How Particular Firm-Specific Features Influence Corporate Debt Level: A Case Study of Slovak Enterprises
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- Firstly, debt indicators were separately assessed for enterprises operating in the Slovak Republic in the monitored period, 2015–2019. This time interval was chosen to cover the horizon before the COVID-19 pandemic, which has changed the financial structure of companies in almost all sectors.
- Subsequently, normality tests (Kolmogorov–Smirnov and Shapiro–Wilk tests) were leveraged to clarify if a dataset was satisfactorily modeled by a normal distribution, being combined with the graphical evaluation of normality, while determining whether a sample had a non-normal distribution. The p-value was construed in relation to a significance level of 5%. We found that the test dataset was relevantly inconsistent with the normal distribution.
- The Kruskal–Wallis test, a distribution-free procedure to the one-way ANOVA test, which builds up the two-samples Wilcoxon test when there are more than two groups, is used to determine that at a minimum one sample stochastically prevails over one other sample. The test result indicates a relevant dissimilarity between groups but does not identify which pairs of groups are distinct, so the Bonferroni correction was used to reduce the prospect of obtaining a statistically relevant outcome and for counteracting the multiple comparisons issue.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CI | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Small−medium | −269.985 | 47.870 | −5.640 | 0.000 | 0.000 |
Small−very large | −271.315 | 131.899 | −2.057 | 0.040 | 0.238 |
Small−large | −343.083 | 60.054 | −5.713 | 0.000 | 0.000 |
Medium−very large | −1.330 | 126.478 | −0.011 | 0.992 | 1.000 |
Medium−large | −73.097 | 46.968 | −1.556 | 0.120 | 0.710 |
Very large−large | 71.767 | 131.574 | 0.545 | 0.585 | 1.000 |
NCI | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Medium−very large | −5.973 | 126.478 | −0.047 | 0.962 | 1.000 |
Medium−large | −11.612 | 46.968 | −0.247 | 0.805 | 1.000 |
Medium−small | 136.309 | 47.870 | 2.848 | 0.004 | 0.026 |
Very large−large | 5.639 | 131.574 | 0.043 | 0.966 | 1.000 |
Very large−small | 130.336 | 131.899 | 0.988 | 0.323 | 1.000 |
Large−small | 124.697 | 60.054 | 2.076 | 0.038 | 0.227 |
IC | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Small−medium | −364.441 | 47.870 | −7.613 | 0.000 | 0.000 |
Small−large | −495.146 | 60.054 | −8.245 | 0.000 | 0.000 |
Small−very large | −641.764 | 131.899 | −4.886 | 0.000 | 0.000 |
Medium−large | −130.704 | 46.968 | −2.783 | 0.005 | 0.032 |
Medium−very large | −277.323 | 126.478 | −2.193 | 0.028 | 0.170 |
Large−very large | −146.618 | 131.574 | −1.114 | 0.265 | 1.000 |
IB | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Very large−large | 307.267 | 131.574 | 2.335 | 0.020 | 0.117 |
Very large−medium | 425.188 | 126.478 | 3.362 | 0.001 | 0.005 |
Very large−small | 684.279 | 131.899 | 5.188 | 0.000 | 0.000 |
Large−medium | 117.920 | 46.968 | 2.511 | 0.012 | 0.072 |
Large−small | 377.012 | 60.054 | 6.278 | 0.000 | 0.000 |
Medium−small | 259.092 | 47.870 | 5.412 | 0.000 | 0.000 |
DCF | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Small−medium | −12.727 | 47.870 | −0.266 | 0.790 | 1.000 |
Small−large | −188.167 | 60.054 | −3.133 | 0.002 | 0.010 |
Small−very large | −320.789 | 131.899 | −2.432 | 0.015 | 0.090 |
Medium−large | −175.441 | 46.968 | −3.735 | 0.000 | 0.001 |
Medium−very large | −308.063 | 126.478 | −2.436 | 0.015 | 0.089 |
Large−very large | −132.622 | 131.574 | −1.008 | 0.313 | 1.000 |
NCAC | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Small−medium | −317.476 | 47.870 | −6.632 | 0.000 | 0.000 |
Small−large | −363.742 | 60.054 | −6.057 | 0.000 | 0.000 |
Small−very large | −367.064 | 131.899 | −2.783 | 0.005 | 0.032 |
Medium−large | −46.266 | 46.968 | −0.985 | 0.325 | 1.000 |
Medium−very large | −49.588 | 126.478 | −0.392 | 0.695 | 1.000 |
Large−very large | −3.322 | 131.574 | −0.025 | 0.980 | 1.000 |
Ins | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Large−very large | −49.190 | 131.574 | −0.374 | 0.709 | 1.000 |
