Next Article in Journal
Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions
Previous Article in Journal
On an Indefinite Metric on a Four-Dimensional Riemannian Manifold
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator

1
Information Technology Department, Nanjing Vocational College of Information Technology, Nanjing 210023, China
2
Department of Mathematics, Yangzhou University, Yangzhou 225002, China
*
Authors to whom correspondence should be addressed.
Axioms 2023, 12(5), 433; https://doi.org/10.3390/axioms12050433
Submission received: 14 March 2023 / Revised: 20 April 2023 / Accepted: 25 April 2023 / Published: 27 April 2023
(This article belongs to the Section Geometry and Topology)

Abstract

:
A new subclass of bi-univalent functions associated with the Hohlov operator is introduced. Certain properties such as the coefficient bounds, Fekete-Szegö inequality and the second Hankel determinant for functions in the subclass are obtained. In particular, several known results are generalized.

1. Introduction

Let A denote the class of analytic functions in U = { z C : | z | < 1 } of the form:
f ( z ) = z + n = 2 a n z n ( z U ) .
Furthermore, let S A denote the class of functions that are univalent in U.
Let f and g be two analytic functions in U. We say that the function f is subordinate to the function g and is written as follows:
f ( z ) g ( z ) ( z U ) ,
if there is a Schwarz function w such that
f ( z ) = g ( w ( z ) ) .
Further, if the function g is univalent in U, then it follows that
f ( z ) g ( z ) ( z U ) f ( 0 ) = g ( 0 ) and f ( U ) g ( U ) .
Denoted by P is the class of analytic functions φ having the form:
φ ( z ) = 1 + B 1 z + B 2 z 2 + B 3 z 3 + ( B 1 > 0 )
and Re φ ( z ) > 0 ( z U ) .
For functions f A and u A given by
u ( z ) = z + n = 2 u n z n ( z U ) ,
the Hadamard product (or convolution) of f and u is defined by
( f u ) ( z ) = z + n = 2 a n u n z n = ( u f ) ( z ) ( z U ) .
For a , b , c C and c 0 , 1 , 2 , 3 , the Gauss hypergeometric function 2 F 1 ( a , b ; c ; z ) is defined as:
2 F 1 ( a , b ; c ; z ) = n = 0 ( a ) n ( b ) n ( c ) n z n n ! = 1 + n = 2 ( a ) n 1 ( b ) n 1 ( c ) n 1 z n 1 ( n 1 ) ! ( z U ) ,
where ( α ) n is the Pochhammer symbol, written in terms of the Gamma function Γ , by
( α ) n = Γ ( α + n ) Γ ( α ) = 1 ( n = 0 ) α ( α + 1 ) ( α + 2 ) ( α + n 1 ) ( n = 1 , 2 , 3 , ) .
For positive real values a , b , c , using the Hadamard product and Gauss hypergeometric function, Hohlov (see [1,2]) proposed and studied a linear operator J a , b ; c f : A A defined by
J a , b ; c f ( z ) = z 2 F 1 ( a , b ; c ; z ) f ( z ) = z + n = 2 ψ n a n z n ( z U ) ,
where
ψ n = ( a ) n 1 ( b ) n 1 ( c ) n 1 ( n 1 ) ! .
It is well known that every univalent function f S has an inverse f 1 which satisfies
f 1 ( f ( z ) ) = z ( z U )
and
f ( f 1 ( ω ) ) = ω | ω | < r 0 ( f ) ; r 0 ( f ) 1 4 ,
where
g ( ω ) : = f 1 ( ω ) = ω a 2 ω 2 + ( 2 a 2 2 a 3 ) ω 3 ( 5 a 2 3 5 a 2 a 3 + a 4 ) + = ω + n = 2 b n ω n .
We say that a function f A is bi-univalent in U if both f and f 1 are univalent in U and denote a class of normalized analytic and bi-univalent functions by Σ ( S ) . Some elements of functions in Σ are presented below:
