Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons
Abstract
:1. Introduction
2. Mineralization Associated with Type-A Granites
3. Geological Context of the Study Area
The Amazon Craton
4. Rondônia Tin Province
5. Methodology
5.1. U-Pb Geochronology
5.2. The Lu-Hf Method
6. Results
6.1. Characterization of Mineralized Bodies
6.2. U-Pb and Lu-Hf Geochronology
6.3. Lu-Hf Isotopic Geochemistry
7. Discussion
7.1. The Petrogenesis of the Massangana Massif
7.2. Geochronology of the Massangana Massif
7.3. Hf Isotopes from the Massangana Massif
7.4. Two Observed Magmatic Suites
7.5. Proposed Model
8. Conclusions
- (1)
- The Massangana Massif granites show typical characteristics of tin granites, with high (F, Li, Rb, Ga, Sn) and Nb and low (Mg, Ti, Ba, Sr, Zn, and Eu). Most lithotypes studied are characterized by subsolvus reactions that include alkali feldspar exsolution, recrystallization, and mineral alteration. The presence of a perthitic to mesoperthitic texture in the K-feldspars and of minerals such as topaz and fluorite in the accessory phases indicates the percolation of F-rich fluids and late or post-magmatic alteration processes.
- (2)
- The geochronological data of the Massangana Massif reported here confirm the fractional crystallization (U-Pb ages of 1026 to 1005 Ma) with coarse to porphyritic granitic facies, typical of slow cooling and, towards the south and southwest portion of the massif type medium granulation presents younger ages (995 and 993 Ma). The youngest ages are in the São Domingos massif and the southern portion of the Massangana Massif and correspond to the areas of primary ore occurrence, showing that granitoids with periods greater than 998 Ma are not directly related to the mineralized zones.
- (3)
- The variation of values for εHf, between positive and negative, with the predominant negative values, indicates a mixture of crustal sources (predominant) with mantle sources. The petrographic data also shows the occurrence of an intense process of magmatic fractionation related to the melting of crustal material. The primary mineralizations of the Massangana Massif are concentrated in the contact zones of the São Domingos granitic pluton with the gneissic rocks and fractures characterized by intense percolation and silica precipitation. In the central-west portion of the Massangana Massif, cassiterite occurs associated with beryl and sulfides (galena and sphalerite) in a widespread manner in the medium granite, the latter in contact with a biotite-granite intensely affected by the action of F-rich fluids, have almost wholly destabilized the feldspars, which give rise to topaz associated with metals and sulfides.
- (4)
- The mineralization styles are (1) stockwork type with the dissemination of subparallel quartz veins with associated cassiterite and wolframite, which follow the main NE direction, corresponding to the main lineaments observed in several massifs of the Rondônia Stanniferous Province, (2) vein and venule systems with associated topaz, beryl, and cassiterite, (3) pegmatitic veins housed in both gneiss and granite, and (4) greisens disseminated in the form of blocks and pockets developed in medium-grained biotite granite and alkaline granites.
- (5)
- The role of fluorine in modifying primary minerals is suggested, but its role in the deposition of cassiterite must be better understood. The presence of fluorine in the granitic system decreases the viscosity and density of the residual melt resulting in the formation of F-rich albite granite melts. At the same time, H2O saturation produces an aqueous fluid where the paragenesis albite + K-feldspars + quartz + topaz + mica crystallizes. In this way, the decrease in the viscosity and density of the residual melt due to the increase in the F content facilitates fractional crystallization processes of albite-rich granites in F. While the saturation in H2O produces an aqueous fluid with albite-K-feldspar-quartz-topaz-mica. The increase in F also seems to be related to the concentration of incompatible elements (including metals of economic interest) in residual castings.