Large−medium | 55.030 | 46.968 | 1.172 | 0.241 | 1.000 |
Large−small | 452.655 | 60.054 | 7.537 | 0.000 | 0.000 |
Very large−medium | 5.840 | 126.478 | 0.046 | 0.963 | 1.000 |
Very large−small | 403.465 | 131.899 | 3.059 | 0.002 | 0.013 |
Medium−small | 397.625 | 47.870 | 8.306 | 0.000 | 0.000 |
Appendix B
TI | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Public limited companies | 772.045 | 82.931 | 9.309 | 0.000 | 0.000 |
Partnerships−Private limited companies | 902.262 | 69.728 | 12.940 | 0.000 | 0.000 |
Public limited companies−Private limited companies | 130.217 | 52.308 | 2.489 | 0.013 | 0.038 |
SF | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Private limited companies−Public limited companies | −130.236 | 52.308 | −2.490 | 0.013 | 0.038 |
Private limited companies−Partnerships | −902.278 | 69.728 | −12.940 | 0.000 | 0.000 |
Public limited companies−Partnerships | −772.042 | 82.931 | −9.309 | 0.000 | 0.000 |
CI | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Public limited companies | 457.754 | 82.931 | 5.520 | 0.000 | 0.000 |
Partnerships−Private limited companies | 646.606 | 69.728 | 9.273 | 0.000 | 0.000 |
Public limited companies−Private limited companies | 188.852 | 52.308 | 3.610 | 0.000 | 0.001 |
NCI | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Private limited companies | 133.820 | 69.728 | 1.919 | 0.055 | 0.165 |
Partnerships−Public limited companies | 294.905 | 82.931 | 3.556 | 0.000 | 0.001 |
Private limited companies−Public limited companies | −161.086 | 52.308 | −3.080 | 0.002 | 0.006 |
DE | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Public limited companies | 732.299 | 82.931 | 8.830 | 0.000 | 0.000 |
Partnerships−Private limited companies | 874.839 | 69.728 | 12.547 | 0.000 | 0.000 |
Public limited companies−Private limited companies | 142.540 | 52.308 | 2.725 | 0.006 | 0.019 |
IC | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Public limited companies | 517.154 | 82.931 | 6.236 | 0.000 | 0.000 |
Partnerships−Private limited companies | 736.186 | 69.728 | 10.558 | 0.000 | 0.000 |
Public limited companies−Private limited companies | 219.031 | 52.308 | 4.187 | 0.000 | 0.000 |
DCF | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Private limited companies | 196.818 | 69.728 | 2.823 | 0.005 | 0.014 |
Partnerships−Public limited companies | 366.049 | 82.931 | 4.414 | 0.000 | 0.000 |
Private limited companies−Public limited companies | −169.231 | 52.308 | −3.235 | 0.001 | 0.004 |
EL | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Partnerships−Public limited companies | 732.301 | 82.931 | 8.830 | 0.000 | 0.000 |
Partnerships−Private limited companies | 874.844 | 69.728 | 12.547 | 0.000 | 0.000 |
Public limited companies−Private limited companies | 142.543 | 52.308 | 2.725 | 0.006 | 0.019 |
FI | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Private limited companies−Public limited companies | −128.675 | 52.308 | −2.460 | 0.014 | 0.042 |
Private limited companies−Partnerships | −862.009 | 69.728 | −12.363 | 0.000 | 0.000 |
Public limited companies−Partnerships | −733.334 | 82.931 | −8.843 | 0.000 | 0.000 |
Ins | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. Sig. |
Public limited companies−Private limited companies | 24.508 | 52.308 | 0.469 | 0.639 | 1.000 |
Public limited companies−Partnerships | −473.212 | 82.931 | −5.706 | 0.000 | 0.000 |
Private limited companies−Partnerships | −448.703 | 69.728 | −6.435 | 0.000 | 0.000 |
References
- Hu, X.; Li, O.Z.; Li, Y.; Pei, S. Positive Externality of the American Jobs Creation Act of 2004. J. Financ. Quant. Anal. 2021, 56, 607–646. [Google Scholar] [CrossRef]
- Krulicky, T.; Horak, J. Business performance and financial health assessment through artificial intelligence. Ekonomicko-Manazerske Spektrum 2021, 15, 38–51. [Google Scholar] [CrossRef]
- Roziq, A.; Zumaroh, S.A.; Prasetyo, W.; Susanto, A.B. Model of Risk Reduction Behavior and Financial Performance Escalation of Islamic Bank in Indonesia. Qual.-Access Success 2021, 27, 115–121. [Google Scholar]
- Wang, X.J.; Choi, S.H. Optimisation of stochastic multi-item manufacturing for shareholder wealth maximisation. Eng. Lett. 2013, 21, 127–136. [Google Scholar]
