Sustainable Removal of Heavy Metal Ions from Mineral Wastewater Using Waste Basalt Fiber
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of BF
2.3. Preparation of Lead Ions (Pb (II)) Solutions and Copper Ions (Cu (II)) Solutions
2.4. Characterization
2.5. Batch Adsorption Experiments
3. Results and Discussion
3.1. Characterizations
3.1.1. Analysis of Surface Structure and Morphology Changes
3.1.2. FTIR Analysis
3.1.3. TGA and Zeta Potential Analysis
3.1.4. XPS Results
3.2. Adsorption Performance and Mechanism Analysis
3.2.1. Effect of Contact Time, Temperature, and pH
3.2.2. Adsorption Isotherms
3.2.3. Adsorption Kinetics
3.2.4. Comparison with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takyi, R.; El Mahrad, B.; Nunoo, F.K.E.; Adade, R.; ElHadary, M.; Essandoh, J. Adaptive Management of Environmental Challenges in West African Coastal Lagoons. Sci. Total Environ. 2022, 838, 156234. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, S.C. Best Practices for Solar Water Production Technologies. Nat. Sustain. 2022, 5, 554–556. [Google Scholar] [CrossRef]
- Wang, P.; Yao, J.; Wang, G.; Hao, F.; Shrestha, S.; Xue, B.; Xie, G.; Peng, Y. Exploring the Application of Artificial Intelligence Technology for Identification of Water Pollution Characteristics and Tracing the Source of Water Quality Pollutants. Sci. Total Environ. 2019, 693, 133440. [Google Scholar] [CrossRef]
- Méndez-López, M.; Jiménez-Morillo, N.T.; Fonseca, F.; De Figueiredo, T.; Parente-Sendín, A.; Alonso-Vega, F.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C. Mercury Mobilization in Shrubland after a Prescribed Fire in NE Portugal: Insight on Soil Organic Matter Composition and Different Aggregate Size. Sci. Total Environ. 2023, 904, 167532. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Di Pippo, F.; Crognale, S.; Levantesi, C.; Vitanza, L.; Sighicelli, M.; Pietrelli, L.; Di Vito, S.; Amalfitano, S.; Rossetti, S. Plastisphere in Lake Waters: Microbial Diversity, Biofilm Structure, and Potential Implications for Freshwater Ecosystems. Environ. Pollut. 2022, 310, 119876. [Google Scholar] [CrossRef] [PubMed]
- Kallawar, G.A.; Bhanvase, B.A. A Review on Existing and Emerging Approaches for Textile Wastewater Treatments: Challenges and Future Perspectives. Environ. Sci. Pollut. Res. 2023, 31, 1748–1789. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, R.; Liu, Y.; Guo, X.; Cheng, J.; Hu, Y.; Chen, Y. Co-Construction of Oxygen Doping and van Der Walls Heterojunction in O-CB/ZnIn2S4 Promoting Photocatalytic Production and Activation of H2O2 for the Degradation of Antibiotics. J. Hazard. Mater. 2023, 459, 132187. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, N.; Zhi, Y.; Zhang, X.; Wang, G.; Chen, Y. Sulfur Oxidation Process: A Neglected Contributor to Minimize P Release during Sediment Microbial Fuel Cell Operation. Chem. Eng. J. 2022, 449, 137845. [Google Scholar] [CrossRef]
- Dutta, D.; Arya, S.; Kumar, S. Industrial Wastewater Treatment: Current Trends, Bottlenecks, and Best Practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef]