f 1 ( z ) = z 1 z , f 2 ( z ) = log ( 1 z ) and f 3 ( z ) = 1 2 log 1 + z 1 z ,
and their corresponding inverses given by:
f 1 1 ( ω ) = ω 1 + ω , f 2 1 ( ω ) = e ω 1 e ω and f 3 1 ( ω ) = e 2 ω 1 e 2 ω + 1 .
Certain subclasses S Σ ( α ) and C Σ ( α ) of Σ introduced by Brannan and Taha [3] are similar to the subclasses S ( α ) and C ( α ) of starlike and convex functions of order α ( 0 α < 1 ) , respectively. In [3], Brannan and Taha obtained the non-sharp estimates on the first two Taylor–Maclaurin coefficients | a 2 | and | a 3 | of S Σ ( α ) and C Σ ( α ) . Recently, many scholars have defined various subclasses of bi-univalent functions (see [4,5,6,7,8,9,10,11,12]) and investigated the non-sharp estimates of the first two coefficients of the Taylor–Maclaurin series expansion.
The Hankel determinant is one of the important tools in the study of the theory of univalent functions. Noonan and Thomas [13] defined the q-th Hankel determinant of f A as:
H q ( n ) = a n a n + 1 a n + q 1 a n + 1 a n + 2 a n + q a n + q 1 a n + q a n + 2 q 2 ( a 1 = 1 , n 0 , q 1 ) .
The Hankel determinants
H 2 ( 1 ) = a 1 a 2 a 2 a 3 = a 3 a 2 2
and
H 2 ( 2 ) = a 2 a 3 a 3 a 4 = a 2 a 4 a 3 2
are called the Fekete-Szegö functional and the second Hankel determinant functional, respectively. Further, Fekete and Szegö [14] considered the generalized functional a 3 μ a 2 2 , where μ is a real number. Recently, several authors (see [15,16,17,18,19]) proved the upper bounds for the Hankel determinant for functions in various subclasses of the bi-univalent functions. On the other hand, Zaprawa [20] extended the study of the Fekete-Szegö inequality to several classes of bi-univalent functions. Deniz et al. [21] discussed the upper bounds of H 2 ( 2 ) .
Now we introduce a new subclass of bi-univalent functions associated with the Hohlov operator.
Definition 1.
For 0 λ 1 and J a , b ; c given by (3), a function f Σ given by (1) is said to be in the class M Σ a , b ; c ( λ , φ ) if it satisfies the following subordination conditions:
λ 1 + z ( J a , b ; c f ( z ) ) ( J a , b ; c f ( z ) ) + ( 1 λ ) z ( J a , b ; c f ( z ) ) J a , b ; c f ( z ) φ ( z ) ( z U )
and
λ 1 + ω ( J a , b ; c g ( ω ) ) ( J a , b ; c g ( ω ) ) + ( 1 λ ) ω ( J a , b ; c g ( ω ) ) J a , b ; c g ( ω ) φ ( ω ) ( ω U ) ,
where φ P and the function g is the inverse of f given by (4).
Remark 1.
For a = c and b = 1 in the above definition, we have M Σ a , 1 ; a ( λ , φ ) = M Σ ( λ , φ ) , introduced and studied by Ali et al. [22].
To prove our main results, the following lemmas are needed.
Lemma 1
([23]). Let a function ν ( z ) = ν 1 z + ν 2 z 2 + ν 3 z 3 + be analytic in U, ν ( 0 ) = 0 and | ν ( z ) | < 1 , then | ν n | 1 ( n N ) .
Lemma 2
([24]). Let u ( z ) = n = 1 u n z n ( z U ) be a Schwarz function, then
u 2 = x ( 1 u 1 2 )
and
u 3 = ( 1 u 1 2 ) ( 1 | x | 2 ) s u 1 ( 1 u 1 2 ) x 2
for some complex number x and s satisfying | x | 1 and | s | 1 .
In this paper, we investigate some properties such as the coefficient bounds, Fekete-Szegö inequality and the second Hankel determinant for functions in the class M Σ a , b ; c ( λ , φ ) . In particular, several previous results are generalized.