- Poursoleyman, E.; Mansourfar, G.; Abidin, S. Debt structure: A solution to the puzzle of capital structure. Int. J. Manag. Financ. 2021, 19, 22–47. [Google Scholar] [CrossRef]
- Zhuravlov, D.; Prokhorenko, M.; Chernadchuk, T.; Omelyanenko, V.; Shevchenko, V. The impact of the public debt of a country on the sustainable development of entrepreneurship. Entrep. Sustain. Issues 2021, 8, 654. [Google Scholar] [CrossRef]
- Melesse, W.E.; Berihun, E.; Baylie, F.; Kenubih, D. The role of public policy in debt level choices among small-scale manufacturing enterprises in Ethiopia: Conditional mixed process approach. Heliyon 2021, 7, e08548. [Google Scholar] [CrossRef]
- Jones, E.; Kwansa, N.A.; Li, H. How does internationalization affect capital raising decisions? Evidence from UK firms. J. Multinatl. Financ. Manag. 2020, 57–58, 100652. [Google Scholar] [CrossRef]
- Valaskova, K.; Adamko, P.; Michalikova, K.F. Quo Vadis, earnings management? Analysis of manipulation determinants in Central European environment. Oeconomia Copernic. 2022, 12, 631–669. [Google Scholar] [CrossRef]
- Dvoulety, O.; Blazkova, I. Exploring firm-level and sectoral variation in total factor productivity (TFP). Int. J. Entrep. Behav. Res. 2021, 27, 1526–1547. [Google Scholar] [CrossRef]
- Iwasaki, I.; Kocenda, E.; Shida, Y. Distressed acquisitions: Evidence from European emerging markets. J. Comp. Econ. 2021, 49, 962–990. [Google Scholar] [CrossRef]
- Kinds, A.; Le Floc´h, P.; Speelman, S.; Guayader, O. Challenging the ’artisanal vs. industrial’ dichotomy in French Atlantic fisheries: An organizational typology of multi-vessel fishing firms. Mar. Policy 2021, 134, 104753. [Google Scholar] [CrossRef]
- Sirec, K.; Mocnik, D. Indicators of high potential firms’ rapid growth: Empirical evidence for Slovenia. Transform. Bus. Econ. 2014, 13, 448–461. [Google Scholar]
- Stockr, M.; Winner, H. Capital Structure and Corporate Taxation: Empirical Evidence from European Panel Data. Jahrb. Fur Natlionalokonomie Und Stat. 2013, 233, 188–205. [Google Scholar]
- Oertel, S.; Walgenbach, P. The effect of partner exits on survival chances of SMEs. J. Organ. Chang. Manag. 2012, 25, 462–482. [Google Scholar] [CrossRef]
- Gregory, R.P. Social capital and capital structure. J. Sustain. Financ. Invest. 2022, 2, 655–668. [Google Scholar] [CrossRef]
- Subagyo, H. Relationships between debt, growth opportunities, and firm value: Empirical Evidence from the Indonesia stock exchange. J. Asian Financ. Econ. Bus. 2021, 8, 813–821. [Google Scholar]
- Wang, C.; Brabenec, T.; Gao, P.; Tang, Z. The Business Strategy, Competitive Advantage and Financial Strategy: A Perspective from Corporate Maturity Mismatched Investment. J. Compet. 2021, 13, 164–181. [Google Scholar] [CrossRef]
- Diantimala, Y.; Syahnur, S.; Mulyany, R.; Faisal, F. Firm size sensitivity on the correlation between financing choice and firm value. Cogent Bus. Manag. 2021, 8, 1926404. [Google Scholar] [CrossRef]
- Yagi, K.; Takashima, R. The impact of convertible debt financing on investment timing. Econ. Model. 2021, 29, 2407–2416. [Google Scholar] [CrossRef]
- Modigliani, F.; Miller, M.H. The Cost of Capital, Corporation Finance and the Theory of Investment. Am. Econ. Rev. 1958, 48, 261–297. [Google Scholar]
- Brusov, P.; Filatova, T. The Modigliani–Miller Theory with Arbitrary Frequency of Payment of Tax on Profit. Mathematics 2021, 9, 1198. [Google Scholar] [CrossRef]
- Koussis, N.; Martzoukos, S.H. Investment options with debt-financing constraints. Eur. J. Financ. 2012, 18, 619–637. [Google Scholar] [CrossRef]
- Gregova, E.; Smrcka, L.; Michalkova, L.; Svabova, L. Impact of tax benefits and earnings management of capital structures across V4 countries. Acta Polytech. Hung. 2021, 18, 221–244. [Google Scholar] [CrossRef]
- Druzhkov, K.; Eremin, V. Public-private partnership—An actual form of implementation of infrastructure projects. Econ. Math. Methods 2019, 54, 111–115. [Google Scholar] [CrossRef]
- Kim, J.; Lotfaliei, B. Debt recapitalization and value in waiting to finance a project. Oper. Res. Lett. 2020, 48, 421–427. [Google Scholar] [CrossRef]
