A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Micro-Flotation Tests
2.2.2. Recovery by Entrainment
2.2.3. Laser Particle Size Experiments
2.2.4. Image Analysis
2.2.5. Batch Flotation
3. Results and Discussion
3.1. Flotation Results
3.1.1. Analysis of the Difference in Flotation Behavior
3.1.2. The Collecting Performance of the New Collector ZH-1
3.2. Flotation Entrainment Rate Analysis
3.3. Laser Particle Size Analysis
3.4. Microscopic Analysis
3.5. Locked-Cycle Tests of Grading Flotation
3.5.1. Locked-Cycle Test of +25 μm
3.5.2. Locked-Cycle Test of −25 μm
3.6. Economic Feasibility Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, D.W. Discussion on Vulcanization Mechanism of Malachite and New Technology of Flotation of Copper Oxide Ore; Kunming University of Science and Technology: Kunming, China, 2007. [Google Scholar]
- Liu, D.W.; Fang, J.J.; Shang, X. Discussion on the Reasons for the Difficult Selection of Micronized Copper Oxide Minerals. China Min. 2009, 3, 80–83. [Google Scholar]
- Liu, D.W.; Fang, J.J.; Shang, X. Study on flotation method of fine-grained copper oxide minerals. China Min. 2010, 1, 79–82. [Google Scholar]
- Cheng, C.Q.; Ku, J.G.; Liu, D.W. Study on flotation method of copper oxide ore. Miner. Resour. Prot. Utili. 2005, 5, 32–35. [Google Scholar]
- Feng, Q.; Wen, S.; Zhao, W.; Chen, H. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation. Sep. Purif. Technol. 2018, 206, 239–246. [Google Scholar] [CrossRef]
- Liu, D.; Fang, J.; Zhang, X.; Bai, S.; Wei, Z.; Wen, S.; Zhang, W. Recovery of Ultrafine Copper Oxide Mineral with Vacuum Flotation. Adv. Mater. Res. 2012, 524–527, 1047–1053. [Google Scholar] [CrossRef]
- Yang, J.L.; Luo, J.Z.; Wang, D.Z. Separation technology of fine-grained minerals. Foreign Met. Ore Dress. 1995, 5, 5–11. [Google Scholar]
- Xiong, K.; Zheng, G.S. Process Mineralogy and Flotation Kinetic of a Copper Oxide Ore during Sulfuration Flotation. Adv. Mater. Res. 2013, 634–638, 3460–3465. [Google Scholar] [CrossRef]
- Castro, S.; Goldfarb, J.; Laskowski, J. Sulphidizing reactions in the flotation of oxidized copper minerals, I. Chemical factors in the sulphidization of copper oxide. Int. J. Miner. Process. 1974, 1, 141–149. [Google Scholar] [CrossRef]
- Chen, D.; Yu, Y.; Liu, L.M. Study on Flotation Technique to Recycle Copper from Tailings. Adv. Mater. Res. 2014, 878, 322–329. [Google Scholar] [CrossRef]
- Chen, J.B.; Li, R.J.; Y, L.H. The Way of the Survey and Assessment of Copper Tailings Resources and Their Application. J. Nat. Resour. 2012, 27, 1373–1381. [Google Scholar]
- Phillips, J.M.; Walling, D.E. The particle size characteristics of fine-grained channel deposits in the River Exe Basin, Devon, UK. Hydrol. Process. 2015, 13, 1–19. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Shen, L. Flotation behaviors of coal particles and mineral particles of different size ranges in coal reverse flotation. Energy Fuels 2016, 30, 9933–9938. [Google Scholar] [CrossRef]
- Liu, J.J.; Ji, G.F.; Wang, D.Z. Study on Hydrophobic Agglomeration Flotation of Fine-grained Copper Oxide Ore. Nonferrous Met. Eng. 1991, 3, 42–48. [Google Scholar]
- Shahbazi, B.; Rezai, B.; Koleini, S.M.J. Bubble–particle collision and attachment probability on fine particles flotation. Chem. Eng. Process. Process Intensif. 2010, 49, 622–627. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, G.; Li, S.; Song, S.; Wang, C. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant. Minerals 2018, 8, 122. [Google Scholar] [CrossRef]
- Zhili, L.; Feng, R.; Lou, X.; Song, S.; Alejandro, L.-V. Floc-Flotation of Malachite Fines with an Octyl Hydroxamate and Kerosene Mixture. Minerals 2019, 9, 301. [Google Scholar] [Green Version]
- Muganda, S. Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batchflotation cell. Int. J. Miner. Process. 2011, 98, 150–162. [Google Scholar] [CrossRef]
