 2021, 109, 95–107. [Google Scholar]
- Duren, P.L. Univalent Functions (Grundehren der Math Wiss); Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Ravichandran, V.; Gangadharan, A.; Darus, M. Fekete-Szego inequality for certain class of Bazilevic functions. Far East J. Math. Sci. 2004, 15, 171–180. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokół, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Breaz, D.; Khan, S.; Tchier, F. Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain. Axioms 2024, 13, 366. https://doi.org/10.3390/axioms13060366
Srivastava HM, Breaz D, Khan S, Tchier F. Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain. Axioms. 2024; 13(6):366. https://doi.org/10.3390/axioms13060366
Chicago/Turabian StyleSrivastava, Hari M., Daniel Breaz, Shahid Khan, and Fairouz Tchier. 2024. "Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain" Axioms 13, no. 6: 366. https://doi.org/10.3390/axioms13060366
APA StyleSrivastava, H. M., Breaz, D., Khan, S., & Tchier, F. (2024). Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain. Axioms, 13(6), 366. https://doi.org/10.3390/axioms13060366