- Murphy, J. The debt-equity rules: A continuing experiment in economic substance. Aust. Tax Rev. 2016, 45, 20–37. [Google Scholar]
- Feng, Y.; Shen, Q. How does green credit policy affect total factor productivity at the corporate level in China: The mediating role of debt financing and the moderating role of financial mismatch. Environ. Sci. Pollut. Res. 2022, 29, 23237–23248. [Google Scholar] [CrossRef]
- Jung, H.U.; Mun, T.H.; Roh, T. Does Debt Financing Affect the Sustainability of Transparent Accounting Information? Sustainability 2021, 13, 4052. [Google Scholar] [CrossRef]
- Durana, P.; Michalkova, L.; Privara, A.; Marousek, J.; Tumpach, M. Does the life cycle affect earnings management and bankruptcy? Oeconomia Copernic. 2021, 12, 425–461. [Google Scholar] [CrossRef]
- Balli, F.; Billah, M.; Balli, H.O.; De Bruin, A. Spillovers to sectoral equity returns: Do liquidity and financial positions matter? Appl. Econ. 2021, 53, 3097–3130. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, C.C.; Xiao, S. Policy-related risk and corporate financing behavior: Evidence from China’s listed companies. Econ. Model. 2021, 94, 539–547. [Google Scholar] [CrossRef]
- Rowland, Z.; Kasych, A.; Suler, P. Prediction of financial distress: Case of mining enterprises in Czech Republic. Ekon.-Manaz. Spektrum 2021, 15, 1–14. [Google Scholar] [CrossRef]
- Papadaki, A.J.; Pavlopoulou-Lelaki, O.C. Sources of Corporate Financing and Operating Performance: The effects of strategic ownership and financial restatements. Int. Rev. Financ. Anal. 2021, 76, 101732. [Google Scholar] [CrossRef]
- Li, X.M.; Qiu, M. The joint effects of economic policy uncertainty and firm characteristics on capital structure: Evidence from US firms. J. Int. Money Financ. 2021, 110, 102279. [Google Scholar] [CrossRef]
- Nagpal, A.; Jain, M. Corporate Leverage and Monetary Policy Transmission Mechanism in India: A Dynamic Approach. Asian Acad. Manag. J. Account. Financ. 2021, 17, 189–215. [Google Scholar] [CrossRef]
- Valaskova, K.; Kliestik, T.; Gajdosikova, D. Distinctive determinants of financial indebtedness: Evidence from Slovak and Czech enterprises. Equilibrium. Q. J. Econ. Econ. Policy 2021, 16, 639–659. [Google Scholar] [CrossRef]
- Johnson, C.L.; Yushkov, A. On the determinants of regional government debt in Russia. Eurasian Geogr. Econ. 2022. [Google Scholar] [CrossRef]
- Jencova, S.; Petruska, I.; Lukacova, M. Relationship between ROA and total indebtedness by threshold regression model. Montenegrin J. Econ. 2021, 17, 37–46. [Google Scholar] [CrossRef]
- Tharavanij, P. Optimal Book-Value Debt Ratio. SAGE Open 2021, 11. [Google Scholar] [CrossRef]
- Nkeki, C.I.; Modugu, K.P. Optimal investment in the presence of intangible assets and collateralized optimal debt ratio in jump-diffusion models. Math. Sci. 2020, 14, 309–334. [Google Scholar] [CrossRef]
- Kucera, J.; Vochozka, M.; Rowland, Z. The ideal debt ratio of an agricultural enterprise. Sustainability 2021, 13, 4613. [Google Scholar] [CrossRef]
- Stefko, R.; Vasanicova, P.; Jencova, S.; Pachura, A. Management and economic sustainability of the Slovak industrial companies with medium energy intensity. Energies 2021, 14, 267. [Google Scholar] [CrossRef]
- Istok, M.; Kanderova, M. Debt/asset ratio as evidence of profit-shifting behaviour in the Slovak Republic. Technol. Econ. Dev. Econ. 2019, 25, 1293–1308. [Google Scholar] [CrossRef]
- Hajdys, D.; Jabłonska, M.; Slebocka, M. Impact of textile industry restructuring on the financial condition of local government units for the example of the Łódź region in Poland. Fibres Text. East. Eur. 2020, 28, 8–19. [Google Scholar] [CrossRef]
- Michalkova, L.; Stehel, V.; Nica, E.; Durana, P. Corporate Management: Capital Structure and Tax Shields. Mark. Manag. Innov. 2021, 3, 276–295. [Google Scholar]
- Huang, R.; Tan, K.J.K.; Faff, R.W. CEO overconfidence and corporate debt maturity. J. Corp. Financ. 2016, 36, 93–110. [Google Scholar] [CrossRef]
- Jungherr, J.; Schott, I. Optimal debt maturity and firm investment. Rev. Econ. Dyn. 2021, 42, 110–132. [Google Scholar] [CrossRef]