- (6)
- Massangana mineralized systems developed in the final stages of crystallization from highly fractionated magma. The addition of F to the system in the final stages of crystallization reduces the stable temperature of hydrated granitic magmas, destabilizing the feldspars and increasing the stability of quartz and topaz so that in the most evolved facies, the feldspars in the granitic matrix are replaced by quartz and topaz, forming the topaz granites and topazites and economic concentrations of Sn, W, and Ta.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitcher, W.S. Granite: Typology, geological environment and melting relationships. In Migmatites, Melting and Metamorphism; Atherton, M.P., Gribble, C.D., Eds.; Shiva Publishing Ltd.: Cheshire, UK, 1983; pp. 277–285. [Google Scholar]
- Douce, A.E.P. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- Middelaar, W.T.V.; Keith, J.D. Mica Chemistry as an indicator of oxygen and halogen fugacities in the Cantug and other W-related granitoids in the North American Cordilhera. In One-Bearing Granites Sytems: Petrogeneis and Mineralizing Processes; Stein, H.J., Hannah, J.L., Eds.; Geological Society of America: Boulder, CO, USA, 1990; Special Paper 246. [Google Scholar]
- Lehmann, B. Metallogeny of Tin; Lectures Notes in Earth Siences; Springer: Berlin, Germany, 1990. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Pet. 2001, 42, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Frost, C.; Frost, B.R. Reduced rapakivi-type granites: The tholeiite connection. Geology 1997, 25, 647–650. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of A-type granitoids: Petrogenetic and Tectonic Implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. On Ferroan (A-type) Granitoids: Their compositional variability and models of origin. J. Petrol. 2010, 52, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abst. Prog. 1979, 11, 468. [Google Scholar]
- Anderson, J.L.; Morrison, J. Ilmenite, Magnetite, and peraluminous Mesoproterozoic Anorogenic granites of Laurentia as Baltica. Lithos 2005, 80, 45–60. [Google Scholar] [CrossRef]
- Chappel, B.W.; White, A.J.R. Two contrasting granite types. Pac. Ged. 1974, 8, 173–174. [Google Scholar]
- Anderson, J.L.; Bender, E.E. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 1989, 23, 19–52. [Google Scholar] [CrossRef]
- Streckeisen, A.L. Classification and nomenclature of igneous rocks. Neus Jahrbuch für Mineralogie Abhandlungen 1976, 107, 144–240. [Google Scholar]
- Pietranik, A.B.; Hawkesworth, C.J.; Storey, C.D.; Kem, A.I.S.; Sircombe, K.N.; Whittehouse, M.J.; Bleeker, W. Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slabe craton, Canada. Geol. Soc. Am. 2008, 36, 875–878. [Google Scholar] [CrossRef]
- Kloosterman, J.B. Granites and rhyolites of São Lourenço: A volcano-plutonic complex in southern Amazonia. Eng. Min. Met. 1966, 44, 169–171. [Google Scholar]
- Kloosterman, J.B. A tin province of the Nigerian type in southern Amazônia. In Proceedings of the Technical Conference on Tin, 2, London, UK, 2 February 1968; pp. 381–400. [Google Scholar]
- Bettencourt, J.S.; Tosdal, R.M.; Leite, W.B., Jr.; Payolla, L. The Rapakivi Granites of Rondônia. Tin Province and Associated Mineralization. In Proceedings of the Symposium Rapakivi Granites and Related Rocks, 6, Belém, Brazil, 2–5 August 1995; pp. 5–16. [Google Scholar]
- Bettencourt, J.S.; Tosdal, R.M.; Leite, W.B., Jr.; Payolla, B.L. Mesoproterozoic rapakivi granites of the Rondônia Tin Province, southwestern border of the Amazonian craton, Brazil—I. Reconnaissance U-Pb geochronology and regional implications. Precambrian Res. 1999, 95, 41–67. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; Costi, H.T.; Leite, A.A.S.; Magalhães, M.S.d.; Teixeira, N.P. Rapakivi granites from Brazil and adjacente áreas. Precambrian Res. 1999, 95, 9–39. [Google Scholar] [CrossRef]
- Almeida, F.F.; Hasui, Y.; Brito Neves, B.B.; Fuck, R.A. As províncias estruturais do Brasil; VIII Simp. GeoI. Nord.: Campina Grande, PB, Brazil, 1977; pp. 363–391. [Google Scholar]
