Analysis of WE Parameters of Life Using Adaptive-Progressively Type-II Hybrid Censored Mechanical Equipment Data
Abstract
:1. Introduction
- Gamma distribution with shape parameter 2 when .
- Generalized-exponential distribution with shape parameter 2 when .
- Develop both point and interval estimates of , , and using T2APH samples by exclusively focusing on both frequentist and Bayesian inferential methods.
- Acquire the maximum likelihood and product of spacings estimates of , , and . Create the approximate confidence interval (ACI) bounds of the unknown quantities using the observed Fisher information obtained from both the LF and PS approaches.
- Explore the PS method as an alternative to the traditional LF method and investigate both in two Bayesian estimation setups for unknown parameters, reliability function, and hazard function. Use independent gamma density priors against the squared-error loss to develop the Bayes estimates. Approximate the Bayes estimates and their credible intervals via Markov-chain Monte-Carlo (MCMC) techniques.
- Compare the effectiveness of the offered approaches based on several accuracy criteria, namely: simulated bias, mean squared error, and length of confidence interval values via Monte Carlo simulations. Illustrate a mechanical data set to discuss the suggested methodologies and to highlight the WE distribution’s superiority and flexibility over other eight lifetime models in the literature, namely: Weibull, gamma, Nadarajah–Haghighi, weighted Nadarajah–Haghighi, alpha power exponential, Weibull-exponential, generalized gamma, and generalized beta distributions.
2. Frequentist Estimations
2.1. Likelihood Estimators
2.2. Product of Spacings Estimators
2.3. Asymptotic Intervals
3. Bayes Estimations
3.1. Prior and Loss Functions
3.2. Posterior LF-Based
3.3. Posterior PS-Based
3.4. The MH Technique
Algorithm 1:The MH Sampling |
|
|
4. Numerical Comparisons
4.1. Simulation Design
- Scheme 1: ‘Left Censoring’, i.e., ;
- Scheme 2: ‘Middle Censoring’, i.e., ;
- Scheme 3: ‘Right Censoring’, i.e., ,
- Step 1: Simulate a traditional T2P sample as
- (a)
- Simulate from uniform distribution.
- (b)
- Put for
- (c)
- Set for .
- (d)
- Set the T2PC mechanism from is created.
- Step 2: Find d and eliminate for .
- Step 3: Truncated distribution is used to obtain the first order statistics of size .
4.2. Simulation Discussions
- All proposed estimates of , , and perform satisfactorily.
- As n increases, the offered estimates of , , , and behave well. An identical result is noted when is narrowed down.
- As T increases, we have observed that
- -
- The MBs, MSEs and ACLs for all suggested estimates of , , and decrease.
- -
- The MBs and MSEs for all suggested estimates of increase while the ACLs of the same parameter decrease.
- Comparing the suggested point/interval inferential techniques, it is clear that
- -
- The MBs, MSEs, and ACLs for all suggested estimates of , , and decrease.
- -
- In evaluating and , the PS method (and BE-PS method) provides more accurate results than the ML method.
- -
- In evaluating and , the ML method (and BE-ML method) provides more accurate results than the PS method.
- Comparing the suggested censoring designs, it is clear that
- -
- The acquired point estimates of and behaved well using right censoring, while those of and behaved well using left censoring.
- -
- The acquired interval estimates of , , and behaved well based on right censoring, while those of behaved well based on left censoring.
- In summary, in the presence of data created from the proposed adaptive progressively Type-II hybrid mechanism, using the Bayes MH technique through the product of the spacings approach to evaluate the scale and reliability parameters is recommended, while the Bayes MH technique through the likelihood function is also recommended to estimate the shape and hazard parameters.
5. Mechanical Data Analysis
- Weibull (W) by Weibull [23];
- Gamma (G) by Johnson et al. [24];
- Nadarajah–Haghighi (NH) by Nadarajah and Haghighi [25];
- Weighted Nadarajah–Haghighi (WNH) by Khan et al. [26];
- Alpha-power exponential (APE) by Mahdavi and Kundu [27];
- Weibull-exponential (W-Ex) by Oguntunde et al. [28];
- Generalized gamma (GG) by Stacy [29];
- Generalized beta (GB) by McDonald and Xu [30].
