National-Scale Geochemical Baseline and Anomalies of Chromium in Papua New Guinea
Abstract
:1. Introduction
2. Topography, Geology, and Chromium Mineralization of PNG
3. Methods
3.1. Sampling
3.2. Chemical Analysis and Quality Control
3.3. Data Reduction
4. Results
4.1. General Distribution of Chromium in PNG
4.2. Spatial Distribution of Chromium in Different Tectonic Units
5. Discussion
5.1. Chromium Geochemical Distribution Associated with Geological Background
5.2. Significance for Further Prospecting
5.3. Comprehensive Exploration and Exploitation of Laterite-Bearing Chromium Deposits
6. Conclusions
- (1)
- The chromium concentrations of stream sediment samples ranged from 3 ppm to 74,600 ppm, with a median value of 145 ppm, which was higher than the upper crustal abundance of chromium and the chromium geochemical baselines of Europe, Australia, North America, and China.
- (2)
- The differences in chromium concentrations in different tectonic units were significant. The New Guinea Orogen (including PFB, NGTB, AFB, EFB, EPCT, and FT), widely distributed with mafic and ultramafic magmatic rocks, had a higher median chromium value than the Melanesian Arc.
- (3)
- The ophiolitic complexes, such as the April ophiolite, the Marum ophiolite, and the Papua ultramafic belt, were significantly correlated with the higher chromium concentration.
- (4)
- According to the geochemical characteristics of chromium, four anomalies and eleven high chromium anomalies were delineated. They are mainly distributed in the New Guinea Thrust Belt. Three high anomalies can potentially develop laterite and podiform chromium mineralization, and eight high anomalies can be used to discover placer chromium deposits.
- (5)
- The chromium–nickel integrated anomaly map shows that comprehensive exploration and exploitation of nickel and chromium can be carried out in high anomaly areas 1 and 11, with laterite mineralization potential.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mou, B.L. Element Geochemistry; Beijing University Press: Beijing, China, 1999; pp. 34–38. (In Chinese) [Google Scholar]
- Yan, T.T.; Wang, X.Q.; Liu, D.S.; Chi, Q.H.; Zhou, J.; Xu, S.F.; Zhang, B.M.; Nie, L.S.; Wang, W. Continental-scale spatial distribution of chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit. Appl. Geochem. 2021, 126, 104896. [Google Scholar] [CrossRef]
- Lv, P.R.; Gao, Y.W.; Zhang, Y.X.; Zhang, D.D. Kazakhstan’s Chromite Resource Endowment, Development, Import and Its Suggestions for Production Capacity Cooperation between China and Kazakhstan. Northwest. Geol. 2022, 55, 297–305, (In Chinese with English Abstract). [Google Scholar]
- National Research Council. Minerals, Critical Minerals, and the U.S. Economy; The National Academies Press: Washington, DC, USA, 2008; pp. 1–245.
- Pellegrini, M. Critical Raw Materials for the EU; European Commission Enterprise and Industry: Brussels, Belgium, 2014; pp. 11–85. [Google Scholar]
- Hatayama, H.; Tahara, K. Criticality assessment of metals for Japan’s resource strategy. Mater. Trans. 2015, 56, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Schulte, R.F. Chromium, Mineral Commodity Summaries; U.S. Geological Survey: Washington, DC, USA, 2022; pp. 48–49.
- Zheng, M.G.; Yuan, X.M. Demand Forecasting of China’s Chrome Ore from 2020 to 2030 Based on Grey Neural Network. Resour. Dev. Mark. 2018, 34, 747–752. [Google Scholar]
- Kim, T.Y.; Gould, T. The Role of Critical Minerals in Clean Energy Transitions; International Energy Agency: Washington, DC, USA, 2021; pp. 70–71. [Google Scholar]
- Yao, Z.Y.; Zhao, Y.H.; Wang, T.G.; Zhu, Y.P.; Zhao, X.D.; Chen, G.; Song, X.X.; Liang, S.Y. The Geology, Mineral Resources and Mining Investment Envoronment of Pupua New Guinea; Geology Press: Beijing, China, 2018; pp. 12–75. (In Chinese) [Google Scholar]
- Williamson, A.; Hancock, G. The Geology and Mineral Potential of Papua New Guinea; Papua New Guinea Department of Mining: Port Moresby, Papua New Guinea, 2005; pp. 6–47.