- Whalen, J.B.; Curffi, K.L.; Chappel, B.W. A-Type granites: Geochemical characteristics, discrimination, and petrogenesis. Contrib. Meneral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Bonn, B. A-type Granites and related Rocks: Evolution of a concept, problems, and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Állegre, C. Géologie Isotopique; Editora Belin: Paris, France, 2005; 285p. [Google Scholar]
- Dall’Agnol, R.; Oliveira, D.C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brasil: Implications for classification and petrogenesis of A-type granites. Lithos 2007, 93, 215–233. [Google Scholar] [CrossRef]
- Haapala, I.; Ramo, O. Rapakivi granites and related rocks: An introduction. Precambrian Res. 1995, 95, 1–7. [Google Scholar] [CrossRef]
- Bettencourt, J.S.; Leite, W.B., Jr.; Payolla, B.L.; Scandolara, J.E.; Muzzolon, R.; Viana, J.A.J. The rapakivi granites of the Rondônia Tin Province, Northern Brazil. In Proceedings of the International Symposium on Granites and Associated Mineralizations (ISGAM II), Salvador, Brazil, 21–31 January 1997. [Google Scholar]
- Bettencourt, J.S.; Muzzolon, R.; Payolla, B.L.; Daluigna, L.G.; Pinho, O.G. Depósitos estaníferos secundários da região central de Rondônia. In Depósitos Minerais do Brasil; Schobbenhaus, C., Coelho, C.E.S., Eds.; DNPM: Rio de Janeiro, Brazil, 1988; Volume III, pp. 213–241. [Google Scholar]
- Bettencourt, J.S.; Dall’Agnol, R. The Rondonian tin-bearing anorogenic granites, and associated mineralization. In Proceedings of the International Symposium on Granites and Associated Mineralizations, Salvador, Brazil, 21–31 January 1997; Nobrega, A., McReath, I., Eds.; Superintendência de Geologia e Recursos Minerais: Rio de Janeiro, Brazil, 1987; Volume 1, pp. 1–144. [Google Scholar]
- Vorma, A. On the petrochemistry of rapakivi granites with special reference to the Laitila massif, southwestern Finland. Bull. Geol. Surv. Finl. 1976, 285, 98. [Google Scholar]
- Larin, A.M. Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: Age, geochemistry, and tectonic setting. Strat. Geol. Correl. 2009, 17, 235–258. [Google Scholar] [CrossRef]
- Bizzi, L.A.; Schobbenhaus, C.; Vidotti, R.M.; Gonçalves, J.H. Geologia, Geotectônica e Recursos Minerais do Brasil; CPRM: Sao Paulo, Brazil, 2003; pp. 169–195. [Google Scholar]
- Colombo, F.; Lira, R.; Miner, R.E. Mineralogical Characterization of topaz from miarolitic pegmatites and w-bearing greisen in the A-Type El Portezuelo granite, Papachacra (Catamarca Province). Rev. Assoc. Geol. Argent. 2009, 64, 194–200. [Google Scholar]
- CPRM, Serviço Geologico do Brasil. Geologia e Recursos Minerais do Estado de Rondônia—Sistema de Informações Geográficas—SIG. Programa Geologia do Brasil—Integração, Atualização e Difusão de Dados da Geologia do Brasil; Mapas Geológicos Estaduais Escala 1:1.000; Programa Geologia do Brasil: Porto Velho, Brazil, 2007; pp. 13, 45–46. [Google Scholar]
- Coutinho, M.G.N. Província Mineral do Tapajós: Geologia, metalogenia e mapa previsional para Ouro Preto em Sig. In CPRM, Geologia e Recursos Minerais do estado de Rondônia; Programa Geologia do Brasil: Porto Velho, Brazil, 2007; pp. 13, 45, 68–79. [Google Scholar]
- Dall’Agnol, R.; Teixeira, N.P.; Ramo, O.T.; Moura, C.A.V.; Macambira, M.J.B.; de Oliveira, D.C. Petrogenesis of the Paleoproterozoic rapakivi, A-type granites of the Archean Carajás Metallogenic Province, Brazil. Lithos 2005, 80, 101–129. [Google Scholar] [CrossRef]
- Dias, C.A.T. Geologia e Mineralogia de Pegmatito Mineralizado em Estanho e Metais Associados (Nb, Ta, Zn, Cu e Pb), Mina Bom Futuro—RO. Rio Claro–SP. Master’s Thesis, Universidade Estadual Paulista, Sao Paulo, Brazil, 2012; 89p. [Google Scholar]
- Geraldes, M.C.; Nogueira, C.C. Rondônia Tin Province, SW Amazonian Craton Revised: Geochronologiy, Magmatic Processes and Tectonic Setting. SGA, Simp. Geologia da Amazônia. 2013. Available online: https://sbg-no.org.br/arquivos/BASES/SGA%2013.pdf (accessed on 1 August 2022).