- Harris, M.C.; Runge, K.C.; Whiten, W.J.; Morrison, R.D. JKSimFloat as a practical tool for flotation process design and optimisation. In Proceedings of the Mineral Processing Plant Design Practice and Control Conference, Vancouver, BC, Canada, 20–24 October 2002; Society for Mining Metallurgy & Exploration: Englewood, CO, USA, 2002; pp. 31–40. [Google Scholar]
- Li, H.; Liu, M.; Liu, Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Min. Eng. 2018, 119, 105–115. [Google Scholar] [CrossRef]
- Savassi, O.N.; Alexander, D.J.; Franzidis, J.P.; Manlapig, E.V. An empirical model for entrainment in industrial flotation plants. Min. Eng. 1998, 11, 243–256. [Google Scholar] [CrossRef]
- Wang, L.; Runge, K.; Peng, Y.; Vos, C. An empirical model for the degree of entrainment in froth flotation based on particle size and density. Miner. Eng. 2016, 98, 187–193. [Google Scholar] [CrossRef]
- Rao, S.R.; Finch, J.A. Base metal oxide flotation using long chain xanthates. Int. J. Miner. Process. 2003, 69, 251–258. [Google Scholar] [CrossRef]
- Sun, Q.; Yin, W.; Li, D.; Fu, Y.; Xue, J.; Yao, J. Improving the sulfidation-flotation of fine cuprite by hydrophobic flocculation pretreatment. Int. J. Miner. Metall. Mater. 2019, 25, 1256–1262. [Google Scholar] [CrossRef]
Element | Azurite | Malachite | Chalcocite | Limonite | Ilmenite | Pyrite | Rutile |
---|---|---|---|---|---|---|---|
Content/% | 0.72 | 0.59 | 0.22 | 0.73 | 0.35 | 0.30 | 0.25 |
Element | Calcite | quartz | plagioclase | muscovite | chlorite | dolomite | others |
Content/% | 24.93 | 22.83 | 15.25 | 9.88 | 9.51 | 7.53 | 6.91 |
Size Fraction/μm | d90/μm | Mean Size/μm |
---|---|---|
−38 + 25 | 34.876 | 33.213 |
−25 + 10 | 23.454 | 22.647 |
−10 | 8.535 | 6.375 |
Collector | Fraction D | Total Recovery% | Average Size di (μm) | Rw (%) | Rent.i (%) | RAct (%) |
---|---|---|---|---|---|---|
Without | −10 μm | 31.11 | 4.837 | 63.124 | 25.957 | 5.153 |
−25 + 10 μm | 46.89 | 18.761 | 32.232 | 3.226 | 43.664 | |
−38 + 25 μm | 56.23 | 30.987 | 14.518 | 0.325 | 55.905 | |
With ISX | −10 μm | 49.96 | 4.921 | 72.234 | 34.535 | 15.425 |
−25 + 10 μm | 94.89 | 18.887 | 40.124 | 4.061 | 90.829 | |
−38 + 25 μm | 96.78 | 30.791 | 15.232 | 0.632 | 96.148 | |
With ZH-1 | −10 μm | 90.12 | 4.881 | 75.983 | 40.939 | 49.181 |
−25 + 10 μm | 98.72 | 18.564 | 51.231 | 9.201 | 89.519 | |
−38 + 25 μm | 99.81 | 30.654 | 45.324 | 4.69 | 95.120 |
Grading Flotation | Product | Yields /% | Cu Recovery /% | Cu Grade /% |
---|---|---|---|---|
+25 μm | Concentrate | 8.05 | 91.94 | 18.24 |
Tailing | 91.95 | 8.06 | 0.14 | |
+25 μm | 100 | 100 | 1.6 |
Grading Flotation | Product | Yields /% | Cu Recovery /% | Cu Grade /% |
---|---|---|---|---|
−25 μm | Concentrate | 3.96 | 75.60 | 18.03 |
Tailing | 96.04 | 24.40 | 0.24 | |
−25 μm | 100.00 | 100 | 0.94 |
Category | Product | Yields /% | Cu Recovery /% | Cu Grade /% |
---|---|---|---|---|
With Grading Flotation | Concentrate | 5.39 | 83.38 | 18.14 |
Tailing | 94.61 | 16.62 | 0.21 | |
Raw ore | 100 | 100 | 1.17 | |
Without Grading Flotation | Concentrate | 5.14 | 79.67 | 18.08 |
Tailing | 94.86 | 20.33 | 0.25 | |
Raw ore | 100 | 100 | 1.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Gu, G.; Chen, Z.; Wang, Y.; Song, S. A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation. Minerals 2019, 9, 595. https://doi.org/10.3390/min9100595
Zhu R, Gu G, Chen Z, Wang Y, Song S. A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation. Minerals. 2019; 9(10):595. https://doi.org/10.3390/min9100595
Chicago/Turabian StyleZhu, Renfeng, Guohua Gu, Zhixiang Chen, Yanhong Wang, and Siyu Song. 2019. "A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation" Minerals 9, no. 10: 595. https://doi.org/10.3390/min9100595
APA StyleZhu, R., Gu, G., Chen, Z., Wang, Y., & Song, S. (2019). A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation. Minerals, 9(10), 595. https://doi.org/10.3390/min9100595