On Intuitionistic Fuzzy Temporal Topological Structures
Abstract
:1. Introduction
- C1
- ,
- C2
- C3
- ,
- C4
- I1
- ,
- I2
- I3
- ,
- I4
2. Short Remarks about Temporal Intuitionistic Fuzzy Sets
- (a)
- is a fixed set,
- (b)
- for every ,
- (c)
- and are the degrees of membership and non-membership, respectively, of the element at the time-moment .
3. Definitions of Four Intuitionistic Fuzzy Temporal Topological Structures
3.1. --Intuitionistic Fuzzy Temporal Topological Structure
- CC1
- ,
- CC2
- ,
- CC3
- CC4
- ,
- CC5
- ,
- CC6
- ,
- CC7
- ,
- CC8
- ,
- CC9
- CC1.
- CC2.
- CC3.
- CC4.
- Bearing in mind that for each fixed : and are constants, we obtain that:
- CC5.
- To check condition CC5, we will first prove that for each :Let for a fixed :Therefore, for each :Back to the proof of CC5, using (1) and (2), we see that:
- CC6.
- CC7.
- CC8.
- Bearing in mind that for each fixed : and are constants, we obtain that:
- CC9.
3.2. --Intuitionistic Fuzzy Temporal Topological Structure
- II1
- ,
- II2
- ,
- II3
- II4
- ,
- II5
- ,
- II6
- ,
- II7
- ,
- II8
- ,
- II9
- II1.
- II2.
- II3.
- II4.
- Similarly to the above, bearing in mind that for each fixed : and are constants, we obtain that:
- II5.
- To check condition II5, as above, we will first prove that for each :Let for a fixed :Therefore, for each :Back to the proof of II5, using (3) and (4), we see that:
- II6.
- II7.
- II8.
- As above, bearing in mind that for each fixed : and are constants, we obtain that:
- II9.
3.3. --Intuitionistic Fuzzy Temporal Topological Structure
- CI1
- ,
- CI2
- ,
- CI3
- CI4
- ,
- CI5
- ,
- CI6
- ,
- CI7
- ,
- CI8
- ,
- CI9
3.4. --Intuitionistic Fuzzy Temporal Topological Structure
- IC1
- ,
- IC2
- ,
- IC3
- IC4
- ,
- IC5
- ,
- IC6
- ,
- IC7
- ,
- IC8
- ,
- IC9
4. A Short Example of the Application of the IFTTSs in a Multi-Criteria Decision Making Procedure
5. Conclusions and Ideas for Future Research
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourbaki, N. Éléments De Mathématique, Livre III: Topologie Générale, Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes; Herman: Paris, France, 1960. (In French) [Google Scholar]
- Kuratowski, K. Topology; Academic Press: New York, NY, USA, 1966; Volume 1. [Google Scholar]
- Munkres, J. Topology; Prentice Hall Inc.: New Jersey, NJ, USA, 2000. [Google Scholar]
- Çoker, D. On topological structures using intuitionistic fuzzy sets. Notes Intuitionistic Fuzzy Sets 1997, 3, 138–142. [Google Scholar]
- Çoker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81–89. [Google Scholar] [CrossRef]
- Lupiañez, F.G. Separation in intuitionistic fuzzy topological spaces. Int. Pure Appl. Math. 2004, 17, 29–34. [Google Scholar]
- Lupiañez, F.G. On intuitionistic fuzzy topological spaces. Kybernetes 2006, 35, 743–747. [Google Scholar] [CrossRef]
- El-Latif, A.; Khalaf, M. Connectedness in Intuitionistic Fuzzy Topological Spaces in Sostak’s Sense. Ital. J. Pure Appl. Math. 2015, 35, 649–668. [Google Scholar]
- Haydar Eş, A.; Çoker, D. More on fuzzy compactness in intuitionistic fuzzy topological spaces. Notes Intuitionistic Fuzzy Sets 1996, 2, 4–10. [Google Scholar]
- Kim, Y.C.; Abbas, S.E. Connectedness in Intuitionistic Fuzzy Topological Spaces. Commun. Korean Math. Soc. 2005, 20, 117–134. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, E.P. The category of intuitionistic fuzzy topological spaces. Bull. Korean Math. Soc. 2000, 37, 63–76. [Google Scholar]
- Milles, S. The Lattice of Intuitionistic Fuzzy Topologies Generated by Intuitionistic Fuzzy Relations. Appl. Appl. Math. 2020, 15, 942–956. [Google Scholar]