- Santos, J.O.S.; Rizzotto, G.J.; Potter, P.E.; McNauughton, N.J.; Matos, R.S.; Hartmann, L.A.; Chemale, F., Jr.; Quadros, M.E.S. Age and autochthonous evolution of the Sunsás Orogen in west Amazon Craton based on mapping and U-Pb geochronology. Precambrian Res. 2008, 165, 120–152. [Google Scholar] [CrossRef]
- Almeida, F.F.; HasuiI, Y.; Brito Neves, B.B. The Upper Precambrian of South America; Boletim, I.G., Ed.; Instituto de Geociências da USP: Sao Paulo, Brazil, 1976; Volume 7, pp. 45–80. [Google Scholar]
- Cordani, U.G.; Tassinari, C.C.G.; Teixeira, W.; Basei, M.A.S.; Kawashita, K. Evolução tectônica da Amazônia com base nos dados geocronológicos. In Congresso Geológico Chi-leno, 2., Arica; Instituto de Investigaciones Geológicas: Santiago, Chile, 1979; pp. 137–148. [Google Scholar]
- Teixeira, W.; Tassinari, C.C.; Cordani, U.; Kawashita, K. A review of the geochronology of the Amazonian Craton: Tectonic implications. Precambrian Res. 1989, 42, 213–227. [Google Scholar] [CrossRef]
- Tassinari, C.C.G. O Mapa Geocronológico do Cráton Amazônico no Brasil: Revisão dos Dados Isotópicos. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 1996; 139p. [Google Scholar]
- Sadowiski, G.R.; Bettencourt, J.S. Mesoproterozoic tectonic correlations between eastern Laurentia and the western border of the Amazonian Craton. Precambrian Res. 1996, 76, 213–227. [Google Scholar] [CrossRef]
- Tassinari, C.C.G.; Macambira, M. Geochronological Provinces of the Amazonian Craton. Episodes 1999, 22, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Scandollara, J.E.; Fuck, R.A.; Dall’Agnol, R.; Dantas, E.L. Geochemistry and origin of the early Mesoproterozoic mangerite-charnokite-rapakivi granite association of the Serra da Providência suíte and associated gabbros, central-eastern Rondônia, SW Amazonian Craton, Brasil. J. South Am. Earth Sci. 2013, 45, 166–193. [Google Scholar] [CrossRef]
- Scandollara, J.E.; Rizzotto, G.J.; de Amorim, J.L.; Bahia, R.B.C.; Quadros, M.L.; da Silva, C.R. Geological Map of Rondônia; CPRM: Porto Velho, Brazil, 1999; Escala:1:1000 000. [Google Scholar]
- Quadros, M.L.d.E.S.; Rizzoto, G.J. (Eds.) Geologia e Recursos Minerais do Estado de Rondônia: Sistema de Informações Geográficas—SIG: Texto Explicativo do Mapa Geológico e de Recursos Minerais do Estado de Rondônia; CPRM: Porto Velho, Brazil, 2007; 153p. [Google Scholar]
- Isotta, C.A.L.; Carneiro, J.M.; Kato, H.T.; Barros, R.J.L. Projeto Província Estanífera de Rondôni; DNPM/CPRM: Porto Velho, Brazil, 1978; Volumes 1–3. [Google Scholar]
- Queiroz, L.A.V.; Macambira, M.; Nogueira, C.C.; Quadros, M.L.E.S. Estudos litogeoquímicos, isotópicos e petrográficos da Suíte Intrusiva Alto Candeias. Contribuições a Geologia da Amazonia 2010, 10, 285–307. [Google Scholar]
- Geraldes, M.C.; Teixeira, W.; Heilbron, M. Lithospheric versus asthenospheric source of the SW Amazonian craton A-types granites: The role of the Paleo- and Mesoproterozoic accretionary belts for their coeval continental suites. Episodes 2004, 27, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debowski, B.P.; dos Santos, A.C.; Santos, W.H.; Geraldes, M.C. Petrograia e Litogeoquímica dos Maciços Massangana, São Carlos e Caritianas Pertencentes aos Granitos mais Jovens da Província Estanífera de Rondônia. Anuário Inst. Geoci. 2019, 41, 395–412. [Google Scholar] [CrossRef]