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
- , , ,
- .
References
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring; Springer: Birkhäuser, NY, USA, 2014. [Google Scholar]
- Kundu, D.; Joarder, A. Analysis of Type-II progressively hybrid censored data. Comput. Stat. Data Anal. 2006, 50, 2509–2528. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Kundu, D.; Chan, P.S. Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme. Nav. Res. Logist. 2009, 56, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Elshahhat, A.; Nassar, M. Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data. Comput. Stat. 2021, 36, 1965–1990. [Google Scholar] [CrossRef]
- Elshahhat, A.; Nassar, M. Analysis of adaptive Type-II progressively hybrid censoring with binomial removals. J. Stat. Comput. Simul. 2023, 93, 1077–1103. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Ranneby, B. The maximum spacing method. An estimation method related to the maximum likelihood method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Anatolyev, S.; Kosenok, G. An alternative to maximum likelihood based on spacings. Econom. Theory 2005, 21, 472–476. [Google Scholar] [CrossRef] [Green Version]
- El-Sherpieny, E.S.A.; Almetwally, E.M.; Muhammed, H.Z. Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution. Physica A Stat. Mech. Its Appl. 2020, 553, 124251. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. A new class of weighted exponential distributions. Statistics 2009, 43, 621–634. [Google Scholar] [CrossRef]
- Dey, S.; Ali, S.; Park, C. Weighted exponential distribution: Properties and different methods of estimation. J. Stat. Comput. Simul. 2015, 85, 3641–3661. [Google Scholar] [CrossRef]
- Farahani, Z.S.M.; Khorram, E. Bayesian statistical inference for weighted exponential distribution. Commun. Stat.-Simul. Comput. 2014, 43, 1362–1384. [Google Scholar] [CrossRef]
- Tian, Y.; Gui, W. Inference of weighted exponential distribution under progressively Type-II censored competing risks model with electrodes data. J. Stat. Comput. Simul. 2021, 91, 3426–3452. [Google Scholar] [CrossRef]
- Henningsen, A.; Toomet, O. maxLik: A package for maximum likelihood estimation in R. Comput. Stat. 2011, 26, 443–458. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical Models and Methods For Lifetime Data, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Greene, W.H. Econometric Analysis, 4th ed.; Prentice-Hall: Hoboken, NJ, USA, 2000. [Google Scholar]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Lynch, S.M. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists; Springer: Birkhäuser, NY, USA, 2007. [Google Scholar]