- Mao, G.; Han, Y.; Liu, X.; Crittenden, J.; Huang, N.; Ahmad, U.M. Technology Status and Trends of Industrial Wastewater Treatment: A Patent Analysis. Chemosphere 2022, 288, 132483. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Duan, J.; Lu, Q.; Chen, R.; Duan, Y.; Wang, L.; Gao, L.; Pan, S. Synthesis of a Novel Flocculant on the Basis of Crosslinked Konjac Glucomannan-Graft-Polyacrylamide-Co-Sodium Xanthate and Its Application in Removal of Cu2+ Ion. Carbohydr. Polym. 2010, 80, 436–441. [Google Scholar] [CrossRef]
- Yue, X.; Yang, Y.; Li, X.; Ren, J.; Zhou, Z.; Zhang, Y.; Yu, H. Effect of Fe-Based Micro-Flocculation Combined with Gravity-Driven Membrane Ultrafiltration on Removal of Aluminum Species during Water Treatment. J. Environ. Chem. Eng. 2021, 9, 106803. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Wu, W.; Ge, H. Preparation of Amino-Silane and Thiosemicarbazide Modified Graphene Oxide Composite for High Uptake Adsorption of Hg(II) and Pb(II). J. Dispers. Sci. Technol. 2025, 46, 1059–1070. [Google Scholar] [CrossRef]
- Sitko, R.; Musielak, M.; Serda, M.; Talik, E.; Gagor, A.; Zawisza, B.; Malecka, M. Graphene Oxide Decorated with Fullerenol Nanoparticles for Highly Efficient Removal of Pb(II) Ions and Ultrasensitive Detection by Total-Reflection X-Ray Fluorescence Spectrometry. Sep. Purif. Technol. 2021, 277, 119450. [Google Scholar] [CrossRef]
- Alvandi, S.; Hosseinifard, M.; Bababmoradi, M. Enhancement of Pb(II) Adsorptive Removal by Incorporation of UiO-66-COOH into the Magnetic Graphitic Carbon Nitride Nanosheets. RSC Adv. 2024, 14, 8990–9002. [Google Scholar] [CrossRef]
- Sharifzadeh, Z.; Razavi, S.A.A.; Morsali, A. Functionalization of Defective Zr-MOFs for Water Decontamination: Mechanistic Insight into the Competitive Roles of −NH2 and −SH Sites in the Removal of Hg(II) Ions. ACS Appl. Mater. Interfaces 2025, 17, 17726–17740. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, P.; Zha, Q.; Huang, Y.; Zheng, W.; Yang, C.; Wu, Z. Novel Iminodiacetic Acid Functionalized Basalt Fiber for Adsorption of Cu (II) Ions in Batch Experiments. J. Dispers. Sci. Technol. 2023, 44, 317–328. [Google Scholar] [CrossRef]
- Shi, F.J. A Study on Structure and Properties of Basalt Fiber. AMM 2012, 238, 17–21. [Google Scholar] [CrossRef]
- Ejenstam, L.; Swerin, A.; Pan, J.; Claesson, P.M. Corrosion Protection by Hydrophobic Silica Particle-Polydimethylsiloxane Composite Coatings. Corros. Sci. 2015, 99, 89–97. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Liang, X.; Granja, J.; Azenha, M.; Ye, G. Internal Curing of Alkali-Activated Slag-Fly Ash Paste with Superabsorbent Polymers. Constr. Build. Mater. 2020, 263, 120985. [Google Scholar] [CrossRef]
- Iorio, M.; Santarelli, M.L.; González-Gaitano, G.; González-Benito, J. Surface Modification and Characterization of Basalt Fibers as Potential Reinforcement of Concretes. Appl. Surf. Sci. 2018, 427, 1248–1256. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Y.; Randl, N. Investigation on the Alkali Resistance of Basalt Fiber and Its Textile in Different Alkaline Environments. Constr. Build. Mater. 2021, 272, 121670. [Google Scholar] [CrossRef]
- Kumru, O.S.; Liu, J.; Ji, J.A.; Cheng, W.; Wang, Y.J.; Wang, T.; Joshi, S.B.; Middaugh, C.R.; Volkin, D.B. Compatibility, Physical Stability, and Characterization of an IgG4 Monoclonal Antibody After Dilution into Different Intravenous Administration Bags. J. Pharm. Sci. 2012, 101, 3636–3650. [Google Scholar] [CrossRef]