- Sheppard, S.; Cranfield, L. Geological Framework and Mineralization of Papua New Guinea—An Update; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012; pp. 7–30.
- Holm, R.J.; Spandler, C.; Richards, S.W. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Res. 2015, 28, 1117–1136. [Google Scholar] [CrossRef]
- Rogerson, R.; Hilyard, D.B.; Francis, G.; Finlayson, E. The foreland thrust belt of Papua New Guinea. Proc. Pac. Rim Congr. 1987, 87, 579–583. [Google Scholar]
- Wang, T.G.; Conrad, K.; Zhao, Y.H.; Nathan, M.; Yao, Z.Y.; Zhang, B.M.; Wang, X.Q.; Zhu, Y.P. National-scale distribution of Cobalt in Papua New Guinea and its significance for mineralization potential. J. Geochem. Explor. 2022, 239, 107013. [Google Scholar] [CrossRef]
- Dow, D.B. A Geological Synthesis of Papua New Guinea; Bureau of Mineral Resources, Geology and Geophysics: Port Moresby, Papua New Guinea, 1977; 41p.
- Pigram, C.J.; Davies, P.J.; Feary, D.A.; Symonds, P.A. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: Passive margin to foreland basin. Geology 1989, 17, 199–202. [Google Scholar] [CrossRef]
- Dobmeier, C.J.; Poke, B. 1:100,000 Geological Map Publication Series of Papua New Guinea, Sheet 7887 Aiome; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012.
- Dobmeier, C.J.; Poke, B.; Wagner, B. 1:100,000 Geological Map Publication Series of Papua New Guinea, Sheet 7886 Minj; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012.
- Pigram, C.J.; Davies, H.L. Terranes and accretion history of the New Guinea orogen. BMR J. Aust. Geol. Geophys. 1987, 10, 193–211. [Google Scholar]
- Williamson, A.; Rogerson, R. Geology and Mineralisation of Misima Island; Geological Survey of Papua New Guinea: Port Moresby, Papua New Guinea, 1983; pp. 1–12.
- Hoeflaken, F.; Dobmeier, C.J. 1:100,000 Geological Map Publication Series of Papua New Guinea, Sheet 7688 Yimas; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012.
- Spieler, O.; Hoeflaken, F. 1:100000 Geological Map Publication Series of Papua New Guinea, Sheet 7488 Double; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012.
- Jaques, A.L. Petrology and petrogenesis of cumulate peridotites and gabbros from the Marum Ophiolite Complex, northern Papua New Guinea. J. Petrol. 1981, 22, 1–40. [Google Scholar] [CrossRef]
- Saroa, D. PNG Minerals 2011; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012.
- Yao, Z.Y.; Zhao, Y.H.; Wang, T.G.; Chen, G.; Zhu, Y.P.; Zhao, X.D. New progress of geology and mineral resources mapping in Oceania. Geol. Bull. China 2018, 37, 510–521, (In Chinese with English abstract). [Google Scholar]
- Wang, X.Q.; Zhang, B.M.; Zhang, Q. Technical Requirements of International Geochemical Mapping; China Geological Survey: Beijing, China, 2018; pp. 1–26. (In Chinese)
- Zhang, Q.; Bai, J.F.; Wang, Y. Analytical scheme and quality monitoring system for China Geochemical Baselines. Earth Sci. Front. 2012, 19, 33–42, (In Chinese with English abstract). [Google Scholar]
- Grunsky, E.C.; Drew, L.J.; Sutphin, D.M. Process recognition in multi-element soil and stream-sediment geochemical data. Appl. Geochem. 2009, 24, 1602–1616. [Google Scholar] [CrossRef]
- Reimann, C.; Arnoldussen, A.; Englmaier, P.; Filzmoser, P.; Finne, T.E.; Garrett, R.G.; Koller, F.; Nordgulen, Ø. Element concentrations and variations along a 120-km transect in southern Norway–Anthropogenic vs. geogenic vs. biogenic element sources and cycles. Appl. Geochem. 2007, 22, 851–871. [Google Scholar] [CrossRef]
- Rudnick, R.; Shan, G. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elservier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Salminen, R.; Plant, J.; Reeder, S.; Salminen, R. Geochemical Atlas of Europe. Part 1, Background Information, Methodology and Maps, 526; Geological Survey of Finland Espoo: Helsinki, Finland, 2005.
