Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator
Abstract
:1. Introduction
2. Main Results
- (i)
- Let , then , such that is an increasing function. Thus, the maximum of occurs at and
- (ii)
- Let . We need to consider the critical point , where . Now the following two cases arise:
- (iii)
- Let then . This shows that is an increasing function. Thus, the maximum of occurs at :
- (iv)
- Let . We need to consider the critical point , where . The following two cases arise:
- □
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hohlov, Y.E. Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions. Doki. Akad. Nauk Ukrain. SSR Ser. A 1984, 7, 25–27. [Google Scholar]
- Hohlov, Y.E. Convolution operators that preserve univalent functions. Ukrain. Mat. Zh. 1985, 37, 220–226. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-unvalent functions. Math. Anal. Appl. 1988, 53–60. [Google Scholar] [CrossRef]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2020, 6, 1024–1039. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Cotîrlǎ, L.I. Bi-univalent functions of complex order defined by Hohlov operator associated with Legendrae polynomial. AIMS Math. 2022, 7, 8733–8750. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- Shaba, T.G. Subclasses of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turk. J. Ineq. 2020, 4, 50–58. [Google Scholar]
- Zhai, J.; Srivastava, R.; Liu, J.-L. Faber polynomial coefficient estimates of bi-close-to-convex functions associated with generalized hypergeometric functions. Mathematics 2022, 10, 3073. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacǎ, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the Second Hankel Determinant of a really mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. The Fekete-Szegö coefficient functional for transforms of analytic functions. Bull. Iranian Math. Soc. 2009, 35, 119–142. [Google Scholar]
- Altinkaya, S.; Yalcin, S. Fekete-Szegö inequalities for classes of bi-univalent functions defined by subordination. Adv. Math. Sci. J. 2014, 3, 63–71. [Google Scholar]
- Deekonda, V.K.; Thoutreedy, R. An upper bound to the second Hankel determinant for functions in Mocanu class. Vietnam J. Math. 2015, 43, 541–549. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Ineq. Appl. 2013, 281, 1–17. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problems for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Deniz, E.; Caglar, M.; Orhan, H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl. Math. Comput. 2015, 271, 301–307. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Subramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhai, J.; Liu, J.-L. Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator. Axioms 2023, 12, 433. https://doi.org/10.3390/axioms12050433
Liu L, Zhai J, Liu J-L. Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator. Axioms. 2023; 12(5):433. https://doi.org/10.3390/axioms12050433
Chicago/Turabian StyleLiu, Likai, Jie Zhai, and Jin-Lin Liu. 2023. "Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator" Axioms 12, no. 5: 433. https://doi.org/10.3390/axioms12050433
APA StyleLiu, L., Zhai, J., & Liu, J. -L. (2023). Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator. Axioms, 12(5), 433. https://doi.org/10.3390/axioms12050433