- Chen, M.H.; Shao, Q.M. Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Stat. 1999, 8, 69–92. [Google Scholar]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Alotaibi, R.; Nassar, M.; Elshahhat, A. Estimations of modified Lindley parameters using progressive Type-II censoring with applications. Axioms 2023, 12, 171. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Nadarajah, S.; Haghighi, F. An extension of the exponential distribution. Statistics 2011, 45, 543–558. [Google Scholar] [CrossRef]
- Khan, M.N.; Saboor, A.; Cordeiro, G.M.; Nazir, M.; Pescim, R.R. A weighted Nadarajah and Haghighi distribution. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 133–140. [Google Scholar]
- Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat.-Theory Methods 2017, 46, 6543–6557. [Google Scholar] [CrossRef]
- Oguntunde, P.E.; Balogun, O.S.; Okagbue, H.I.; Bishop, S.A. The Weibull-exponential distribution: Its properties and applications. J. Appl. Sci. 2015, 15, 1305–1311. [Google Scholar] [CrossRef]
- Stacy, E.W. A Generalization of the Gamma Distribution. Ann. Math. Stat. 1962, 33, 1187–1192. [Google Scholar] [CrossRef]
- McDonald, J.B.; Xu, Y.J. A generalization of the beta distribution with applications. J. Econom. 1995, 66, 133–152. [Google Scholar] [CrossRef]
Model | Est. | ENL | (p Value) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SE | ||||||||||
WE | Est. | 0.3566 | 1.6558 | - | - | 83.246 | 86.048 | 83.690 | 39.623 | 0.0639 (0.9997) |
SE | 1.1675 | 1.8350 | - | - | 84.142 | 0.1386 | 0.0183 | |||
W | Est. | 1.4633 | 1.7100 | - | - | 83.821 | 86.623 | 84.265 | 39.910 | 0.0749 (0.9960) |
SE | 0.2029 | 0.2254 | - | - | 84.717 | 0.2115 | 0.0280 | |||
G | Est. | 1.9750 | 0.7813 | - | - | 83.259 | 86.062 | 83.704 | 39.630 | 0.0675 (0.9992) |
SE | 0.4737 | 0.2132 | - | - | 84.156 | 0.1443 | 0.0190 | |||
NH | Est. | 4.4288 | 0.0981 | - | - | 86.308 | 89.110 | 86.752 | 41.154 | 0.1132 (0.8365) |
SE | 6.6965 | 0.1699 | - | - | 87.204 | 0.3531 | 0.0482 | |||
WNH | Est. | 1.4906 | 0.4965 | - | - | 85.476 | 88.278 | 85.920 | 40.738 | 0.0958 (0.9457) |
SE | 0.7222 | 0.3618 | - | - | 86.372 | 0.2973 | 0.0404 | |||
APE | Est. | 2.1234 | 1.0032 | - | - | 83.938 | 86.740 | 84.382 | 39.969 | 0.0788 (0.9923) |
SE | 0.5874 | 0.2014 | - | - | 84.834 | 0.1904 | 0.0254 | |||
WEx | Est. | 1.4060 | 32.977 | 0.0461 | - | 86.052 | 90.256 | 86.975 | 40.026 | 0.0822 (0.9873) |
SE | 0.1949 | 61.054 | 0.0530 | - | 87.397 | 0.2406 | 0.0320 | |||
GG | Est. | 0.6736 | 2.0508 | 0.9569 | - | 85.273 | 89.477 | 86.196 | 39.637 | 0.0642 (0.9995) |
SE | 0.9012 | 0.7512 | 0.4780 | - | 86.618 | 0.1412 | 0.0186 | |||
GB | Est. | 5.8820 | 6.0032 | 0.3770 | 8.5371 | 87.425 | 93.030 | 89.025 | 39.713 | 0.0711 (0.9981) |
SE | 63.888 | 6.7949 | 3.3153 | 5.3673 | 89.218 | 0.2013 | 0.0264 |
0.11 | 0.30 | 0.40 | 0.45 | 0.59 | 0.63 | 0.70 | 0.71 | 0.74 | 0.77 |
0.94 | 1.06 | 1.17 | 1.23 | 1.23 | 1.24 | 1.43 | 1.46 | 1.49 | 1.74 |