- Batrancea, L. The Influence of Liquidity and Solvency on Performance within the Healthcare Industry: Evidence from Publicly Listed Companies. Mathematics 2021, 9, 2231. [Google Scholar] [CrossRef]
- Zhu, J.Y. Anticipating disagreement in dynamic contracting. Rev. Financ. 2022, 26, 1241–1265. [Google Scholar] [CrossRef]
- Nukala, V.B.; Prasada Rao, S.S. Role of debt-to-equity ratio in project investment valuation, assessing risk and return in capital markets. Future Bus. J. 2021, 7, 1–23. [Google Scholar] [CrossRef]
- Raval, A.; Dave, A. The Empirical Study of Association of Capital Structure and Profitability of Telecommunication Firms. Biosci. Biotechnol. Res. Commun. 2021, 14, 190–193. [Google Scholar] [CrossRef]
- Karas, M.; Reznakova, M. The stability of bankruptcy predictors in the construction and manufacturing industries at various times before bankruptcy. E M Ekon. Manag. 2017, 20, 116–133. [Google Scholar] [CrossRef]
- Jeppson, N.H.; Ruddy, J.A.; Salerno, D.F. The influence of social media usage on the DuPont method of analysis. J. Corp. Account. Financ. 2021, 32, 31–44. [Google Scholar] [CrossRef]
- Voon, J.P.; Lin, C.; Ma, Y.C. Managerial overconfidence and bank loan covenant usage. Int. J. Financ. Econ. 2020, 27, 4575–4598. [Google Scholar] [CrossRef]
- Tousek, Z.; Hinke, J.; Malinska, B.; Prokop, M. The Performance Determinants of Trading Companies: A Stakeholder Perspective. J. Compet. 2021, 13, 152–170. [Google Scholar] [CrossRef]
- Melnik, T.E.; Lomakin, D.E.; Lebedeva, E.V.; Aygumov, T.G.; Pakhomova, A.I. Applying benchmarking tool in assessment financial safety of organization. Amazon. Investig. 2020, 9, 72–81. [Google Scholar] [CrossRef]
- Turylo, A.M.; Zinchenko, O.A. Theoretical and Methodical Grounds of Generalized Evaluation of an Enterprise from the Viewpoint of Its Financial And Economic Development. Actual Probl. Econ. 2010, 177–182. [Google Scholar]
- Voda, A.D.; Dobrota, G.; Țirca, D.M.; Dumitrașcu, D.D.; Dobrota, D. Corporate bankruptcy and insolvency prediction model. Technol. Econ. Dev. Econ. 2021, 27, 1039–1056. [Google Scholar] [CrossRef]
- Schonfeld, J. Financial situation of pre-packed insolvencies. J. Bus. Econ. Manag. 2020, 21, 1111–1127. [Google Scholar] [CrossRef]
- Liu, L.; Xu, J.; Shang, Y. Determining factors of financial performance of agricultural listed companies in China. Custos E Agronegocio 2020, 16, 297–314. [Google Scholar]
- Chandrayanti, T.; Nidar, S.R.; Mulyana, A.; Anwar, M. Impact of entrepreneurial characteristics on credit accessibility: Case study of small businesses in West Sumatera–Indonesia. Entrep. Sustain. Issues 2020, 7, 1761–1778. [Google Scholar] [CrossRef] [PubMed]
- Mrzygodd, U.; Nowak, S.; Mosionek-Schweda, M.; Kwiatkowski, J. What drives the dividend decisions in BRICS countries? Oeconomia Copernic. 2021, 12, 593–629. [Google Scholar] [CrossRef]
- Karas, M.; Reznakova, M. The role of financial constraint factors in predicting SME default. Equilibrium. Q. J. Econ. Econ. Policy 2021, 16, 859–883. [Google Scholar] [CrossRef]
- Tripathy, A.; Uzma, S.H. Does debt heterogeneity impact firm value? Evidence from an emerging context. South Asian J. Bus. Stud. 2021, 11, 471–488. [Google Scholar] [CrossRef]
- Nehrebecka, N. COVID-19: Stress-testing non-financial companies: A macroprudential perspective. The experience of Poland. Eurasian Econ. Rev. 2021, 11, 283–319. [Google Scholar] [CrossRef]
- Quintella, O.M.; Coelho, C.U.F. A study about the determinant factors of the capital structure of Brazilian companies: A quantile regression analysis. Rev. Ambiente Contab. 2021, 13, 54–71. [Google Scholar]
- dos Prazeres, R.V.; Barreto Sampaio, Y.S.; Teixeira Lagioia, U.C.; dos Santos, J.F.; Miranda, L.C. Determinants of Debt: An Empirical Study of the Brazilian Telecommunications Sector. Contab. Gest. E Gov. 2015, 18, 139–159. [Google Scholar]
- Păun (Zamfiroiu), T.; Pinzaru, P. Advancing Strategic Management through Sustainable Finance. Manag. Dyn. Knowl. Econ. 2021, 9, 279–291. [Google Scholar]
- Bar-Yosef, S.; D’Augusta, C.; Prencipe, A. Accounting research on private firms: State of the art and future directions. Int. J. Account. 2019, 54, 1950007. [Google Scholar] [CrossRef]