- Reimann, C.; Caritat, P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.B.; Cannon, W.F.; Woodruff, L.G.; Garrett, R.G.; Klassen, R.; Kilburn, J.E.; Horton, J.D.; King, H.D.; Goldhaber, M.B.; Morrison, J.M. Major and Trace-Element Concentrations in Soils from Two Continental-Scale Transects of the United States and Canada; U.S. Geological Survey: Washington, DC, USA, 2005.
- Liu, D.S.; Wang, X.Q. Geochemical Baselines of Chromium in Catchment Sediment/Soil in China. In Proceedings of the Annual Meeting of Chinese Geoscience Union, Beijing, China, 20–23 October 2014; p. 2809. (In Chinese). [Google Scholar]
- Liu, H.F.; Xu, Y.F.; Li, S.P. Grouping of 39 Elements and Element Geochemistry; Geology Press: Beijing, China, 2017; pp. 60–63. (In Chinese) [Google Scholar]
- Davies, H.L. The geology of New Guinea-the cordilleran margin of the Australian continent. Episodes 2012, 35, 87–102. [Google Scholar] [CrossRef]
- Wang, T.G.; Yao, Z.Y.; Huang, B.; Zhu, Y.P.; Zhao, X.D. Tectonic evolution and Resource potential of Papua New Guinea. East China Geol. 2014, 35, 130–135, (In Chinese with English abstract). [Google Scholar]
- Davies, H.L.; Jaques, A.L. Emplacement of ophiolite in Papua New Guinea. Geol. Soc. Spec. Publ. 1984, 13, 341–349. [Google Scholar] [CrossRef]
- Demetriades, A.; Birke, M.; Albanese, S.; Schoeters, I.; De Vivo, B.; Demetriades, A.; Birke, M.; Albanese, S.; Schoeters, I.; De Vivo, B. Continental, regional and local scale geochemical mapping. J. Geochem. Explor. 2015, 154, 1–5. [Google Scholar] [CrossRef]
- Demetriades, A.; Smith, D.B.; Wang, X.Q. General concepts of geochemical mapping at global, regional, and local scales for mineral exploration and environmental purposes. Geochim. Bras. 2019, 32, 136–179. [Google Scholar] [CrossRef]
- Wang, X.Q. Global Geochemical Baselines: Understanding the past and predicting the future. Earth Sci. Front. 2012, 19, 7–18, (In Chinese with English abstract). [Google Scholar]
- Wang, X.Q. China geochemical baselines: Sampling methodology. J. Geochem. Explor. 2015, 148, 25–39. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, J.; Xu, S.F.; Chi, Q.H.; Nie, L.S.; Zhang, B.M.; Yao, W.S.; Wang, W.; Liu, H.L.; Liu, D.S.; et al. China soil geochemical baselines network: Data characteristics. Geol. China 2016, 43, 1469–1480, (In Chinese with English abstract). [Google Scholar]
- Deng, Q.; Ingham, P.D.; Nice, R.; Brett, A. Ramu Nickel Cobalt Project-NI 43-101 Technical Report; Behre Dolbear Australia Pty Limited: Sydney, Australia, 2019; pp. 59–72. [Google Scholar]
Name | Mine (M)/ Occurrence (O) | Longitude | Latitude | Type |
---|---|---|---|---|
Ramu | M | 145.19° E | 5.57° S | Laterite |