- Lélias, M.A.; Van Gestel, J.; Maugé, F.; Van Veen, J.A.R. Effect of NTA Addition on the Formation, Structure and Activity of the Active Phase of Cobalt–Molybdenum Sulfide Hydrotreating Catalysts. Catal. Today 2008, 130, 109–116. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P.; Nita, L.E.; Mustata, F.; Diaconu, A.; Balan, V.; Rusu, A.; Lisa, G. Studies on the Nanocomposites Based on Carboxymethyl Starch-g-Lactic Acid-Co-Glycolic Acid Copolymer and Magnetite. J. Therm. Anal. Calorim. 2018, 131, 1867–1880. [Google Scholar] [CrossRef]
- Al-Saif, F.A.; Al-Humaidi, J.Y.; Binjawhar, D.N.; Refat, M.S. Six New Palladium(II) Mixed Ligand Complexes of 2-, 3-, 4-Monosubstituted Derivative of Pyridine Ring with Caffeine Moiety: Synthesis, Spectroscopic, Morphological Structures, Thermal, Antimicrobial and Anticancer Properties. J. Mol. Struct. 2020, 1218, 128547. [Google Scholar] [CrossRef]
- Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G.S.; Chaouki, J. Experimental Methods in Chemical Engineering: Thermogravimetric Analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [Google Scholar] [CrossRef]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; De Tommaso, J.; Patience, G.S. Experimental Methods in Chemical Engineering: Zeta Potential. Can. J. Chem. Eng. 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Hu, M.-L.; Morsali, A.; Aboutorabi, L. Lead(II) Carboxylate Supramolecular Compounds: Coordination Modes, Structures and Nano-Structures Aspects. Coord. Chem. Rev. 2011, 255, 2821–2859. [Google Scholar] [CrossRef]
- Jiang, L.; Guan, J.; Zhao, L.; Li, J.; Yang, W. pH-Dependent Aggregation of Citrate-Capped Au Nanoparticles Induced by Cu2+ Ions: The Competition Effect of Hydroxyl Groups with the Carboxyl Groups. Colloids Surf. A Physicochem. Eng. Asp. 2009, 346, 216–220. [Google Scholar] [CrossRef]
- Li, Y.; Sun, S.; Zhou, Y.; Xu, X.; Zhan, J. Influence of Air Plasma Modification Power on Surface Properties of Basalt Fibers and Basalt/Poly(Butylene Succinate) Adhesion. Appl. Surf. Sci. 2023, 630, 157416. [Google Scholar] [CrossRef]
- Fang, D.; He, F.; Xie, J.; Xue, L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2020, 35, 711–718. [Google Scholar] [CrossRef]
- Biesinger, M.C. Accessing the Robustness of Adventitious Carbon for Charge Referencing (Correction) Purposes in XPS Analysis: Insights from a Multi-User Facility Data Review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- Celikci, N.; Shaikiyeva, N.; Moldobaev, M.; Kemelov, K.; Iskakova, J.; Dolaz, M. Synthesis, Characterization, and Investigation of Coating Properties of Carboxymethyl Acorn Starch (CMAS). Starch Stärke 2023, 75, 286. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, S.; Qian, L.; Du, M. Dendrimer-Assisted Boronate Affinity Cellulose Foams for the Efficient and Selective Separation of Glycoproteins. Carbohydr. Polym. 2021, 265, 118082. [Google Scholar] [CrossRef]
- Rimsza, J.M.; Jones, R.E.; Criscenti, L.J. Interaction of NaOH Solutions with Silica Surfaces. J. Colloid Interface Sci. 2018, 516, 128–137. [Google Scholar] [CrossRef]