- Sinichkin, P. The Concept and the Essence of Private Companies. Upravlenets Manager 2015, 5, 24–29. [Google Scholar]
- Wasiuzzaman, S.; Nurdin, N. Debt financing decisions of SMEs in emerging markets: Empirical evidence from Malaysia. Int. J. Bank Mark. 2018, 37, 258–277. [Google Scholar] [CrossRef]
- Huynh, K.P.; Paligorova, T.; Petrunia, R. Debt financing in private and public firms. Ann. Financ. 2018, 14, 465–487. [Google Scholar] [CrossRef]
- Dijmărescu, I.; Iatagan, M.; Hurloiu, I.; Geamănu, M.; Rusescu, C.; Dijmărescu, A. Neuromanagement decision making in facial recognition biometric authentication as a mobile payment technology in retail, restaurant, and hotel business models. Oeconomia Copernic. 2022, 13, 225–250. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Hurloiu, I.; Ștefănescu, R.; Dijmărescu, A.; Dijmărescu, I. Big Data Management Algorithms, Deep Learning-Based Object Detection Technologies, and Geospatial Simulation and Sensor Fusion Tools in the Internet of Robotic Things. ISPRS Int. J. Geo-Inf. 2023, 12, 35. [Google Scholar] [CrossRef]
- Zvarikova, K.; Frajtova Michalikova, K.; Rowland, M. Retail Data Measurement Tools, Cognitive Artificial Intelligence Algorithms, and Metaverse Live Shopping Analytics in Immersive Hyper-Connected Virtual Spaces. Linguist. Philos. Investig. 2022, 21, 9–24. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Androniceanu, A.; Grecu, I.; Grecu, G.; Neguriță, O. Artificial Intelligence-based Decision-Making Algorithms, Internet of Things Sensing Networks, and Sustainable Cyber-Physical Management Systems in Big Data-driven Cognitive Manufacturing. Oeconomia Copernic. 2022, 13, 1045–1078. [Google Scholar] [CrossRef]
- Kliestik, T.; Vochozka, M.; Vasić, M. Biometric Sensor Technologies, Visual Imagery and Predictive Modeling Tools, and Ambient Sound Recognition Software in the Economic Infrastructure of the Metaverse. Rev. Contemp. Philos. 2022, 21, 72–88. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Karabolevski, O.L.; Ștefănescu, R.; Hurloiu, I.; Dijmărescu, A.; Dijmărescu, I. Remote Big Data Management Tools, Sensing and Computing Technologies, and Visual Perception and Environment Mapping Algorithms in the Internet of Robotic Things. Electronics 2023, 12, 22. [Google Scholar] [CrossRef]
- Valaskova, K.; Vochozka, M.; Lăzăroiu, G. Immersive 3D Technologies, Spatial Computing and Visual Perception Algorithms, and Event Modeling and Forecasting Tools on Blockchain-based Metaverse Platforms. Anal. Metaphys. 2022, 21, 74–90. [Google Scholar] [CrossRef]
- Nagy, M.; Lăzăroiu, G. Computer Vision Algorithms, Remote Sensing Data Fusion Techniques, and Mapping and Navigation Tools in the Industry 4.0-based Slovak Automotive Sector. Mathematics 2022, 10, 3543. [Google Scholar] [CrossRef]
- Kovacova, M.; Oláh, J.; Popp, J.; Nica, E. The Algorithmic Governance of Autonomous Driving Behaviors: Multi-Sensor Data Fusion, Spatial Computing Technologies, and Movement Tracking Tools. Contemp. Read. Law Soc. Justice 2022, 14, 27–45. [Google Scholar] [CrossRef]
- Valaskova, K.; Nagy, M.; Zabojnik, S.; Lăzăroiu, G. Industry 4.0 Wireless Networks and Cyber-Physical Smart Manufacturing Systems as Accelerators of Value-Added Growth in Slovak Exports. Mathematics 2022, 10, 2452. [Google Scholar] [CrossRef]
- Valaskova, K.; Machova, V.; Lewis, E. Virtual Marketplace Dynamics Data, Spatial Analytics, and Customer Engagement Tools in a Real-Time Interoperable Decentralized Metaverse. Linguist. Philos. Investig. 2022, 21, 105–120. [Google Scholar] [CrossRef]
- Zvarikova, K.; Machova, V.; Nica, E. Cognitive Artificial Intelligence Algorithms, Movement and Behavior Tracking Tools, and Customer Identification Technology in the Metaverse Commerce. Rev. Contemp. Philos. 2022, 21, 171–187. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Andronie, M.; Iatagan, M.; Geamănu, M.; Ștefănescu, R.; Dijmărescu, I. Deep Learning-Assisted Smart Process Planning, Robotic Wireless Sensor Networks, and Geospatial Big Data Management Algorithms in the Internet of Manufacturing Things. ISPRS Int. J. Geo-Inf. 2022, 11, 277. [Google Scholar] [CrossRef]