2. Main Results

In this section, we find estimates for the general Taylor–Maclaurin coefficients of the functions in the class M Σ a , b ; c ( λ , φ ) .
Theorem 1.
Let 0 λ 1 and the function f Σ given by (1) belong to the class M Σ a , b ; c ( λ , φ ) . Then
| a 2 | min B 1 ( 1 + λ ) ψ 2 B 1 B 1 2 ( 1 + 2 λ ) ψ 3 ( 1 + 3 λ ) ψ 2 2 B 1 2 ( 1 + λ ) 2 B 2
and
| a 3 | min B 1 2 ( 1 + 2 λ ) ψ 3 + B 1 2 ( 1 + λ ) 2 ψ 2 2 B 1 2 ( 1 + 2 λ ) ψ 3 + B 1 3 2 ( 1 + 2 λ ) ψ 3 ( 1 + 3 λ ) ψ 2 2 B 1 2 ( 1 + λ ) 2 B 2 .
Proof. 
Let f Σ given by (1) belong to the class M Σ a , b ; c ( λ , φ ) . There exist two Schwarz functions:
u ( z ) = u 1 z + u 2 z 2 + u 3 z 3 +
and
ν ( ω ) = ν 1 ω + ν 2 ω 2 + ν 3 ω 3 + ,
such that
λ 1 + z ( J a , b ; c f ( z ) ) ( J a , b ; c f ( z ) ) + ( 1 λ ) z ( J a , b ; c f ( z ) ) J a , b ; c f ( z ) = φ ( u ( z ) )
and
λ 1 + ω ( J a , b ; c g ( ω ) ) ( J a , b ; c g ( ω ) ) + ( 1 λ ) ω ( J a , b ; c g ( ω ) ) J a , b ; c g ( ω ) = φ ( ν ( ω ) ) ,
where
φ ( u ( z ) ) = 1 + B 1 u 1 z + ( B 1 u 2 + B 2 u 1 2 ) z 2 + ( B 1 u 3 + 2 B 2 u 1 u 2 + B 3 u 1 3 ) z 3 +
and
φ ( ν ( ω ) ) = 1 + B 1 ν 1 ω + ( B 1 ν 2 + B 2 ν 1 2 ) ω 2 + ( B 1 ν 3 + 2 B 2 ν 1 ν 2 + B 3 ν 1 3 ) ω 3 + .
Since f and g = f 1 have the Taylor series expansion (1) and (4), respectively, we obtain
λ 1 + z ( J a , b ; c f ( z ) ) ( J a , b ; c f ( z ) ) + ( 1 λ ) z ( J a , b ; c f ( z ) ) J a , b ; c f ( z ) = 1 + ( 1 + λ ) ψ 2 a 2 z + [ 2 ( 1 + 2 λ ) ψ 3 a 3 ( 1 + 3 λ ) ψ 2 2 a 2 2 ] z 2 + [ 3 ( 1 + 3 λ ) ψ 4 a 4 3 ( 1 + 5 λ ) ψ 2 ψ 3 a 2 a 3 + ( 1 + 7 λ ) ψ 2 3 a 2 3 ] z 3 +
and
λ 1 + ω ( J a , b ; c g ( ω ) ) ( J a , b ; c g ( ω ) ) + ( 1 λ ) ω ( J a , b ; c g ( ω ) ) J a , b ; c g ( ω ) = 1 + ( 1 + λ ) ψ 2 b 2 ω + [ 2 ( 1 + 2 λ ) ψ 3 b 3 ( 1 + 3 λ ) ψ 2 2 b 2 2 ] ω 2 + [ 3 ( 1 + 3 λ ) ψ 4 b 4 3 ( 1 + 5 λ ) ψ 2 ψ 3 b 2 b 3 + ( 1 + 7 λ ) ψ 2 3 b 2 3 ] ω 3 + .
Now, from (5), (7) and (9), we obtain
( 1 + λ ) ψ 2 a 2 = B 1 u 1
and
2 ( 1 + 2 λ ) ψ 3 a 3 ( 1 + 3 λ ) ψ 2 2 a 2 2 = B 1 u 2 + B 2 u 1 2 .
Similarly, from (6), (8) and (10), we obtain
( 1 + λ ) ψ 2 a 2 = B 1 ν 1
and
2 ( 1 + 2 λ ) ψ 3 ( 2 a 2 2 a 3 ) ( 1 + 3 λ ) ψ 2 2 a 2 2 = B 1 ν 2 + B 2 ν 1 2 .
It follows from (11) and (13) that
a 2 = B 1 u 1 ( 1 + λ ) ψ 2 = B 1 ν 1 ( 1 + λ ) ψ 2 .
Thus, we have
u 1 = ν 1
and
2 ( 1 + λ ) 2 ψ 2 2 a 2 2 = B 1 2 ( u 1 2 + ν 1 2 ) .
From (15) and Lemma 1, we obtain
| a 2 | B 1 ( 1 + λ ) ψ 2 .
Adding (12) to (14), we obtain
a 2 2 = B 1 3 ( u 2 + ν 2 ) 4 ( 1 + 2 λ ) ψ 3 2 ( 1 + 3 λ ) ψ 2 2 B 1 2 2 ( 1 + λ ) 2 B 2 .
Therefore, by using Lemma 1, we have
| a 2 | 2 B 1 3 2 ( 1 + 2 λ ) ψ 3 ( 1 + 3 λ ) ψ 2 2 B 1 2 ( 1 + λ ) 2 B 2 .
It follows that
| a 2 | B 1 B 1 2 ( 1 + 2 λ ) ψ 3 ( 1 + 3 λ ) ψ 2 2 B 1 2 ( 1 + λ ) 2 B 2 .
Subtracting (14) from (12) and with some calculations, we obtain
a 3 = B 1 ( u 2 ν 2 ) 4 ( 1 + 2 λ ) ψ 3 + a 2 2 .
By using Lemma 1, we obtain
| a 3 | B 1 2 ( 1 + 2 λ ) ψ 3 + | a 2 | 2 .
Putting (18) into (22), we have
| a 3 | B 1 2 ( 1 + 2 λ ) ψ 3 + B 1 2 ( 1 + λ ) 2 ψ 2 2 .
Similarly, putting (20) into (22), we obtain
| a 3 | B 1 2 ( 1 + 2 λ ) ψ 3 + B 1 3 2 ( 1 + 2 λ ) ψ 3 ( 1 + 3 λ ) ψ 2 2 B 1 2 ( 1 + λ ) 2 B 2 .
This completes the proof of Theorem 1.