- Semenova, A.; Giles, L.W.; Vidallon, M.L.P.; Follink, B.; Brown, P.L.; Tabor, R.F. Copper-Binding Properties of Polyethylenimine–Silica Nanocomposite Particles. Langmuir 2022, 38, 10585–10600. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Wu, D.; Yuan, D.; Ge, H.; Wu, X. PbO2 Materials for Electrochemical Environmental Engineering: A Review on Synthesis and Applications. Sci. Total Environ. 2023, 855, 158880. [Google Scholar] [CrossRef]
- Konicki, W.; Aleksandrzak, M.; Moszyński, D.; Mijowska, E. Adsorption of Anionic Azo-Dyes from Aqueous Solutions onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies. J. Colloid Interface Sci. 2017, 496, 188–200. [Google Scholar] [CrossRef]
- Vigdorowitsch, M.; Pchelintsev, A.; Tsygankova, L.; Tanygina, E. Freundlich Isotherm: An Adsorption Model Complete Framework. Appl. Sci. 2021, 11, 8078. [Google Scholar] [CrossRef]
- Pursell, C.J.; Hartshorn, H.; Ward, T.; Chandler, B.D.; Boccuzzi, F. Application of the Temkin Model to the Adsorption of CO on Gold. J. Phys. Chem. C 2011, 115, 23880–23892. [Google Scholar] [CrossRef]
- Pinto, M.L.; Mestre, A.S.; Carvalho, A.P.; Pires, J. Comparison of Methods to Obtain Micropore Size Distributions of Carbonaceous Materials from CO2 Adsorption Based on the Dubinin−Radushkevich Isotherm. Ind. Eng. Chem. Res. 2010, 49, 4726–4730. [Google Scholar] [CrossRef]
- Van Thang, V.; Nguyen, N.T.D.; Nguyen, P.L.; Phung, T.V.B. Effective Adsorption of Methyl Orange from Aqueous Solution Using MOFs Nanocomposites UiO-66-NH2 /GO@PVA. ACS Omega 2025, 10, 40162–40173. [Google Scholar] [CrossRef] [PubMed]
- Tsatsis, D.E.; Valta, K.A.; Vlyssides, A.G.; Economides, D.G. Assessment of the Impact of Toner Composition, Printing Processes and Pulping Conditions on the Deinking of Office Waste Paper. J. Environ. Chem. Eng. 2019, 7, 103258. [Google Scholar] [CrossRef]
- Kaya, N.; Uzun, Z.Y. Experimental and Modeling Studies on the Removal of Bromocresol Green from Aqueous Solutions by Using Pine Cone-Derived Activated Biochar. Biomass Convers. Bioref. 2024, 14, 30667–30691. [Google Scholar] [CrossRef]
- Golubyatnikov, O.; Akulinin, E. Application of the Dubinin–Radushkevich–Astakhov Equation to Calculate Gases Isotherms on Zeolite Adsorbents (on Example of H2, CO2, CO, CH4, N2 Adsorption on 13X and 5A). Sep. Sci. Technol. 2022, 57, 2871–2884. [Google Scholar] [CrossRef]
- Shu, D.; Feng, F.; Han, H.; Ma, Z. Prominent Adsorption Performance of Amino-Functionalized Ultra-Light Graphene Aerogel for Methyl Orange and Amaranth. Chem. Eng. J. 2017, 324, 1–9. [Google Scholar] [CrossRef]
- Rudzinski, W.; Plazinski, W. Kinetics of Solute Adsorption at Solid/Solution Interfaces: A Theoretical Development of the Empirical Pseudo-First and Pseudo-Second Order Kinetic Rate Equations, Based on Applying the Statistical Rate Theory of Interfacial Transport. J. Phys. Chem. B 2006, 110, 16514–16525. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Jumina; Priastomo, Y.; Setiawan, H.R.; Mutmainah; Kurniawan, Y.S.; Ohto, K. Simultaneous Removal of Lead(II), Chromium(III), and Copper(II) Heavy Metal Ions through an Adsorption Process Using C-Phenylcalix[4]Pyrogallolarene Material. J. Environ. Chem. Eng. 2020, 8, 103971. [Google Scholar] [CrossRef]