- Payolla, B.L. As Rochas Graníticas e Sieníticas das Cachoeiras Teotônio e Santo Antônio, Rio Madeira, Porto Velho, Rondônia: Geologia, Petrografia e Geoquímica. Master’s Thesis, Universidade de Brasília, Asa Norte, Brazil, 1994; 145p. [Google Scholar]
- Santos, P.C.M., Jr. Metalogênese do Depósito de Estanho Liberdade, Campo Novo de Rondônia—RO. Brasília—DF. Master’s Thesis, Universidade de Brasília, Asa Norte, Brazil, 2015; 102p. [Google Scholar]
- Souza, V.S.; Botelho, N.F.; Dantas, E.L.; Laux, J.H. Geoquímica e geologia isotópica (Sm-Nd e U-Pb) de magmatismo traquítico no depósito de estanho do Bom Futuro (RO). Rev. Bras. Geoci. 2007, 37, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Sparremberger, I. Evolução da Mineralização Primária Estanífera Associada ao Maciço Granítico Santa Bárbara, Rondônia. Ph.D. Thesis, Universidade de São Paulo, Sao Paulom, Brazil, 2003; 254p. [Google Scholar]
- Debowski, B.; Alves, M.; dos Santos, A.C.; Tavares, A.D., Jr.; Geraldes, M. Contribution to the understanding of the Rondonia Tin Province granites (SW Amazonian Craton) origin using U-Pb and Lu-Hf in zircon by LA-ICPMS: Implications to A-type granite genesis. J. Geol. Surv. Braz. 2019, 2, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, C.C.; Geraldes, M.C.; Saar de Almeda, B.; Debowski, B. Provincia Estanifera de Rondoia: Caracterização e distribuição temporal da mineralização. In Contribuições a Geologia da Amazonia; Sociedade Brasileira de Geologia: Sao Paulo, Brazil, 2015; Volume 9, pp. 393–408. [Google Scholar]
- Romaninni, S.J. Geologia e Geoquímica do Complexo Granitóide de Massangana e Sua Relação com as Mineralizações de Estanho. Master’s Thesis, Curso de Pós-Graduação em geociências, Salvador, Brazil, 1982; 85p. [Google Scholar]
- Geraldes, M.C. Introdução à Geocronologia; Sociedade Brasileira de Geociências: São Paulo, Brazil, 2010; 137p. [Google Scholar]
- Faure, G. Principles of Isotope Geology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1986; 589p. [Google Scholar]
- Geraldes, M.C.; Teixeira, W.; Valladares, C. Contribuição ao estudo do magmatismo Paleo e Mesoproterozóico do SW do Craton Amazônico através da aplicação de isótopos estáveis de O, H e S. Acta Amazonica (Impresso) 2008, 38, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Geraldes, M.C.; Bettencourt, J.S.; Teixeira, W.; Matos, J.B. Geochemistry and isotopic constraints on the origin of the mesoproterozoic Rio Branco anorogenic plutonic suite, SW of Amazonian craton, Brazil: High heat flow and crustal extension behind the Santa Helena arc? J. South Am. Earth Sci. 2004, 17, 195–204. [Google Scholar] [CrossRef]
- Nascimento, T.M.F. Depósito de W-Sn Igarapé-Manteiga: Geologia e Metalogênese. Master’s Thesis, Universidade Federal do Amazônico, Manaus, Brazil, 2010. [Google Scholar]