- Kovacova, M.; Horak, J.; Popescu, G.H. Haptic and Biometric Sensor Technologies, Deep Learning-based Image Classification Algorithms, and Movement and Behavior Tracking Tools in the Metaverse Economy. Anal. Metaphys. 2022, 21, 176–192. [Google Scholar] [CrossRef]
- Kliestik, T.; Musa, H.; Machova, V.; Rice, L. Remote Sensing Data Fusion Techniques, Autonomous Vehicle Driving Perception Algorithms, and Mobility Simulation Tools in Smart Transportation Systems. Contemp. Read. Law Soc. Justice 2022, 14, 137–152. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Ștefănescu, R.; Ionescu, L.; Cocoșatu, M. Neuromanagement Decision-Making and Cognitive Algorithmic Processes in the Technological Adoption of Mobile Commerce Apps. Oeconomia Copernic. 2021, 12, 863–888. [Google Scholar] [CrossRef]
- Nica, E.; Poliak, M.; Popescu, G.H.; Pârvu, I.-A. Decision Intelligence and Modeling, Multisensory Customer Experiences, and Socially Interconnected Virtual Services across the Metaverse Ecosystem. Linguist. Philos. Investig. 2022, 21, 137–153. [Google Scholar] [CrossRef]
- Zauskova, A.; Miklencicova, R.; Popescu, G.H. Visual Imagery and Geospatial Mapping Tools, Virtual Simulation Algorithms, and Deep Learning-based Sensing Technologies in the Metaverse Interactive Environment. Rev. Contemp. Philos. 2022, 21, 122–137. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Uță, C.; Ștefănescu, R.; Cocoșatu, M. Artificial Intelligence-Based Decision-Making Algorithms, Internet of Things Sensing Networks, and Deep Learning-Assisted Smart Process Management in Cyber-Physical Production Systems. Electronics 2021, 10, 2497. [Google Scholar] [CrossRef]
- Novak, A.; Novak Sedlackova, A.; Vochozka, M.; Popescu, G.H. Big Data-driven Governance of Smart Sustainable Intelligent Transportation Systems: Autonomous Driving Behaviors, Predictive Modeling Techniques, and Sensing and Computing Technologies. Contemp. Read. Law Soc. Justice 2022, 14, 100–117. [Google Scholar] [CrossRef]
- Zvarikova, K.; Rowland, Z.; Nica, E. Multisensor Fusion and Dynamic Routing Technologies, Virtual Navigation and Simulation Modeling Tools, and Image Processing Computational and Visual Cognitive Algorithms across Web3-powered Metaverse Worlds. Anal. Metaphys. 2022, 21, 125–141. [Google Scholar] [CrossRef]
- Musa, H.; Musova, Z.; Natorin, V.; Lăzăroiu, G.; Boďa, M. Comparison of Factors Influencing Liquidity of European Islamic and Conventional Banks. Oeconomia Copernic. 2021, 12, 217–236. [Google Scholar] [CrossRef]
- Kliestik, T.; Novak, A.; Lăzăroiu, G. Live Shopping in the Metaverse: Visual and Spatial Analytics, Cognitive Artificial Intelligence Techniques and Algorithms, and Immersive Digital Simulations. Linguist. Philos. Investig. 2022, 21, 187–202. [Google Scholar] [CrossRef]
- Grupac, M.; Husakova, K.; Balica, R.-Ș. Virtual Navigation and Augmented Reality Shopping Tools, Immersive and Cognitive Technologies, and Image Processing Computational and Object Tracking Algorithms in the Metaverse Commerce. Anal. Metaphys. 2022, 21, 210–226. [Google Scholar] [CrossRef]
- Valaskova, K.; Horak, J.; Lăzăroiu, G. Socially Responsible Technologies in Autonomous Mobility Systems: Self-Driving Car Control Algorithms, Virtual Data Modeling Tools, and Cognitive Wireless Sensor Networks. Contemp. Read. Law Soc. Justice 2022, 14, 172–188. [Google Scholar] [CrossRef]
- Grupac, M.; Lăzăroiu, G. Image Processing Computational Algorithms, Sensory Data Mining Techniques, and Predictive Customer Analytics in the Metaverse Economy. Rev. Contemp. Philos. 2022, 21, 205–222. [Google Scholar] [CrossRef]
- Kliestik, T.; Valaskova, K.; Lăzăroiu, G.; Kovacova, M.; Vrbka, J. Remaining Financially Healthy and Competitive: The Role of Financial Predictors. J. Compet. 2020, 12, 74–92. [Google Scholar] [CrossRef]
- Valaskova, K.; Horak, J.; Bratu, S. Simulation Modeling and Image Recognition Tools, Spatial Computing Technology, and Behavioral Predictive Analytics in the Metaverse Economy. Rev. Contemp. Philos. 2022, 21, 239–255. [Google Scholar] [CrossRef]
Avg. | Med. | Std. Dev. | Min. | Max. | CV | |
---|---|---|---|---|---|---|
FIAS | 153.349 | 114.206 | 84.991 | 53.916 | 391.667 | 0.554 |
TOAS | 387.125 | 306.239 | 144.134 | 110.857 | 687.040 | 0.372 |
