Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions
Abstract
:1. Introduction
2. Main Results
- (i)
- For every continuous convex function we have
- (ii)
- For each , we have
- (i)
- (ii)
- (i)
- (ii)
- (i)
- (ii)
3. Related Grüss and Ostrowski-Type Inequalities
- (i)
- If , the remainder
- (ii)
- If , the remainder
- (i)
- (ii)
- Similarly as in part (i), we obtain (41).
- (i)
- (ii)
- Similarly as in part (i), we obtain (45).
- (i)
- (ii)
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H. Notes on some points in the integral calculus LX: An inequality between integrals. Messenger Math. 1925, 54, 150–156. [Google Scholar]
- Goldstein, G.R.; Goldstein, J.A.; Rhandi, A. Weighted Hardy’s inequality and the Kolmogorov equation perturbed by an inverse-square potential. Appl. Anal. 2012, 91, 2057–2071. [Google Scholar] [CrossRef]
- Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy-Type Inequalities via Convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef]
- Kaijser, S.; Persson, L.-E.; Öberg, A. On Carleman and Knopp’s Inequalities. J. Approx. Theory 2002, 117, 140–151. [Google Scholar] [CrossRef]
- Kufner, A.; Maligranda, L.; Persson, L.-E. The prehistory of the Hardy inequality. Am. Math. Mon. 2006, 113, 715–732. [Google Scholar] [CrossRef]
- Kufner, A.; Maligranda, L.; Persson, L.-E. The Hardy Inequality. About Its History and Some Related Results; Vydavatelsky Servis Publishing House: Pilsen, IL, USA, 2007. [Google Scholar]
- Kufner, A.; Persson, L.-E. Weighted Inequalities of Hardy Type; World Scientific: Hackensack, NJ, USA; London, UK; Singapore; Hong Kong, China, 2003. [Google Scholar] [CrossRef]
- Opic, B.; Kufner, A. Hardy Type Inequalities; Longman: Harlow, OR, USA, 1990. [Google Scholar]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Hong Kong, China; London, UK; Milan, Italy; Paris, France; Tokyo, Japan, 2005. [Google Scholar]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Rauf, K.; Omolehin, J.O. Some Notes Inequality Related to G.H. Hardy’s Integral Inequality. Punjab Univ. J. Math. 2006, 38, 9–13. [Google Scholar]
- Saied, A.I.; AlNemer, G.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus. Axioms 2022, 11, 662. [Google Scholar] [CrossRef]
- Sarkaya, M.Z.; Yildirim, H. Some Hardy Type Integral Inequalities. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Krulić, K.; Pečarić, J.; Persson, L.-E. Some new Hardy–type inequalities with general kernels. Math. Inequal. Appl. 2009, 12, 473–485. [Google Scholar]
- Krulić Himmelreich, K.; Pečarić, J.; Pokaz, D. Inequalities of Hardy and Jensen; Element: Zagreb, Croatia, 2013. [Google Scholar]
- Aglić Aljinović, A.; Pečarić, J.; Vukelić, A. On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula II. Tamkang Jour. Math. 2005, 36, 279–301. [Google Scholar] [CrossRef]
- Krulić Himmelreich, K. Generalizations of Hardy type inequalities by Taylor’s formula. Math. Slovaca Math. Slovaca 2022, 72, 67–84. [Google Scholar] [CrossRef]
- Krulić Himmelreich, K. Some new inequalities involving the generalized Hardy operator. Math. Pannonica 2022, 28, 127–132. [Google Scholar] [CrossRef]
- Krulić Himmelreich, K.; Pečarić, J. Some new Hardy–type inequalities with general kernels II. Math. Inequal. Appl. 2016, 19, 73–84. [Google Scholar]
- Krulić Himmelreich, K.; Pečarić, J.; Pokaz, D.; Praljak, M. Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial. Mathematics 2021, 9, 1724. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, J.; Pečarić, J. Generaliztion of Sherman’s inequality by Montgomery identity and Green function. Electron. J. Math. Anal. Appl. 2017, 5, 1–17. [Google Scholar]
- Khan, M.A.; Khan, J.; Pečarić, J. Generaliztion of Sherman’s inequality by Montgomery identity and new Green function. Adv. Stud. Contemp. Math. (Kyungshang) 2017, 27, 495–514. [Google Scholar]
- Cerone, P.; Dragomir, S.S. Some new Ostrowski-type bounds for the Cebysev functional and applications. J. Math. Inequal. 2014, 8, 159–170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Himmelreich, K.K.; Pečarić, J.; Pokaz, D.; Praljak, M. Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions. Axioms 2023, 12, 434. https://doi.org/10.3390/axioms12050434
Himmelreich KK, Pečarić J, Pokaz D, Praljak M. Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions. Axioms. 2023; 12(5):434. https://doi.org/10.3390/axioms12050434
Chicago/Turabian StyleHimmelreich, Kristina Krulić, Josip Pečarić, Dora Pokaz, and Marjan Praljak. 2023. "Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions" Axioms 12, no. 5: 434. https://doi.org/10.3390/axioms12050434
APA StyleHimmelreich, K. K., Pečarić, J., Pokaz, D., & Praljak, M. (2023). Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions. Axioms, 12(5), 434. https://doi.org/10.3390/axioms12050434