- Perić, J.; Trgo, M.; Vukojević Medvidović, N. Removal of Zinc, Copper and Lead by Natural Zeolite—A Comparison of Adsorption Isotherms. Water Res. 2004, 38, 1893–1899. [Google Scholar] [CrossRef]
- Joshi, S.; Srivastava, R.K. Adsorptive Removal of Lead (Pb), Copper (Cu), Nickel (Ni) and Mercury (Hg) Ions from Water Using Chitosan Silica Gel Composite. Environ. Monit. Assess. 2019, 191, 615. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Jin, X.; Lu, X.-Q.; Chen, Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay. Desalination 2010, 252, 33–39. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, B.; Zhao, P.; Xi, M.; Li, Y. Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+. J. Inorg. Organomet. Polym. 2021, 31, 4628–4636. [Google Scholar] [CrossRef]
Model | M(II) | |||||
---|---|---|---|---|---|---|
Cu(II) | Pb(II) | |||||
Langmuir | Qm (mg/g) | KL (L/mM) | R2 | Qm (mg/g) | KL (L/mM) | R2 |
76.34 ± 0.01 | 0.0105 | 0.978 | 77.64 ± 0.01 | 0.0115 | 0.997 | |
Freundlich | 1/n | KF | R2 | 1/n | KF | R2 |
0.31 | 189.1 | 0.961 | 0.35 | 118.3 | 0.972 | |
Temkin | Kt (L/mg) | bt (kJ/mol) | R2 | Kt (L/mg) | bt (kJ/mol) | R2 |
0.1515 | 14.89 | 0.938 | 0.1205 | 16.61 | 0.989 | |
Dubinin–Radushkevich | qD (mg/g) | BD (mol2/kJ2) | R2 | qD (mg/g) | BD (mol2/kJ2) | R2 |
65 ± 1.0654 | 0.0166 | 0.837 | 69.3 ± 1.034 | 0.01867 | 0.963 |
M(II) | qe(exp) (mg/g) | PFO | PSO | ||||
---|---|---|---|---|---|---|---|
qe(cal) (mg/g) | k1 (min−1) | R12 | qe(cal) (mg/g) | k2 (g/mg min) | R22 | ||
Cu(II) | 80.25 | 77.93 | 0.0701 | 0.98 | 85.69 | 0.00131 | 0.95 |
Pb(II) | 105.38 | 104.79 | 0.0825 | 0.99 | 95.45 | 0.00023 | 0.84 |
Adsorbent | pH | Qm (mg/g) | Adsorption Mechanism | Reference | |
---|---|---|---|---|---|
Cu2+ | Pb2+ | ||||
C-phenylcalix[4]pyrogallolarene | 5.0~5.2 | 8.140 | 60.97 | Ion exchange, coordination | [55] |
Natural zeolite (NZ) | 6~8 | 7.98 | 75.4 | Ion exchange surface complexation | [56] |
Chitosan silica gel composite | 6~8 | 1.33 | 3.82 | Synergistic effects of chelation and ion exchange | [57] |
Clay | 6~7 | 37.26 | 152 | Synergistic effects of ion exchange and surface complexation | [58] |
Polymer submicron spheres | 6~8 | 26.9 | 25.3 | Ion-imprinted selective recognition | [59] |
BFSN | 6.5 | 80.25 | 105.38 | Synergistic effects of chelation and ion exchange | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, C.; Zhong, H.; Wang, C.; Chen, P.; Zhang, P.; Ding, W.; Wang, S. Sustainable Removal of Heavy Metal Ions from Mineral Wastewater Using Waste Basalt Fiber. Minerals 2025, 15, 1097. https://doi.org/10.3390/min15111097
Liu Z, Zhang C, Zhong H, Wang C, Chen P, Zhang P, Ding W, Wang S. Sustainable Removal of Heavy Metal Ions from Mineral Wastewater Using Waste Basalt Fiber. Minerals. 2025; 15(11):1097. https://doi.org/10.3390/min15111097
Chicago/Turabian StyleLiu, Zhongyi, Chenhu Zhang, Hexiang Zhong, Chengyong Wang, Peng Chen, Peng Zhang, Wei Ding, and Shiwei Wang. 2025. "Sustainable Removal of Heavy Metal Ions from Mineral Wastewater Using Waste Basalt Fiber" Minerals 15, no. 11: 1097. https://doi.org/10.3390/min15111097
APA StyleLiu, Z., Zhang, C., Zhong, H., Wang, C., Chen, P., Zhang, P., Ding, W., & Wang, S. (2025). Sustainable Removal of Heavy Metal Ions from Mineral Wastewater Using Waste Basalt Fiber. Minerals, 15(11), 1097. https://doi.org/10.3390/min15111097