- Mondal, K.; Samanta, S.K. A study on intuitionistic fuzzy topological spaces. Notes Intuitionistic Fuzzy Sets 2003, 9, 1–32. [Google Scholar]
- Özbakir, O.; Çoker, D. Fuzzy multifunctions in intuitionistic fuzzy topological spaces. Notes Intuitionistic Fuzzy Sets 1999, 5, 1–5. [Google Scholar]
- Rajarajeswari, P.; Krishna Moorthy, R. Intuitionistic fuzzy completely weakly generalized continuous mappings. Notes Intuitionistic Fuzzy Sets 2012, 18, 25–36. [Google Scholar]
- Roopkumar, R.; Kalaivani, C. Continuity of intuitionistic fuzzy proper functions on intuitionistic smooth fuzzy topological spaces. Notes Intuitionistic Fuzzy Sets 2010, 16, 1–21. [Google Scholar]
- Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–334. [Google Scholar] [CrossRef]
- Thakur, S.; Chaturvedi, R. Generalized continuity in intuitionistic fuzzy topological spaces. Notes Intuitionistic Fuzzy Sets 2006, 12, 38–44. [Google Scholar]
- Tiwari, S. On relationships among intuitionistic fuzzy approximation operators, intuitionistic fuzzy topology and intuitionistic fuzzy automata. Notes Intuitionistic Fuzzy Sets 2010, 16, 1–9. [Google Scholar]
- Yılmaz, S.; Cuvalcıoglu, G. On Level Operators for Temporal intuitionistic fuzzy sets. Notes Intuitionistic Fuzzy Sets 2014, 20, 6–15. [Google Scholar]
- Yongfa, H.; Changjun, J. Some properties of intuitionistic fuzzy metric spaces. Notes Intuitionistic Fuzzy Sets 2004, 10, 18–26. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Modal Topological Structure. Mathematics 2022, 10, 3313. [Google Scholar] [CrossRef]
- De Poidevin, R. Relationism and Temporal Topology: Physics or Metaphysics? Philos. Q. 1990, 40, 419–432. [Google Scholar] [CrossRef]
- Kutlu, F.; Bilgin, T. Temporal Intuitionistic Fuzzy Topology in Sostak’s Sense. Notes Intuitionistic Fuzzy Sets 2015, 21, 63–70. [Google Scholar]
- Kutlu, F.; Ramadan, A.; Bilgin, T. On Compactness in Temporal Intuitionistic Fuzzy Sostak Topology. Notes Intuitionistic Fuzzy Sets 2016, 22, 46–62. [Google Scholar]
- Kutlu, F. On Separation Axioms in Temporal Intuitionistic Fuzzy Sostak Topology. Notes Intuitionistic Fuzzy Sets 2017, 23, 21–30. [Google Scholar]
- Atanassov, K. On the Intuitionistic Fuzzy Modal Feeble Topological Structures. Notes Intuitionistic Fuzzy Sets 2022, 28, 211–222. [Google Scholar] [CrossRef]
- Atanassov, K. On four intuitionistic fuzzy feeble topological structures. In Proceedings of the IEEE 11th International Conference on Intelligent Systems, Warsaw, Poland, 12–14 October 2022. [Google Scholar] [CrossRef]
- Atanassov, K. On intuitionistic fuzzy modal topological structures with modal operator of second type. Notes Intuitionistic Fuzzy Sets 2022, 28, 457–463. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic Fuzzy Sets; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Atanassov, K. Temporal intuitionistic fuzzy sets. Comptes Rendus L’Academie Bulg. Sci. 1991, 44, 5–7. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassov, K. On Intuitionistic Fuzzy Temporal Topological Structures. Axioms 2023, 12, 182. https://doi.org/10.3390/axioms12020182
Atanassov K. On Intuitionistic Fuzzy Temporal Topological Structures. Axioms. 2023; 12(2):182. https://doi.org/10.3390/axioms12020182
Chicago/Turabian StyleAtanassov, Krassimir. 2023. "On Intuitionistic Fuzzy Temporal Topological Structures" Axioms 12, no. 2: 182. https://doi.org/10.3390/axioms12020182
APA StyleAtanassov, K. (2023). On Intuitionistic Fuzzy Temporal Topological Structures. Axioms, 12(2), 182. https://doi.org/10.3390/axioms12020182