For a = c and b = 1 in Theorem 1, we obtain a result of the class M Σ ( λ , φ ) , considered by Ali et al. [22].
Corollary 1.
Let 0 λ 1 and the function f Σ given by (1) belong to the class M Σ ( λ , φ ) . Then
| a 2 | min B 1 1 + λ B 1 B 1 ( 1 + λ ) B 1 2 ( 1 + λ ) B 2
and
| a 3 | min B 1 2 ( 1 + 2 λ ) + B 1 2 ( 1 + λ ) 2 B 1 2 ( 1 + 2 λ ) + B 1 3 ( 1 + λ ) B 1 2 ( 1 + λ ) B 2 .
Theorem 2.
Let 0 λ 1 , σ C and the function f Σ given by (1) belong to the class M Σ a , b ; c ( λ , φ ) . Then
| a 3 σ a 2 2 | B 1 2 ( 1 + 2 λ ) ψ 3 0 | h ( σ ) | B 1 4 ( 1 + 2 λ ) ψ 3 2 | h ( σ ) | | h ( σ ) | > B 1 4 ( 1 + 2 λ ) ψ 3 ,
where
h ( σ ) = ( 1 σ ) B 1 3 4 ( 1 + 2 λ ) ψ 3 2 ( 1 + 3 λ ) ψ 2 2 B 1 2 2 ( 1 + λ ) 2 B 2 .
Proof. 
From (21), we get
a 3 σ a 2 2 = B 1 ( u 2 ν 2 ) 4 ( 1 + 2 λ ) ψ 3 + ( 1 σ ) a 2 2 .
Putting (19) into (24), we have
a 3 σ a 2 2 = B 1 ( u 2 ν 2 ) 4 ( 1 + 2 λ ) ψ 3 + B 1 3 ( 1 σ ) ( u 2 + ν 2 ) 4 ( 1 + 2 λ ) ψ 3 2 ( 1 + 3 λ ) ψ 2 2 B 1 2 2 ( 1 + λ ) 2 B 2 = h ( σ ) + B 1 4 ( 1 + 2 λ ) ψ 3 u 2 + h ( σ ) B 1 4 ( 1 + 2 λ ) ψ 3 ν 2 ,
where h ( σ ) is given by (23).
From (25) and Lemma 1, we derive
| a 3 σ a 2 2 | B 1 2 ( 1 + 2 λ ) ψ 3 0 | h ( σ ) | B 1 4 ( 1 + 2 λ ) ψ 3 2 | h ( σ ) | | h ( σ ) | > B 1 4 ( 1 + 2 λ ) ψ 3 .
This completes the proof of Theorem 2.
For a = c and b = 1 in Theorem 2, we obtain a result of the class M Σ ( λ , φ ) , introduced by Ali et al. [22].
Corollary 2.
Let 0 λ 1 , σ C and the function f Σ given by (1) be in the class M Σ ( λ , φ ) . Then
| a 3 σ a 2 2 | B 1 2 ( 1 + 2 λ ) 0 | h ( σ ) | B 1 4 ( 1 + 2 λ ) 2 | h ( σ ) | | h ( σ ) | > B 1 4 ( 1 + 2 λ ) ,
where
h ( σ ) = ( 1 σ ) B 1 3 2 ( 1 + λ ) ( B 1 2 ( 1 + λ ) B 2 ) .
Theorem 3.
Let 0 λ 1 and the function f Σ given by (1) belong to the class M Σ a , b ; c ( λ , φ ) . Then
| a 2 a 4 a 3 2 | B 1 Q 3 Q 2 0 , Q 1 Q 2 Q 1 + Q 2 + Q 3 Q 2 > 0 , Q 1 > Q 2 2 or ( Q 2 0 , Q 1 > Q 2 ) 4 Q 1 Q 3 Q 2 2 4 Q 1 Q 2 > 0 , Q 1 Q 2 2 ,
where
Q 1 = B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 , Q 2 = B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 + 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 ( 1 + 2 λ ) 2 ψ 3 2 and Q 3 = B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 .
Proof. 
From (5), (7) and (9), we have
3 ( 1 + 3 λ ) ψ 4 a 4 3 ( 1 + 5 λ ) ψ 2 ψ 3 a 2 a 3 + ( 1 + 7 λ ) ψ 2 3 a 2 3 = B 1 u 3 + 2 B 2 u 1 u 2 + B 3 u 1 3 .
Similarly, from (6), (8) and (10), we obtain
3 ( 1 + 3 λ ) ψ 4 ( 5 a 2 3 5 a 2 a 3 + a 4 ) + 3 ( 1 + 5 λ ) ψ 2 ψ 3 a 2 ( 2 a 2 2 a 3 ) ( 1 + 7 λ ) ψ 2 3 a 2 3 = B 1 ν 3 + 2 B 2 ν 1 ν 2 + B 3 ν 1 3 .
Subtracting (27) from (26) and with some calculations, we have
a 4 = B 1 ( u 3 ν 3 ) 6 ( 1 + 3 λ ) ψ 4 + B 2 u 1 ( u 2 + ν 2 ) 3 ( 1 + 3 λ ) ψ 4 + B 3 u 1 3 3 ( 1 + 3 λ ) ψ 4 + 5 2 a 2 a 3 + [ 6 ( 1 + 5 λ ) ψ 2 ψ 3 15 ( 1 + 3 λ ) ψ 4 2 ( 1 + 7 λ ) ψ 2 3 ] 6 ( 1 + 3 λ ) ψ 4 a 2 3 .
From (15) and (21), we obtain
a 4 = B 1 ( u 3 ν 3 ) 6 ( 1 + 3 λ ) ψ 4 + B 2 u 1 ( u 2 + ν 2 ) 3 ( 1 + 3 λ ) ψ 4 + B 3 u 1 3 3 ( 1 + 3 λ ) ψ 4 + 5 B 1 2 u 1 ( u 2 ν 2 ) 8 ( 1 + λ ) ( 1 + 2 λ ) ψ 2 ψ 3 + [ 3 ( 1 + 5 λ ) ψ 3 ( 1 + 7 λ ) ψ 2 2 ] B 1 3 u 1 3 3 ( 1 + λ ) 3 ( 1 + 3 λ ) ψ 2 2 ψ 4 .
Thus, we obtain
