Abstract
This study systematically investigates the lithofacies, sedimentary microfacies, vertical evolution, and spatial distribution of the braided river delta–shallow lacustrine carbonate mixed sedimentary rocks of the Upper Ganchaigou Formation in the Huatugou Oilfield of the Qaidam Basin, China. This study integrates data from field outcrops, core observations, thin section petrography, laboratory analyses, and well-logging interpretations. Based on these datasets, the sedimentary characteristics are identified, and a comprehensive sedimentary model is constructed. The results reveal that the study area contains five clastic facies, three types of mixed sedimentary facies, and ten sedimentary microfacies. Two distinct modes of mixed sedimentation are recognized: component mixing and stratigraphic mixing. A full lacustrine transgression–regression cycle is formed by the two types of mixed sedimentation characteristics, which exhibit noticeable differences in vertical evolution. Component mixing, which occurs in a mixed environment of continuous clastic supply and carbonate precipitation during the transgression, is the primary characteristic of the VIII–X oil formation. The mixed strata that make up the VI–VII oil formation show rhythmic interbedding of carbonate and clastic rocks. During the lacustrine regression, it shows the alternating sedimentary environment regulated by frequent variations in lacustrine levels. The planar distribution is affected by both intensity of sediment from the west and the changes in lacustrine level. During the lacustrine transgression, it is dominated by littoral-shallow lacustrine mixed beach bar and mixed sedimentary delta. On the other hand, during the lacustrine regression, it is dominated by laterally amalgamated sand bodies in the braided-river delta front. Based on this, a mixed sedimentary evolution model controlled by the coupling of “source–lacustrine level” is established. It offers a guide for reconstructing the sedimentary environment in basins that are similar to it and reveals the evolution path of mixed sedimentation in the short-axis source area of arid saline lacustrine basins.