OCAS | 104.221 | 99.509 | 96.004 | 42.237 | 202.166 | 0.921 |
DEBT | 122.408 | 167.222 | 93.903 | 0.000 | 571.167 | 0.767 |
NCLI | 75.971 | 88.112 | 42.080 | 0.958 | 246.547 | 0.554 |
CULI | 204.947 | 198.338 | 102.813 | 5.808 | 417.012 | 0.502 |
EBIT | 34.407 | 19.461 | 33.078 | −11.342 | 623.002 | 0.961 |
DEPR | 8.689 | 9.691 | 4.865 | −2.778 | 74.833 | 0.560 |
SHFD | 106.207 | 86.281 | 99.872 | 1.323 | 697.483 | 0.940 |
INTE | 5.695 | 8.124 | 2.903 | 0.589 | 26.167 | 0.510 |
Ratio | Formula | Ratio | Formula | ||
---|---|---|---|---|---|
Total indebtedness ratio | (1) | Interest burden ratio | (7) | ||
Self-financing ratio | (2) | Debt-to-cash flow ratio | (8) | ||
Current indebtedness ratio | (3) | Equity leverage ratio | (9) | ||
Non-current indebtedness ratio | (4) | Financial independence ratio | (10) | ||
Debt-to-equity ratio | (5) | Noncurrent assets coverage ratio | (11) | ||
Interest coverage ratio | (6) | Insolvency ratio | (12) |
Ratio | Avg. | Min. | Max. | Q25 | Med. | Q75 |
---|---|---|---|---|---|---|
Total indebtedness ratio | 0.636 | 0.265 | 1.295 | 0.514 | 0.648 | 0.763 |
Self-financing ratio | 0.364 | −0.295 | 0.735 | 0.236 | 0.352 | 0.485 |
Current indebtedness ratio | 0.464 | 0.006 | 1.110 | 0.325 | 0.462 | 0.606 |
Non-current indebtedness ratio | 0.172 | 0.000 | 0.732 | 0.056 | 0.126 | 0.246 |
Debt-to-equity ratio | 2.645 | −4.111 | 9.558 | 1.113 | 2.000 | 3.599 |
Interest coverage ratio | 10.732 | −33.793 | 57.159 | 2.722 | 6.607 | 15.48 |
Interest burden ratio | 0.142 | −0.312 | 0.575 | 0.058 | 0.123 | 0.220 |
Debt-to-cash flow ratio | 7.511 | −11.012 | 26.424 | 3.872 | 6.204 | 10.271 |
Equity leverage ratio | 3.645 | −3.112 | 10.558 | 2.113 | 3.000 | 4.599 |
Financial independence ratio | 0.759 | −0.203 | 2.841 | 0.323 | 0.575 | 1.026 |
Noncurrent assets coverage ratio | 1.188 | −0.496 | 3.209 | 0.807 | 1.055 | 1.434 |
Insolvency ratio | 2.957 | −3.051 | 9.734 | 1.467 | 2.270 | 3.870 |
TI | SF | CI | NCI | DE | IC | |
Kruskal–Wallis H | 3.435 | 3.444 | 39.318 | 8.233 | 0.322 | 83.351 |
Asymp. Sig. | 0.329 | 0.328 | 0.000 | 0.041 | 0.956 | 0.000 |
IB | DCF | EL | FI | NCAC | Ins | |
Kruskal–Wallis H | 55.268 | 19.967 | 0.323 | 5.103 | 50.033 | 77.492 |
Asymp. Sig. | 0.000 | 0.000 | 0.956 | 0.164 | 0.000 | 0.000 |
CI | NCI | IC | IB | DCF | NCAC | Ins | |
---|---|---|---|---|---|---|---|
Large-Very large | |||||||
Medium sized-Large | |||||||
Medium sized-Very large | |||||||
Small-Large | |||||||
Small-Medium sized | |||||||
Small-Very large |
TI | SF | CI | NCI | DE | IC | |
Kruskal–Wallis H | 168.920 | 168.927 | 93.326 | 14.476 | 159.644 | 121.457 |
Asymp. Sig. | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 |
IB | DCF | EL | FI | NCAC | Ins | |
Kruskal-Wallis H | 3.518 | 20.438 | 159.646 | 154.382 | 1.429 | 42.642 |
Asymp. Sig. | 0.172 | 0.000 | 0.000 | 0.000 | 0.490 | 0.000 |
TI | SF | CI | NCI | DE | |
Partnerships–Private limited companies | |||||
Partnerships–Public limited companies | |||||
Public limited companies–Private limited companies | |||||
IC | DCF | EL | FI | Ins | |
Partnerships–Private limited companies | |||||
Partnerships–Public limited companies | |||||
Public limited companies–Private limited companies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdosikova, D.; Lăzăroiu, G.; Valaskova, K. How Particular Firm-Specific Features Influence Corporate Debt Level: A Case Study of Slovak Enterprises. Axioms 2023, 12, 183. https://doi.org/10.3390/axioms12020183
Gajdosikova D, Lăzăroiu G, Valaskova K. How Particular Firm-Specific Features Influence Corporate Debt Level: A Case Study of Slovak Enterprises. Axioms. 2023; 12(2):183. https://doi.org/10.3390/axioms12020183
Chicago/Turabian StyleGajdosikova, Dominika, George Lăzăroiu, and Katarina Valaskova. 2023. "How Particular Firm-Specific Features Influence Corporate Debt Level: A Case Study of Slovak Enterprises" Axioms 12, no. 2: 183. https://doi.org/10.3390/axioms12020183
APA StyleGajdosikova, D., Lăzăroiu, G., & Valaskova, K. (2023). How Particular Firm-Specific Features Influence Corporate Debt Level: A Case Study of Slovak Enterprises. Axioms, 12(2), 183. https://doi.org/10.3390/axioms12020183