a 2 a 4 a 3 2 = [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 4 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 + B 1 B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 u 1 4 + B 1 3 u 1 2 ( u 2 ν 2 ) 8 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 + B 1 B 2 u 1 2 ( u 2 + ν 2 ) 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 2 u 1 ( u 3 ν 3 ) 6 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 ( u 2 ν 2 ) 2 16 ( 1 + 2 λ ) 2 ψ 3 2 .
By using Lemma 2, we derive
u 2 = x ( 1 u 1 2 ) , ν 2 = y ( 1 ν 1 2 ) ,
u 3 = ( 1 u 1 2 ) ( 1 | x | 2 ) s u 1 ( 1 u 1 2 ) x 2
and
ν 3 = ( 1 ν 1 2 ) ( 1 | y | 2 ) h ν 1 ( 1 ν 1 2 ) y 2 ,
where | x | 1 , | y | 1 , | s | 1 and | h | 1 . With some calculations, we obtain
u 2 + ν 2 = ( 1 u 1 2 ) ( x + y ) , u 2 ν 2 = ( 1 u 1 2 ) ( x y ) ,
u 3 ν 3 = ( 1 u 1 2 ) ( 1 | x | 2 ) s ( 1 | y | 2 ) h u 1 ( 1 u 1 2 ) ( x 2 + y 2 ) .
By substituting the relations (31) and (32) into (30), we have
a 2 a 4 a 3 2 = [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 4 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 + B 1 B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 u 1 4 + B 1 3 u 1 2 ( 1 u 1 2 ) ( x y ) 8 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 + B 1 B 2 u 1 2 ( 1 u 1 2 ) ( x + y ) 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 2 u 1 ( 1 u 1 2 ) 1 | x | 2 s 1 | y | 2 h u 1 ( x 2 + y 2 ) 6 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 ( 1 u 1 2 ) 2 ( x y ) 2 16 ( 1 + 2 λ ) 2 ψ 3 2 .
It follows that
| a 2 a 4 a 3 2 | = [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 4 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 + B 1 B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 u 1 4 + B 1 2 u 1 ( 1 u 1 2 ) 1 | x | 2 s 1 | y | 2 h 6 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 3 u 1 2 ( 1 u 1 2 ) ( x y ) 8 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 + B 1 B 2 u 1 2 ( 1 u 1 2 ) ( x + y ) 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 u 1 2 ( 1 u 1 2 ) ( x 2 + y 2 ) 6 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 ( 1 u 1 2 ) 2 ( x y ) 2 16 ( 1 + 2 λ ) 2 ψ 3 2 .
According to Lemmas 1 and 2, we assume without restriction that u = u 1 [ 0 , 1 ] . By applying the triangular inequality, we obtain
| a 2 a 4 a 3 2 | B 1 [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 + B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 u 4 + B 1 2 u 2 ( 1 u 2 ) ( | x | + | y | ) ) 8 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 + | B 2 | u 2 ( 1 u 2 ) ( | x | + | y | ) 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 ( u 2 u ) ( 1 u 2 ) ( | x | 2 + | y | 2 ) 6 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 u ( 1 u 2 ) 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 ( 1 u 2 ) 2 ( | x | + | y | ) 2 16 ( 1 + 2 λ ) 2 ψ 3 2 .
Now, letting η = | x | 1 and γ = | y | 1 , we have
| a 2 a 4 a 3 2 | B 1 T 1 + ( η + γ ) T 2 + ( η 2 + γ 2 ) T 3 + ( η + γ ) 2 T 4 = B 1 F ( η , γ ) ,
where
T 1 = T 1 ( u ) = [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 + B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 u 4 + B 1 u ( 1 u 2 ) 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 0 , T 2 = T 2 ( u ) = u 2 ( 1 u 2 ) ( 1 + λ ) ψ 2 B 1 2 8 ( 1 + λ ) ( 1 + 2 λ ) ψ 2 ψ 3 + | B 2 | 3 ( 1 + 3 λ ) ψ 4 0 , T 3 = T 3 ( u ) = B 1 ( u 2 u ) ( 1 u 2 ) 6 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 0 and T 4 = T 4 ( u ) = B 1 ( 1 u 2 ) 2 16 ( 1 + 2 λ ) 2 ψ 3 2 0 .