Salamaua | M | 147.03° E | 7.08° S | Placer |
Wowo Gap | M | 148.92° E | 9.55° S | Laterite |
Griffin Point | O | 153.35° E | 11.47° S | Placer |
Big Four Mile Creek | O | 153.31° E | 11.43° S | Placer |
Sachsen Bay | O | 147.13° E | 7.32° S | Placer |
Dai Awa | O | 147.36° E | 7.54° S | Placer |
Buso Bay | O | 147.18° E | 7.42° S | Placer |
Hessen Bay | O | 147.14° E | 7.37° S | Placer |
Menyama | O | 146.01° E | 7.15° S | Laterite |
Lower Yuat River | O | 143.87° E | 4.78° S | Placer |
Oenake Mountains | O | 141.04° E | 2.68° S | Laterite |
Panlawai | O | 141.59° E | 4.02° S | Placer |
Nimba River | O | 147.03° E | 6.49° S | Placer |
Koreppa | O | 147.22° E | 7.96° S | Laterite |
Paiawa River | O | 147.05° E | 7.61° S | Podiform |
Dimidi | O | 148.88° E | 9.87° S | Podiform |
Bonua River | O | 148.98° E | 9.87° S | Podiform |
Gira River | O | 147.65° E | 8.28° S | Laterite |
Tuniu | O | 150.82° E | 9.82° S | Placer |
Upper Ulowa Creek | O | 150.83° E | 9.81° S | Placer |
Posa Posa Harbour | O | 149.77° E | 9.64° S | Placer |
Mebulili Creek | O | 150.85° E | 9.54° S | Podiform |
Botue | O | 147.77° E | 8.25° S | Placer |
Lake Trist | O | 146.95° E | 7.50° S | Laterite |
Ramu | M | 145.19° E | 5.57° S | Laterite |
Salamaua | M | 147.03° E | 7.08° S | Placer |
Wowo Gap | M | 148.92° E | 9.55° S | Laterite |
Griffin Point | O | 153.35° E | 11.47° S | Placer |
Big Four Mile Creek | O | 153.31° E | 11.43° S | Placer |
Sachsen Bay | O | 147.13° E | 7.32° S | Placer |
Dai Awa | O | 147.36° E | 7.54° S | Placer |
Buso Bay | O | 147.18° E | 7.42° S | Placer |
No. | Standard Value | Arithmetic Mean Value | Accuracy △lgC | Precision RSD (%) |
---|---|---|---|---|
GBW07301 | 194 ± 10 | 183 | 0.02 | 1.6 |
GBW07303 | 87 ± 6 | 85 | 0.01 | 3.0 |
GBW07304 | 81 ± 6 | 85 | 0.02 | 4.1 |
GBW07305 | 70 ± 6 | 73 | 0.02 | 3.3 |
GBW07306 | 190 ± 15 | 192 | 0.00 | 1.3 |
GBW07307 | 122 ± 7 | 117 | 0.02 | 2.7 |
GBW07309 | 85 ± 7 | 86 | 0.01 | 4.0 |
GBW07301a | 128 ± 6 | 124 | 0.01 | 1.7 |
GBW07358 | 61 ± 4 | 56 | 0.03 | 1.8 |
GBW07362 | 79 ± 3 | 79 | 0.00 | 3.0 |
GBW07363 | 220 ± 16 | 246 | 0.05 | 1.0 |
GBW07366 | 72 ± 3 | 67 | 0.03 | 3.5 |
Continents/Countries | Analytical Method | Soil Type | Chromium Baseline (ppm) |
---|---|---|---|
Europe [32] | ICP-AES | Subsoil | 24.0 |
Topsoil | 22.0 | ||
Stream sediment | 21.0 | ||
Floodplain sediment | 23.0 | ||
Australia [33] | ICP-MS | Top outlet sediment | 23.6 |
Bottom outlet sediment | 26.0 | ||
North America [34] | ICP-MS | A_Horizon | 27.0 |
C_Horizon | 32.5 | ||
China [35] | ICP-MS | Top catchment sediment/soil | 68.3 |
Deep catchment sediment/soil | 67.8 |
Tectonic Unit | N | Percentile | Mean | Geometric Mean | ||||