1.82 | 1.86 | 1.97 | 2.23 | 2.37 | 2.46 | 2.63 | 3.46 | 4.36 | 4.73 |
Si | Data | |||
---|---|---|---|---|
S1 | 0.25(1) | 15 | 0.11, 0.30, 0.40, 0.59, 0.63, 0.70, 0.71, 0.77, 0.94, 1.06 | |
S2 | 0.62(5) | 10 | 0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.70, 0.77, 0.94, 1.23 | |
S3 | 0.85(9) | 5 | 0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.70, 0.71, 0.74, 0.94 |
Sample | Par. | MLE | BE-ML | ACI-ML | HPD-ML | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSE | BE-PS | ACI-PS | HPD-PS | ||||||||
Est. | SE | Est. | SE | Lower | Upper | Width | Lower | Upper | Width | ||
S1 | 1.2840 | 1.3534 | 1.2839 | 0.0647 | 0.0000 | 3.9367 | 3.9367 | 1.2799 | 1.2878 | 0.0079 | |
1.1859 | 1.0600 | 1.1859 | 0.0020 | 0.0000 | 3.2636 | 3.2636 | 1.1855 | 1.1863 | 0.0008 | ||
0.0137 | 2.1096 | 0.0133 | 0.0997 | 0.0000 | 4.1484 | 4.1484 | 0.0095 | 0.0174 | 0.0079 | ||
0.0256 | 1.7973 | 0.0256 | 0.0020 | 0.0000 | 3.5483 | 3.5483 | 0.0252 | 0.0260 | 0.0008 | ||
0.8626 | 0.0440 | 0.8627 | 0.0041 | 0.7764 | 0.9488 | 0.1724 | 0.8619 | 0.8635 | 0.0016 | ||
0.8779 | 0.0422 | 0.8779 | 0.0004 | 0.7953 | 0.9606 | 0.1652 | 0.8779 | 0.8780 | 0.0002 | ||
0.5076 | 0.1639 | 0.5074 | 0.0153 | 0.1863 | 0.8288 | 0.6426 | 0.5044 | 0.5103 | 0.0060 | ||
0.4506 | 0.1560 | 0.4506 | 0.0014 | 0.1449 | 0.7564 | 0.6115 | 0.4503 | 0.4509 | 0.0006 | ||
S2 | 0.6827 | 0.2495 | 0.6826 | 0.0199 | 0.1937 | 1.1717 | 0.9779 | 0.6786 | 0.6864 | 0.0078 | |
0.6822 | 0.6062 | 0.6822 | 0.0020 | 0.0000 | 1.8704 | 1.8704 | 0.6818 | 0.6826 | 0.0008 | ||
6.7542 | 8.8738 | 6.7541 | 0.0201 | 0.0000 | 24.147 | 24.147 | 6.7501 | 6.7580 | 0.0079 | ||
2.5485 | 8.1290 | 2.5485 | 0.0020 | 0.0000 | 18.481 | 18.481 | 2.5481 | 2.5489 | 0.0008 | ||
0.8056 | 0.0686 | 0.8056 | 0.0073 | 0.6712 | 0.9399 | 0.2687 | 0.8042 | 0.8070 | 0.0029 | ||
0.8730 | 0.0503 | 0.8730 | 0.0006 | 0.7744 | 0.9716 | 0.1973 | 0.8729 | 0.8731 | 0.0002 | ||
0.6226 | 0.1943 | 0.6225 | 0.0222 | 0.2418 | 1.0035 | 0.7617 | 0.6182 | 0.6269 | 0.0087 | ||
0.4493 | 0.1537 | 0.4493 | 0.0020 | 0.1481 | 0.7504 | 0.6023 | 0.4489 | 0.4497 | 0.0008 | ||
S3 | 1.2658 | 0.4403 | 1.2658 | 0.0020 | 0.4028 | 2.1288 | 1.7260 | 1.2654 | 1.2662 | 0.0008 | |
1.1785 | 1.0408 | 1.1785 | 0.0020 | 0.0000 | 3.2185 | 3.2185 | 1.1781 | 1.1789 | 0.0008 | ||
0.0009 | 0.5677 | 0.0008 | 0.0021 | 0.0000 | 1.1135 | 1.1135 | 0.0004 | 0.0012 | 0.0008 | ||
0.0018 | 0.9168 | 0.0017 | 0.0020 | 0.0000 | 1.7987 | 1.7987 | 0.0014 | 0.0021 | 0.0008 | ||
0.8671 | 0.0425 | 0.8671 | 0.0004 | 0.7837 | 0.9504 | 0.1667 | 0.8670 | 0.8671 | 0.0002 | ||
0.8815 | 0.0877 | 0.8815 | 0.0004 | 0.7096 | 1.0533 | 0.3438 | 0.8814 | 0.8815 | 0.0001 | ||
0.4909 | 0.1581 | 0.4909 | 0.0015 | 0.1810 | 0.8008 | 0.6198 | 0.4906 | 0.4912 | 0.0006 | ||