Next, we need to maximize the function F ( η , γ ) in the closed square
Δ = { ( η , γ ) : η [ 0 , 1 ] , γ [ 0 , 1 ] }
for u [ 0 , 1 ] . Since F ( η , γ ) is the maximum with regard to u, we must investigate it according to u = 0 , u = 1 and u ( 0 , 1 ) .
For u = 0 ,
F ( η , γ ) = B 1 ( η + γ ) 2 16 ( 1 + 2 λ ) 2 ψ 3 2 ,
we can easily obtain
max F ( η , γ ) : ( η , γ ) [ 0 , 1 ] × [ 0 , 1 ] = F ( 1 , 1 ) = B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 .
For u = 1 ,
F ( η , γ ) = B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 ,
we have
max F ( η , γ ) : ( η , γ ) [ 0 , 1 ] × [ 0 , 1 ] = B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 .
For 0 < u < 1 , by letting η + γ = ς and η · γ = ξ , we obtain
F ( η , γ ) = T 1 + T 2 ς + ( T 3 + T 4 ) ς 2 2 T 3 ξ = J ( ς , ξ ) ,
where ς [ 0 , 2 ] and ξ [ 0 , 1 ] . Then we need to maximize the function:
J ( ς , ξ ) Λ = { ( ς , ξ ) : ς [ 0 , 2 ] , ξ [ 0 , 1 ] } .
By differentiating J ( ς , ξ ) , we let
J ς = T 2 + 2 ( T 3 + T 4 ) ς = 0 J ξ = 2 T 3 = 0 .
The above results show that J ( ς , ξ ) does not have a critical point in Λ . Therefore, the function F ( η , γ ) does not have a critical point in Δ . As a result, the function F ( η , γ ) cannot have a local maximum value in the interior of the square Δ . Next, we find the maximum of F ( η , γ ) on the boundary of the square Δ .
For η = 0 and 0 γ 1 (or γ = 0 and 0 η 1 ), we have
F ( 0 , γ ) = H ( γ ) = T 1 + γ T 2 + γ 2 ( T 3 + T 4 ) .
In order to investigate the maximum of H ( γ ) , the situation of H ( γ ) as increasing or decreasing is discussed below. By deriving the function H ( γ ) , we have
H ( γ ) = T 2 + 2 γ ( T 3 + T 4 ) .
(i)
Let T 3 + T 4 0 , then H ( γ ) > 0 , such that H ( γ ) is an increasing function. Thus, the maximum of H ( γ ) occurs at γ = 1 and
max H ( γ ) : γ [ 0 , 1 ] = H ( 1 ) = T 1 + T 2 + T 3 + T 4 .
(ii)
Let T 3 + T 4 < 0 . We need to consider the critical point γ = T 2 2 ( T 3 + T 4 ) = T 2 2 θ , where θ = ( T 3 + T 4 ) > 0 . Now the following two cases arise:
Case 1.
Suppose that γ = T 2 2 θ > 1 . Then θ < T 2 2 T 2 and T 2 + T 3 + T 4 0 . We have
H ( 0 ) = T 1 T 1 + T 2 + T 3 + T 4 = H ( 1 ) .
Case 2.
Suppose that γ = T 2 2 θ 1 . Since T 2 2 0 and T 2 2 4 θ T 2 2 T 2 , we obtain
H ( 0 ) = T 1 T 1 + T 2 2 4 θ = H T 2 2 θ T 1 + T 2
and
H ( 1 ) = T 1 + T 2 + T 3 + T 4 T 1 + T 2 .
Therefore, the maximum of H ( γ ) occurs when T 3 + T 4 0 :
max H ( γ ) : γ [ 0 , 1 ] = H ( 1 ) = T 1 + T 2 + T 3 + T 4 .
For η = 1 and 0 γ 1 (or γ = 1 and 0 η 1 ), we have
F ( 1 , γ ) = D ( γ ) = T 1 + T 2 + T 3 + T 4 + γ ( T 2 + 2 T 4 ) + γ 2 ( T 3 + T 4 ) .
In order to investigate the maximum of D ( γ ) , the scenario of when D ( γ ) in increasing or decreasing is discussed. By deriving the function D ( γ ) , we have
D ( γ ) = T 2 + 2 T 4 + 2 γ ( T 3 + T 4 ) .
(iii)
Let T 3 + T 4 0 then D ( γ ) > 0 . This shows that D ( γ ) is an increasing function. Thus, the maximum of D ( γ ) occurs at γ = 1 :