---|---|---|---|---|---|---|---|---|
Min | 25% | 50% | 75% | Max | ||||
PNG | 1399 | 3 | 71 | 145 | 292 | 74,600 | 548 | 150 |
NGO | 1049 | 19 | 107 | 187 | 354 | 74,600 | 701 | 219 |
MA | 350 | 3 | 25 | 42 | 90 | 2,770 | 90 | 48 |
PFB | 142 | 19 | 110 | 179 | 358 | 50,600 | 986 | 221 |
NGTB | 633 | 23 | 101 | 187 | 370 | 74,600 | 809 | 228 |
AFB | 12 | 110 | 152 | 299 | 526 | 1,040 | 388 | 295 |
EFB | 239 | 21 | 124 | 196 | 305 | 8,660 | 300 | 195 |
EPCT | 7 | 67 | 82 | 197 | 591 | 1,370 | 404 | 230 |
FT | 16 | 38 | 114 | 165 | 353 | 1,180 | 287 | 187 |
No. | Area (km2) | Sample Number (>550 ppm) | High Anomaly No. | Rocks | Potential Mineralization | Tectonic Unit |
---|---|---|---|---|---|---|
Cr01 | 6936 | 22 | (1) | Cretaceous serpentinized peridotite (April ophiolite) | laterite and podiform | NGTB |
(2) | middle Miocene basaltic and andesitic volcanics | placer | ||||
(3) | middle to late Miocene Karawari Batholith mainly composed of diorite | placer | ||||
Cr02 | 7668 | 38 | (4) | middle Miocene Oipo intrusives mainly composed of gabbro and granodiorite | placer | NGTB |
(5), (6) | the upper Triassic basic to intermediate Kana Volcanics | placer | ||||
Cr03 | 8089 | 25 | (7) | Cretaceous serpentinized peridotite (Marum ophiolite) | laterite and podiform | NGTB |
(8) | middle Miocene Yaveufa Formation mainly composed of andesitic and basaltic lava, tuff, and agglomerate | placer | ||||
(9) | Pliocene to Holocene Suaru Volcanics and Karimui Volcanics, mainly composed of basaltic and andesitic lava, agglomerate, and tuff | placer | PFB | |||
(10) | upper Miocene Michael Diorite and Plocene to Holocene Crater Mountain Volcanics mainly including andesitic and basaltic lava | placer | ||||
Cr04 | 1053 | 2 | (11) | upper Cretaceous to middle Eocene Kutu Volcanics including basaltic lava, minor gabbro, and ultramafics | laterite and podiform | EFB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Kumul, C.; Wang, T.; Mosusu, N.; Yao, Z.; Zhu, Y.; Zhang, B.; Wang, X. National-Scale Geochemical Baseline and Anomalies of Chromium in Papua New Guinea. Minerals 2023, 13, 205. https://doi.org/10.3390/min13020205
Zhao Y, Kumul C, Wang T, Mosusu N, Yao Z, Zhu Y, Zhang B, Wang X. National-Scale Geochemical Baseline and Anomalies of Chromium in Papua New Guinea. Minerals. 2023; 13(2):205. https://doi.org/10.3390/min13020205
Chicago/Turabian StyleZhao, Yuhao, Conrad Kumul, Tiangang Wang, Nathan Mosusu, Zhongyou Yao, Yiping Zhu, Bimin Zhang, and Xueqiu Wang. 2023. "National-Scale Geochemical Baseline and Anomalies of Chromium in Papua New Guinea" Minerals 13, no. 2: 205. https://doi.org/10.3390/min13020205