0.4376 | 0.3242 | 0.4376 | 0.0014 | 0.0000 | 1.0730 | 1.0730 | 0.4373 | 0.4379 | 0.0006 |
Sample | Par. | Mean | Mode | SD | Skew. | |||
---|---|---|---|---|---|---|---|---|
Bayes LF-based | ||||||||
S1 | 1.2839 | 1.2825 | 1.2826 | 1.2839 | 1.2853 | 0.0020 | ||
0.0133 | 0.0072 | 0.0120 | 0.0133 | 0.0147 | 0.0020 | 0.0003 | ||
0.8627 | 0.8628 | 0.8624 | 0.8627 | 0.8629 | 0.0004 | 0.0150 | ||
0.5074 | 0.5053 | 0.5063 | 0.5074 | 0.5084 | 0.0015 | |||
S2 | 0.6826 | 0.6785 | 0.6813 | 0.6826 | 0.6840 | 0.0020 | 0.0159 | |
6.7541 | 6.7498 | 6.7528 | 6.7541 | 6.7555 | 0.0020 | 0.0219 | ||
0.8056 | 0.8058 | 0.8051 | 0.8056 | 0.8061 | 0.0007 | |||
0.6225 | 0.6178 | 0.6210 | 0.6225 | 0.6240 | 0.0022 | 0.0153 | ||
S3 | 1.2658 | 1.2658 | 1.2656 | 1.2658 | 1.2659 | 0.0002 | ||
0.0008 | 0.0002 | 0.0007 | 0.0008 | 0.0010 | 0.0002 | 0.0153 | ||
0.8671 | 0.8671 | 0.8670 | 0.8671 | 0.8671 | 0.0000 | 0.0038 | ||
0.4909 | 0.4907 | 0.4908 | 0.4909 | 0.4910 | 0.0001 | |||
Bayes PS-based | ||||||||
S1 | 1.1859 | 1.1859 | 1.1858 | 1.1859 | 1.1861 | 0.0002 | 0.0138 | |
0.0256 | 0.0254 | 0.0255 | 0.0256 | 0.0258 | 0.0002 | 0.0180 | ||
0.8779 | 0.8779 | 0.8779 | 0.8779 | 0.8780 | 0.0000 | |||
0.4506 | 0.4505 | 0.4505 | 0.4506 | 0.4507 | 0.0001 | 0.0076 | ||
S2 | 0.6822 | 0.6821 | 0.6821 | 0.6822 | 0.6823 | 0.0002 | 0.0143 | |
2.5485 | 2.5485 | 2.5484 | 2.5485 | 2.5487 | 0.0002 | 0.0182 | ||
0.8730 | 0.8730 | 0.8730 | 0.8730 | 0.8730 | 0.0001 | |||
0.4493 | 0.4492 | 0.4491 | 0.4493 | 0.4494 | 0.0002 | 0.0144 | ||
S3 | 1.1785 | 1.1782 | 1.1784 | 1.1785 | 1.1787 | 0.0002 | 0.0100 | |
0.0017 | 0.0013 | 0.0016 | 0.0017 | 0.0019 | 0.0002 | 0.0210 | ||
0.8815 | 0.8815 | 0.8814 | 0.8815 | 0.8815 | 0.0000 | |||
0.4376 | 0.4372 | 0.4375 | 0.4376 | 0.4377 | 0.0001 | 0.0076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshahhat, A.; Almetwally, E.M.; Dey, S.; Mohammed, H.S. Analysis of WE Parameters of Life Using Adaptive-Progressively Type-II Hybrid Censored Mechanical Equipment Data. Axioms 2023, 12, 690. https://doi.org/10.3390/axioms12070690
Elshahhat A, Almetwally EM, Dey S, Mohammed HS. Analysis of WE Parameters of Life Using Adaptive-Progressively Type-II Hybrid Censored Mechanical Equipment Data. Axioms. 2023; 12(7):690. https://doi.org/10.3390/axioms12070690
Chicago/Turabian StyleElshahhat, Ahmed, Ehab M. Almetwally, Sanku Dey, and Heba S. Mohammed. 2023. "Analysis of WE Parameters of Life Using Adaptive-Progressively Type-II Hybrid Censored Mechanical Equipment Data" Axioms 12, no. 7: 690. https://doi.org/10.3390/axioms12070690
APA StyleElshahhat, A., Almetwally, E. M., Dey, S., & Mohammed, H. S. (2023). Analysis of WE Parameters of Life Using Adaptive-Progressively Type-II Hybrid Censored Mechanical Equipment Data. Axioms, 12(7), 690. https://doi.org/10.3390/axioms12070690