max D ( γ ) : γ [ 0 , 1 ] = D ( 1 ) = T 1 + 2 T 2 + 2 T 3 + 4 T 4 .
(iv)
Let T 3 + T 4 < 0 . We need to consider the critical point γ = T 2 + 2 T 4 2 ( T 3 + T 4 ) = T 2 + 2 T 4 2 θ , where θ = ( T 3 + T 4 ) > 0 . The following two cases arise:
Case 3.
Suppose that γ = T 2 + 2 T 4 2 θ > 1 . Then θ < T 2 + 2 T 4 2 T 2 + 2 T 4 and T 2 + T 3 + 3 T 4 0 . We have
D ( 0 ) = T 1 + T 2 + T 3 + T 4 T 1 + T 2 + T 3 + T 4 + ( T 2 + T 3 + 3 T 4 ) = D ( 1 ) = T 1 + 2 T 2 + 2 T 3 + 4 T 4 .
Case 4.
Suppose that γ = T 2 + 2 T 4 2 θ 1 . Since T 2 + T 4 2 0 and ( T 2 + 2 T 4 ) 2 4 θ T 2 + 2 T 4 2 T 2 + 2 T 4 , we obtain
D ( 0 ) = T 1 + T 2 + T 3 + T 4 D T 2 + 2 T 4 2 θ T 1 + T 2 + T 3 + T 4 + T 2 + 2 T 4 = T 1 + 2 T 2 + T 3 + 3 T 4
and
D ( 1 ) = T 1 + 2 T 2 + 2 T 3 + 4 T 4 T 1 + 2 T 2 + T 3 + 3 T 4 .
Therefore, the maximum of D ( γ ) occurs when T 3 + T 4 0 :
max { D ( γ ) : γ [ 0 , 1 ] } = D ( 1 ) = T 1 + 2 T 2 + 2 T 3 + 4 T 4 .
Since H ( 1 ) D ( 1 ) for u ( 0 , 1 ) , we have
max { F ( η , γ ) : ( η , γ ) [ 0 , 1 ] × [ 0 , 1 ] } = F ( 1 , 1 ) = T 1 + 2 T 2 + 2 T 3 + 4 T 4 .
Let K : [ 0 , 1 ] R ,
K ( u ) = B 1 max { F ( η , γ ) : ( η , γ ) [ 0 , 1 ] × [ 0 , 1 ] } = B 1 F ( 1 , 1 ) = B 1 ( T 1 + 2 T 2 + 2 T 3 + 4 T 4 ) .
Now, inserting T 1 , T 2 , T 3 and T 4 into the function K, we obtain
K ( u ) = B 1 [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 + B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 u 4 + B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 B 1 2 ( 1 + 2 λ ) 2 ψ 3 2 + 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 u 2 + B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 .
Letting u 2 = t , we have
K ( t ) = B 1 ( Q 1 t 2 + Q 2 t + Q 3 ) ( t [ 0 , 1 ] ) ,
where
Q 1 = B 3 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + [ 3 ( 1 + 5 λ ) ψ 2 ψ 3 ( 1 + 7 λ ) ψ 2 3 3 ( 1 + 3 λ ) ψ 4 ] B 1 3 3 ( 1 + λ ) 4 ( 1 + 3 λ ) ψ 2 4 ψ 4 B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 + B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 , Q 2 = B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) ψ 2 2 ψ 3 + 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) ψ 2 ψ 4 B 1 2 ( 1 + 2 λ ) 2 ψ 3 2 and Q 3 = B 1 4 ( 1 + 2 λ ) 2 ψ 3 2 .
Since
max 0 t 1 ( Q 1 t 2 + Q 2 t + Q 3 ) = Q 3 Q 2 0 , Q 1 Q 2 Q 1 + Q 2 + Q 3 Q 2 > 0 , Q 1 > Q 2 2 or ( Q 2 0 , Q 1 > Q 2 ) 4 Q 1 Q 3 Q 2 2 4 Q 1 Q 2 > 0 , Q 1 Q 2 2 ,
it shows that
| a 2 a 4 a 3 2 | B 1 Q 3 Q 2 0 , Q 1 Q 2 Q 1 + Q 2 + Q 3 Q 2 > 0 , Q 1 > Q 2 2 or ( Q 2 0 , Q 1 > Q 2 ) 4 Q 1 Q 3 Q 2 2 4 Q 1 Q 2 > 0 , Q 1 Q 2 2 .
This completes the proof of Theorem 3.
For a = c and b = 1 in Theorem 3, we derive a result of the class M Σ ( λ , φ ) , studied by Ali et al. [22].
Corollary 3.
Let 0 λ 1 and the function f Σ given by (1) be in the class M Σ ( λ , φ ) . Then
| a 2 a 4 a 3 2 | B 1 Q 3 Q 2 0 , Q 1 Q 2 Q 1 + Q 2 + Q 3 Q 2 > 0 , Q 1 > Q 2 2 o r ( Q 2 0 , Q 1 > Q 2 ) 4 Q 1 Q 3 Q 2 2 4 Q 1 Q 2 > 0 , Q 1 Q 2 2 .
where
Q 1 = B 3 3 ( 1 + λ ) ( 1 + 3 λ ) B 1 3 3 ( 1 + λ ) 3 ( 1 + 3 λ ) B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) + B 1 4 ( 1 + 2 λ ) 2 , Q 2 = B 1 2 4 ( 1 + λ ) 2 ( 1 + 2 λ ) + 2 | B 2 | + B 1 3 ( 1 + λ ) ( 1 + 3 λ ) B 1 2 ( 1 + 2 λ ) 2 and Q 3 = B 1 4 ( 1 + 2 λ ) 2 .