- Rizzotto, G.J.; Scandolara, J.E.; Silva, C.R.; Dall’Agnol, R.; Bettencort, J.S.; Morais, P.R. Geology and preliminary geochemistry of the middle proterozoic Serra da Providência rapakivi granite-Rondonia, Brazil. In Proceedings of the Symposium on Rapakivi Granites and Related Rocks, Belem, Brazil, 2–5 August 1995; pp. 5–16. [Google Scholar]
- Villeneuve, M.; Wazi, N.; Kalikone, C.; Gärtner, A. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events. Minerals 2022, 12, 737. [Google Scholar] [CrossRef]
- O’Connor, J.T. A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol. Surv. 1965, 525B, B79–B84. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Pet. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Black, R.; Lameyre, J.; Bonin, B. The structural setting of alkaline complexes. J. Afr. Earth Sci. 1985, 3, 5–16. [Google Scholar] [CrossRef]
- Griffin, W.L.; Belousova, E.; Walters, S.G.; O’Reilly, S.Y. Archaean and Proterozoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia: U—Pb and Hf-isotope studies of detrital zircons. Aust. J. Earth Sci. 2006, 53, 125–149. [Google Scholar] [CrossRef]
- Patchett, P.J.; Kouvo, O.; Hedge, C.E.; Tatsumoto, M. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contrib. Mineral. Petrol. 1981, 78, 279–297. [Google Scholar] [CrossRef]
- Vervoort, J. Lu-Hf Dating: The Lu-Hf Isotope System. In Encyclopedia of Scientific Dating Methods; Rink, W., Thompson, J., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; O’Reilly, S.Y.; Van Achterberg, E.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Gerdes, A.; Zeh, A. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.L.; O’Reilly, S.Y. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. J. Pet. 2005, 47, 329–353. [Google Scholar] [CrossRef] [Green Version]
- Rizzotto, G.J.; Quadros, M.L. DO E. S. Geologia da Amazonia Ocidental. In SBG Cong. Brasileiro de Geologia, 42, Araxa. Anais. Araxa: SBG-Nucleo Minas Gerais. 1 CD-Rom, 2014.
- Pichavant, M.; Manning, D. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys. Earth Planet. Inter. 1984, 35, 31–50. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Pet. 1982, 80, 189–200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debowski, B.P.; Potratz, G.L.; Tavares Júnior, A.D.; Alves Martins, M.V.; Geraldes, M.C. Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons. Minerals 2022, 12, 1304. https://doi.org/10.3390/min12101304
Debowski BP, Potratz GL, Tavares Júnior AD, Alves Martins MV, Geraldes MC. Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons. Minerals. 2022; 12(10):1304. https://doi.org/10.3390/min12101304
Chicago/Turabian StyleDebowski, Beatriz Pereira, Guilherme Loriato Potratz, Armando Dias Tavares Júnior, Maria Virgínia Alves Martins, and Mauro Cesar Geraldes. 2022. "Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons" Minerals 12, no. 10: 1304. https://doi.org/10.3390/min12101304
APA StyleDebowski, B. P., Potratz, G. L., Tavares Júnior, A. D., Alves Martins, M. V., & Geraldes, M. C. (2022). Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons. Minerals, 12(10), 1304. https://doi.org/10.3390/min12101304