3. Conclusions

In the study of bi-univalent functions, estimates on the first two Taylor–Maclaurin coefficients are usually considered. In this paper, we introduce a new subclass of bi-univalent functions associated with the Hohlov operator. Some properties such as the coefficient bounds, Fekete-Szegö inequality and the second Hankel determinant for functions in M Σ a , b ; c ( λ , φ ) are derived. In particular, several previous results are generalized.

Author Contributions

All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to express sincere thanks to the referees for careful reading and providing suggestions which helped to improve the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hohlov, Y.E. Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions. Doki. Akad. Nauk Ukrain. SSR Ser. A 1984, 7, 25–27. [Google Scholar]
  2. Hohlov, Y.E. Convolution operators that preserve univalent functions. Ukrain. Mat. Zh. 1985, 37, 220–226. [Google Scholar]
  3. Brannan, D.A.; Taha, T.S. On some classes of bi-unvalent functions. Math. Anal. Appl. 1988, 53–60. [Google Scholar] [CrossRef]
  4. Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
  5. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2020, 6, 1024–1039. [Google Scholar] [CrossRef]
  6. Murugusundaramoorthy, G.; Cotîrlǎ, L.I. Bi-univalent functions of complex order defined by Hohlov operator associated with Legendrae polynomial. AIMS Math. 2022, 7, 8733–8750. [Google Scholar] [CrossRef]
  7. Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
  8. Shaba, T.G. Subclasses of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turk. J. Ineq. 2020, 4, 50–58. [Google Scholar]
  9. Zhai, J.; Srivastava, R.; Liu, J.-L. Faber polynomial coefficient estimates of bi-close-to-convex functions associated with generalized hypergeometric functions. Mathematics 2022, 10, 3073. [Google Scholar] [CrossRef]
  10. Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
  11. Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
  12. Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacǎ, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
  13. Noonan, J.W.; Thomas, D.K. On the Second Hankel Determinant of a really mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
  14. Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
  15. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. The Fekete-Szegö coefficient functional for transforms of analytic functions. Bull. Iranian Math. Soc. 2009, 35, 119–142. [Google Scholar]
  16. Altinkaya, S.; Yalcin, S. Fekete-Szegö inequalities for classes of bi-univalent functions defined by subordination. Adv. Math. Sci. J. 2014, 3, 63–71. [Google Scholar]
  17. Deekonda, V.K.; Thoutreedy, R. An upper bound to the second Hankel determinant for functions in Mocanu class. Vietnam J. Math. 2015, 43, 541–549. [Google Scholar] [CrossRef]
  18. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
  19. Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Ineq. Appl. 2013, 281, 1–17. [Google Scholar] [CrossRef]
  20. Zaprawa, P. On the Fekete-Szegö problems for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
  21. Deniz, E.; Caglar, M.; Orhan, H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl. Math. Comput. 2015, 271, 301–307. [Google Scholar] [CrossRef]
  22. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Subramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
  23. Duren, P.L. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
  24. Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, L.; Zhai, J.; Liu, J.-L. Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator. Axioms 2023, 12, 433. https://doi.org/10.3390/axioms12050433

AMA Style

Liu L, Zhai J, Liu J-L. Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator. Axioms. 2023; 12(5):433. https://doi.org/10.3390/axioms12050433

Chicago/Turabian Style

Liu, Likai, Jie Zhai, and Jin-Lin Liu. 2023. "Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator" Axioms 12, no. 5: 433. https://doi.org/10.3390/axioms12050433

APA Style

Liu, L., Zhai, J., & Liu, J. -L. (2023). Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator. Axioms, 12(5), 433. https://doi.org/10.3390/axioms12050433

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop