Origin of Qinxi Silver Polymetallic Deposit in Southeast Coast, China: Evidences from H–O–S–Pb Isotopes and Mineral Rb–Sr Geochronology
Abstract
:1. Introduction
2. Regional Geological Background
3. Geology of the Qinxi Silver Deposit
4. Sample Collection and Analytical Methods
4.1. H–O–S–Pb Isotope Analysis
- (1)
- H–O isotope analysis: H isotope samples were burst in carbon-containing glass ceramic tubes, thereby releasing the H2O2. The H2O2 reacted with carbon at high temperatures to generate H2. H2 was then carried via high purity helium flow into the mass spectrometer MAT-253. The results were measured using V-SMOW. The analysis precision was better than 1‰, and the reference standards were Beida standard water (V-SMOW = −64.8‰) and Lanzhou standard water (V-SMOW = −84.55‰). The O isotope testing instrument was a MAT-253 gas isotope mass spectrometer. The measurement results were recorded as δ18O with SMOW as the standard, and the analytical accuracy was better than ±0.2‰. The reference standards were GBW-04409 and GBW-04410 quartz standards. The hydrogen and oxygen isotopic compositions were determined by the stable isotope lab of the Beijing Research Institute of Uranium Geology. For the specific analysis methods, see [31].
- (2)
- S isotope analysis: After grinding the single mineral sample into a powder, Cu2O was used as an oxidant to react with the sulfide single mineral mixture to generate SO2 and freeze it for collection. The sample was determined by a mat-251 mass spectrometer. The test results were expressed as the δ34S value of V-CDT, with an accuracy of ±0.2‰. The detection method and basis used GB/T0184.14-1997 “Determination of sulfur isotopic composition in sulfide”. The analysis was performed by The Laboratory of Stable Isotopes, Beijing Research Institute of Uranium Geology.
- (3)
- Pb isotope analysis: Pb isotope analysis was carried out via MC-ICP-MS at The State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan). According to the standard GB/T17672-1999, “method for the determination of lead, strontium and neodymium isotopes in rocks”, the analytical instrument was a Resonetics-S155 laser ablation system. After the single mineral sample was dissolved by mixed acid, Pb was purified by the resin exchange method. The analytical accuracy of 1 μg for 208Pb/204Pb was better than 0.005%, as illustrated in [31].
4.2. Rb–Sr Isotope Analysis
5. Results
5.1. H and O Isotopes
5.2. S Isotope Composition
5.3. Pb Isotopic Composition
5.4. Rb–Sr Geochronology
6. Discussion
6.1. Ore Forming Age
6.2. Sources of the Metallogenetic Material
6.3. Genesis of Qinxi Silver Ore
7. Conclusions
- (1)
- Rb–Sr isochronal dating precisely revealed that the Qinxi silver deposit was formed ca. 130 Ma, confirming an early Cretaceous silver mineralization event in South China.
- (2)
- The symbiotic minerals and ore assemblages suggest that Qinxi ore is a typical middle to low temperature hydrothermal deposit.
- (3)
- Systematic studies of H, O, S, and Pb isotopes in the sulfide indicate that the ore-forming materials in the Qinxi silver deposit are mainly of crustal origin. The ore-forming fluid is a mixture of magmatic water and meteoric water.
- (4)
- Both geological features and isotopic compositions suggest that the Qinxi silver deposit has similar ore-forming sources with the adjacent Zijinshan deposit and that there may be concealed Cu–Mo–Au ore below the Qinxi silver deposit.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, Y.H.; Wang, D.H. Four Main Topics Concerning the Metallogency Related to Mesozoic Magmatism in South China. Geotecton. Metallog. 2012, 363, 315–321. [Google Scholar]
- Zhu, X.D.; Liu, Z.P.; Wu, J.Z. Diagram showing the characteristics of lead isotopes from the silver ore-deposits of the volcanic terrain in the coastal area of Fujian and Zhejiang provinces. Geol. Fujian 1996, 4, 177–189. [Google Scholar]
- Wu, G.G.; Zhang, D.; Peng, R.M.; Wu, J.S.; Gao, T.J.; Chen, B.L.; Wang, Q.F.; Di, Y.J.; Zhang, X.X. Study on The Evolution Regularity of Mineralization Ages in Southeastern China. Earth Sci. Front. 2004, 1, 237–247. [Google Scholar]
- Gao, Y.; Zhang, Z.J.; Xiong, Y.H.; Zuo, R.G. Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geol. Rev. 2016, 75, 16–28. [Google Scholar] [CrossRef]
- Shi, H.H. Analysis of Metallogenic Geological Condition and Potential of Deposits in Daan of Fujian. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2008; p. 67. [Google Scholar]
- Zhao, F.F.; Liu, X.F.; Zhu, L.M.; Chu, Y.T.; Chun, H.L.; Cai, Y.W. Geochemistry trace of metallization for polymetal field in Yangjiaba, Lueyang, Shanxi Province. Acta Petrol. Sin. 2010, 26, 1465–1478. [Google Scholar]
- Jiang, Y.H.; Chen, H.N.; Wu, Q.H.; Chen, S.Z. Geological Characteristics, Genesis and Further Prospecting Direction of Ag–Pb–Zn Mineralization of Qinxi-Guansi, Zhouning, Fujian. Geol. Explor. 1994, 4, 21–25. [Google Scholar]
- Liang, Q.L.; Jiang, S.H.; Bai, D.M.; Wang, S.H. Sources of ore-forming materials of epithermal deposits in Zijinshan orefield in Fujian Province: Evidence from H, O, S and Pb isotopes. Miner. Depos. 2015, 3, 533–546. [Google Scholar]
- Li, Q.; Santosh, M.; Li, S.-R.; Zhang, J.-Q. Petrology, geochemistry and zircon U–Pb and Lu–Hf isotopes of the Cretaceous dykes in the central North China Craton: Implications for magma genesis and gold metallogeny. Ore Geol. Rev. 2015, 67, 57–77. [Google Scholar] [CrossRef]
- Lin, J.D. Metallogencl Characteristics of Bijiashan-Qinxi Ag, Polymetal Ore Belt, Fujian Province. Contrib. Geol. Miner. Resour. Res. 2003, 18, 132–136. [Google Scholar]
- Zhong, S.F. Geological Features and Deep Prospecting of Qinxi Silver Polymetallic Deposit in Zhongning County, Fujian Province. Geol. Fujian 2016, 2, 122–131. [Google Scholar]
- Wang, D.Z.; Shen, W.Z. Genesis of granitoids and crustal evolution in southeast China. Earth Sci. Front. 2003, 3, 209–220. [Google Scholar]
- Li, X. Subdivision and characteristic of tectonic units in Fujian Province. Glob. Geol. 2013, 32, 549–557. [Google Scholar]
- Li, S.-N.; Ni, P.; Bao, T.; Xiang, H.-L.; Chi, Z.; Wang, G.-G.; Huang, B.; Ding, J.-Y.; Dai, B.-Z. Genesis of the Ancun epithermal gold deposit, southeast China: Evidence from fluid inclusion and stable isotope data. J. Geochem. Explor. 2018, 195, 157–177. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, S.-Y.; Chen, R.-S.; Li, X.-X.; Zhu, L.; Xiong, S.-F. Hydrothermal evolution and ore genesis of the Zhaiping Ag–Pb–Zn deposit in Fujian Province of Southeast China: Evidence from stable isotopes (H, O, C, S) and fluid inclusions. Ore Geol. Rev. 2019, 104, 246–265. [Google Scholar] [CrossRef]
- Lin, K.; Zhang, Y.H.; Wang, Y.J. Lithospheric thinning in the North China Block: A numerical approach on thermal perturbation and tectonic extension. Geotecton. Metallog. 2004, 28, 8–14. [Google Scholar]
- Zhong, J.; Chen, Y.J.; Qi, J.P.; Chen, J.; Dai, M.C.; Li, J. Geology, flfluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan orefifield, Fujian Province, China. Ore Geol. Rev. 2017, 86, 254–270. [Google Scholar] [CrossRef]
- Li, S.-N.; Ni, P.; Bao, T.; Li, C.-Z.; Xiang, H.-L.; Wang, G.-G.; Huang, B.; Chi, Z.; Dai, B.-Z.; Ding, J.-Y. Geology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: Implications for ore genesis and mineral exploration. J. Geochem. Explor. 2018, 195, 16–30. [Google Scholar] [CrossRef]
- Li, B.; Jiang, S.-Y. Genesis of the giant Zijinshan epithermal Cu-Au and Luoboling porphyry Cu–Mo deposits in the Zijinshan ore district, Fujian Province, SE China: A multi-isotope and trace element investigation. Ore Geol. Rev. 2017, 88, 753–767. [Google Scholar] [CrossRef]
- Hua, R.M.; Chen, P.R.; Zhang, W.L.; Lu, J.J. Three major metallogenic events in Mesozoic in South China. Miner. Depos. 2005, 24, 99–107. [Google Scholar]
- Zhang, G.; Guo, A.; Wang, Y.; Li, S.; Dong, Y.; Liu, S.; He, D.; Cheng, S.; Lu, R.; Yao, A. Tectonics of South China continent and its implications. Sci. China Earth Sci. 2013, 56, 1804–1828. [Google Scholar] [CrossRef]
- Ni, P.; Wang, G.-G.; Cai, Y.-T.; Zhu, X.-T.; Yuan, H.-X.; Huang, B.; Ding, J.-Y.; Chen, H. Genesis of the Late Jurassic Shizitou Mo deposit, South China: Evidences from fluid inclusion, H O isotope and Re Os geochronology. Ore Geol. Rev. 2017, 81, 871–883. [Google Scholar] [CrossRef]
- Li, L.; Li, S.-R.; Santosh, M.; Li, Q.; Gu, Y.; Lü, W.-J.; Zhang, H.-F.; Shen, J.-F.; Zhao, G.-C. Dyke swarms and their role in the genesis of world-class gold deposits: Insights from the Jiaodong peninsula, China. J. Asian Earth Sci. 2016, 130, 2–22. [Google Scholar] [CrossRef]
- Duan, Z.; Xing, G.F.; Yu, M.G.; Zhao, X.L.; Jin, G.D.; Chen, Z.H. Time Sequence and Geological Process of Late Mesozoic Volcanic Activities in the Area of Zhejiang-Fujian Boundary. Geol. Rev. 2013, 59, 454–468. [Google Scholar]
- Guo, F.; Fan, W.; Li, C.; Zhao, L.; Li, H.; Yang, J. Multi-stage crust–mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong–Fujian provinces. Lithos 2012, 150, 62–84. [Google Scholar] [CrossRef]
- Hu, X.; Gong, Y.; Pi, D.; Zhang, Z.; Zeng, G.; Xiong, S.; Yao, S. Jurassic magmatism related Pb–Zn–W–Mo polymetallic mineralization in the central Nanling Range, South China: Geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 2017, 91, 877–895. [Google Scholar] [CrossRef]
- Yuan, L.; Chi, G.; Wang, M.; Li, Z.; Xu, D.; Deng, T.; Geng, J.; Hu, M.; Zhang, L. Characteristics of REEs and trace elements in scheelite from the Zhuxi W deposit, South China: Implications for the ore-forming conditions and processes. Ore Geol. Rev. 2019, 109, 585–597. [Google Scholar] [CrossRef]
- Chen, T.S. On the geologic characteristics and prospecting directions of Tianchi silver polymetallic ore in Shouning County, Fujian Province. Geol. Fujian 2017, 104, 228–236. (In Chinese) [Google Scholar]
- Lu, L.; Liang, T.; Zhao, Z.; Liu, S. A Unique association of scheelite and magnetite in the Tiemuli W-Fe skarn deposit: Implications for Early Cretaceous metallogenesis in the Nanling Region, South China. Ore Geol. Rev. 2018, 94, 136–154. [Google Scholar] [CrossRef]
- Li, S.T.; Zhu, X.Y.; Wang, J.B. Review of studies on terrestrial sub-volcanic deposits. Miner. Depos. 2014, S1, 705–706. [Google Scholar]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Bonsall, T.A.; Tarkian, M.; Solomos, C. Carbonate-replacement Pb–Zn–Ag±Au mineralization in the Kamariza area, Lavrion, Greece: Mineralogy and thermochemical conditions of formation. Miner. Pet. 2008, 94, 85–106. [Google Scholar] [CrossRef]
- Li, W.B.; Huang, Z.L.; Xu, D.R. Rb-Sr isotopic method on Pb–Zn ore deposits: A review. Geotecton. Metall. 2002, 4, 436–441. [Google Scholar]
- Pieter, V. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar]
- Dai, Q.Z. Ore-forming Process of the Qinxi Silver-lead-zinc Deposit in Zhounin County and Its Ore-finding Target. Geol. Fujian 2008, 2, 175–185. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. Space Phys. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- So, C.-S.; Dequan, Z.; Yun, S.-T.; Daxing, L. Alteration-mineralization zoning and fluid inclusions of the high sulfidation epithermal Cu-Au mineralization at Zijinshan, Fujian Province, China. Econ. Geol. 1998, 93, 961–980. [Google Scholar] [CrossRef]
- Xing, G.F.; Yang, Z.L.; Xue, H.M.; Shen, J.L.; Zhao, Y.; Mao, J.R.; Tao, K.Y. The Study Progress and Orientation of Mesozoic Volcanic Rock belts in Southeast Continent, China. Geol. Jiangsu 1999, 23, 221–224. [Google Scholar]
- Zhu, B.Q. The Theory and Application of Isotope System in Earth Science Also on the Evolution of Crust and Mantle in Chinese Mainland; Science Press: Beijing, China, 1998; pp. 216–230. [Google Scholar]
- Zheng, W.; Chen, M.H.; Xu, L.G.; Zhao, H.J.; Ling, S.B.; Wu, Y.; Hu, Y.G.; Tian, Y.; Wu, X.D. Rb-Sr isochron age of Tiantang Cu-Pb–Zn polymetallic deposit in Guangdong Province and its geological significance. Miner. Depos. 2013, 32, 259–272. [Google Scholar]
- Li, C.Y.; Liu, T.G.; Ye, L. Large and ultra-large silver deposits related to volcanic rocks in China. Sci. China Ser. D 2002, 32, 69–77. [Google Scholar]
- Chen, H.S. Research on the Isotope for Zijinshan Ore Deposit. Geotecton. Metallog. 1996, 4, 348–360. [Google Scholar]
- Chen, Y.C.; Wang, D.H.; Xu, Z.G.; Huang, F. Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China. Geotecton. Metallog. 2014, 2, 219–229. [Google Scholar]
- Zhang, D.Q.; Shen, H.Q.; Li, D.X.; Feng, C.Y. The Porphyry-Epithermal Metallogenic System in the Zijinshan Region, Fujian Province. Acta Geol. Sin. 2003, 77, 253–261. [Google Scholar]
- Chen, R.S.; Lin, D.Y.; Jiang, J.L. Dynamical Mechanism and Tectonics Significance of Early Jurassic Volcanism in Fujian Province. Geol. Fujian 2007, 27, 156–165. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Jiang, S.-H.; Liang, Q.-L.; Bagas, L.; Wang, S.-H.; Nie, F.-J.; Liu, Y.-F. Geodynamic setting of the Zijinshan porphyry–epithermal Cu–Au–Mo–Ag ore system, SW Fujian Province, China: Constrains from the geochronology and geochemistry of the igneous rocks. Ore Geol. Rev. 2013, 53, 287–305. [Google Scholar] [CrossRef]
- Faure, G. Principles of Lsotope Geology, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 183–199. [Google Scholar]
- Chen, J.; Chen, Y.J.; Zhong, J.; Sun, Y.; Li, Z.; Qi, J.F. Fluid inclusion study of the Wuziqilong Cu deposit in the Zijinshan ore field, Fujian Province. Acta Petrol. Sin. 2011, 5, 1425–1438. [Google Scholar]
- Miron, G.D.; Wagner, T.; Wälle, M.; Heinrich, C.A. Major and trace-element composition and pressure–temperature evolution of rock-buffered fluids in low-grade accretionary-wedge metasediments, Central Alps. Contrib. Miner. Petrol. 2012, 165, 981–1008. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.F.; An, F. Geochemistry of hydrothermal mineralization: Taking gold deposit as an example. Earth Sci. Front. 2010, 2, 42–52. [Google Scholar]
- Lu, Y.F. GeoKit-A geochenical toolkit for Microsoft Excel. Geochimica 2004, 33, 459–464. [Google Scholar]
- Wang, H.L.; Li, Y.J.; Xu, S.Q.; Jiang, Y.J.; Li, N.P.; Xiao, G.L.; Zhou, J.B. Latest advances of researches on epithermal gold deposits. GOLD 2009, 7, 9–13. [Google Scholar]
- Zhao, X.; Yu, S.; Mao, J.; Liu, K.; Yu, M.; Jiang, Y.; Chen, Z.; Hou, K.; Peng, Y. Compression between microcontinents in the Cathaysian Block during the early Yanshanian: Petrogenesis of the Tangquan pluton in Southwest Fujian Province, Southeast China. Geol. J. 2016, 52, 970–991. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, S.; Jiang, Y.; Mao, J.; Yu, M.; Chen, Z.; Xing, G. Petrogenesis of two stages of Cretaceous granites in south-west Fujian Province: Implications for the tectonic transition of South-east China. Geol. J. 2018, 54, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Mao, J.; Liu, K.; Li, Z.; Ye, H.; Zhou, J.; Hu, Y. Petrogenesis of the Jurassic adakitic rocks in Gan-Hang Belt South China: Response to the Palaeo-Pacific Plate oblique subduction. Geol. J. 2017, 53, 2019–2044. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yu, S.Y.; Mao, J.R.; Liu, K.; Yu, M.G.; Jiang, Y.; Chen, Z.H.; Hou, K.J.; Peng, Y.B. A geochemical and geochronological study of the early Cretaceous, extension-related Honggong ferroan (A-type) granite in southwest Zhejiang Province, southeast China. Geol. Mag. 2018, 55, 549–567. [Google Scholar] [CrossRef]
- Engebretson, D.C.; Cox, A.; Gordon, R.G. Relative Motions Between Oceanic and Continental Plates in the Pacific Basin; Geological Society of America: Boulder, CO, USA, 1985. [Google Scholar]
- Soloviev, S.G. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stock work deposit, Tien-Shan, Kyrgyzstan. Miner. Depos. 2015, 50, 187–220. [Google Scholar] [CrossRef]
- Mao, J.; Xie, G.Q.; Li, X.F.; Mei, Y.X. Mesozoic large scale mineralization and multiple lithospheric extension in south China. Earth Sci. Front. 2004, 11, 45–55. [Google Scholar]
- Yu, B. Study on Evolution of Mesozoic Magmatic Rocks and Metallogenic Feature of Zijinshan Orefield; Chinese Academy of Geological Science: Beijing, China, 2012; pp. 1–30. (In Chinese) [Google Scholar]
- Huang, R.S. Igneous Series and Epithermal Porphyry Cu-Au-Ag Mineralization System in the Zijingshan Ore Field, Fujian Province. J. Geomech. 2008, 1, 74–86. [Google Scholar]
- Li, B.; Zhao, K.D.; Zhang, Q.; Xu, Y.M.; Zhu, Z.Y. Petrogenesis and geochemical characteristics of the Zijinshan granitic complex from Fujian Province, South China. Acta Petrol. Sin. 2015, 31, 811–828. (In Chinese) [Google Scholar]
- Liang, Q.L.; Jiang, S.H.; Wang, S.H.; Li, C.; Zeng, F.G. Re-Os dating of molybdenite from the Luoboling porphyry Cu-Mo deposit in the Zijinshan ore field of Fujian Province and its geological significance. Acta Geol. Sin. 2012, 86, 1113–1118. [Google Scholar]
- Pan, T.W.; Yuan, Y.; Lv, Y.; Shi, W.Q. The Early-Cretaceous tectonic evolution and the spatial-temporal framework of magmatism-mineralization in Zijinshan ore-field, Fujian Province. J. Geomech. 2019, 25, 61–75. [Google Scholar]
- Waters, P.J.; Cooke, D.R.; Gonzales, R.I.; Phillips, D. Porphyry and Epithermal Deposits and 40Ar/39Ar Geochronology of the Baguio District, Philippines. Econ. Geol. 2011, 106, 1335–1363. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.R.; Deyell, C.L.; Waters, P.J.; Gonzales, R.I.; Zaw, K. Evidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines. Econ. Geol. 2011, 106, 1399–1424. [Google Scholar] [CrossRef]
- Watanabe, Y.; Hedenquist, J.W. Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Econ. Geol. 2001, 96, 1775–1797. [Google Scholar] [CrossRef]
- Cooke, D.R.; Simmons, S.G. Characteristics and genesis of epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 221–244. [Google Scholar]
Stage | Label | Mineral | Uniform Temperature | δ18OV-SMOW | δDV-SMOW | δ18OH2O | Source |
---|---|---|---|---|---|---|---|
Stage I | Q-6 | SiO2 | 325 | 6 | −69 | −0.1 | This Article |
Stage II | Q-25 | SiO2 | 330 | 5.8 | −66.6 | −0.1 | This Article |
Q-26 | SiO2 | 330 | 4.1 | −60.7 | −1.8 | This Article | |
Stage III | Q-8 | SiO2 | 290 | 5.3 | −67.7 | −2.0 | This Article |
Stage IV | Q-3 | SiO2 | 273 | 5.4 | −73.6 | −2.5 | This Article |
Unknown | DZ-1 | SiO2 | 230 | −49.3 | −5.04 | [34] | |
Unknown | DZ-2 | SiO2 | 238 | −87.5 | −8.51 | [34] | |
Unknown | ZK1 hole | SiO2 | 235 | −65.5 | −3.92 | [7] |
Sample Serial Number | Stage | Mineral | δ34S (‰) |
---|---|---|---|
TZ-6-2 | Stage I | FeS2 | 0.8 |
TZL-6-3 | Stage I | FeS2 | 1.3 |
TZS-1-2-5 | Stage I | FeS2 | 0.3 |
TZL-4-1-1 | Stage I | FeS2 | 0.7 |
TZL-4-1-2 | Stage I | FeS2 | 0.1 |
TZ-11-1-9 | Stage II | FeS2 | −0.6 |
TZ-25-1-9 | Stage II | FeS2 | −0.2 |
G-28-2-2 | Stage II | FeS2 | 7.1 |
G-28-4-3 | Stage II | FeS2 | 4.1 |
TZW-2-1-7 | Stage II | FeS2 | 1.7 |
TZW-2-3-6 | Stage II | FeS2 | 3.6 |
TZ-11-1-8 | Stage II | ZnS | −1.5 |
TZ-25-1-10 | Stage II | ZnS | −0.6 |
G-28-2-3 | Stage II | ZnS | 0.8 |
TZW-2-1-9 | Stage II | ZnS | 0.2 |
TZ-2-2-6 | Stage II | ZnS | 0.2 |
TZW-2-1-8 | Stage II | PbS | 0 |
G-28-4-1 | Stage II | PbS | 2.1 |
TZW-2-3-7 | Stage II | PbS | 1.7 |
G-28-4-2 | Stage II | CuFeS2 | 4.1 |
TZ-0-1-1 | Stage III | FeS2 | −0.2 |
TZ-0-4-3 | Stage III | FeS2 | −1.3 |
TZ-0-1-3 | Stage III | ZnS | −1.7 |
TZ-0-4-2 | Stage III | PbS | −0.8 |
TZ-0-1-2 | Stage III | CuFeS2 | 1.3 |
Sample Serial Number | Lithology | Mineral | Measurement Result | μ | Δβ | Δγ | Source | ||
---|---|---|---|---|---|---|---|---|---|
208Pb/204Pb | 207Pb/204Pb | 206Pb/204Pb | |||||||
QXK-7 | Pb–Zn–Ag Ore | PbS | 38.947 | 15.703 | 18.513 | 9.66 | 24.74 | 46.44 | This Article |
QXK-23 | Pb–Zn–Ag Ore | PbS | 38.920 | 15.695 | 18.509 | 9.64 | 24.21 | 45.71 | This Article |
Unknown | Ag–Pb–Zn Ore | PbS | 38.673 | 15.623 | 18.447 | 9.51 | 19.55 | 39.43 | [34] |
Unknown | Pb–Zn–Ag Ore | PbS | 38.743 | 15.637 | 18.454 | 9.53 | 20.52 | 41.85 | [34] |
Unknown | Ag–Pb–Zn Ore | PbS | 38.774 | 15.641 | 18.467 | 9.54 | 20.76 | 42.49 | [7] |
QXK-1 | Ag–Pb–Zn Ore | FeS2 | 39.163 | 15.766 | 18.562 | 9.77 | 28.85 | 52.24 | This Article |
QXK-11 | Pb–Zn–Ag Ore | FeS2 | 39.072 | 15.733 | 18.553 | 9.71 | 26.69 | 49.80 | This Article |
QXK-26 | Pb–Zn–Ag Ore | FeS2 | 39.039 | 15.726 | 18.551 | 9.70 | 26.24 | 48.91 | This Article |
Unknown | Rhyolite porphyry | FeS2 | 38.740 | 15.630 | 18.495 | 9.51 | 19.97 | 40.88 | [34] |
Unknown | Rhyolite porphyry | FeS2 | 38.794 | 15.654 | 18.473 | 9.56 | 21.66 | 43.54 | [34] |
Unknown | Ag–Pb–Zn Ore | FeS2 | 38.608 | 15.580 | 18.406 | 9.42 | 16.64 | 36.63 | [34] |
QXL-6 | Rhyolite porphyry | Whole rock | 39.029 | 15.703 | 18.605 | 9.65 | 24.74 | 48.64 | This Article |
QXW-2 | Fused tuff | Whole rock | 39.183 | 15.772 | 18.569 | 9.79 | 29.24 | 52.78 | This Article |
Unknown | Altered tuff | Whole rock | 38.591 | 15.590 | 18.421 | 9.44 | 17.3 | 36.24 | [7] |
Sample | Mineral | Rb (10−6) | Sr (10−6) | 87Rb/86Sr | 87Sr/86Sr | 87Sr/86Sr ± 1σ |
---|---|---|---|---|---|---|
QXK-5 | Sp | 0.9048 | 0.8854 | 3.015 | 0.715974 | 0.71597 ± 0.00003 |
QXK-7 | Sp | 0.8732 | 0.6061 | 4.256 | 0.718143 | 0.71814 ± 0.00005 |
QXK-1 | Gn | 0.2841 | 4.557 | 0.1846 | 0.710738 | 0.71074 ± 0.00002 |
QXK-19 | Gn | 0.1639 | 1.528 | 0.3159 | 0.710847 | 0.71084 ± 0.00003 |
QXK-22 | Gn | 0.3743 | 0.7325 | 1.507 | 0.713131 | 0.71313 ± 0.00004 |
QXK-23 | Gn | 0.4127 | 1.476 | 0.8242 | 0.711805 | 0.71181 ± 0.00006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, S.; Liu, W.; Zhang, J.; Gan, Q. Origin of Qinxi Silver Polymetallic Deposit in Southeast Coast, China: Evidences from H–O–S–Pb Isotopes and Mineral Rb–Sr Geochronology. Minerals 2021, 11, 45. https://doi.org/10.3390/min11010045
Zhong S, Liu W, Zhang J, Gan Q. Origin of Qinxi Silver Polymetallic Deposit in Southeast Coast, China: Evidences from H–O–S–Pb Isotopes and Mineral Rb–Sr Geochronology. Minerals. 2021; 11(1):45. https://doi.org/10.3390/min11010045
Chicago/Turabian StyleZhong, Senfang, Wenhao Liu, Jun Zhang, and Qiuling Gan. 2021. "Origin of Qinxi Silver Polymetallic Deposit in Southeast Coast, China: Evidences from H–O–S–Pb Isotopes and Mineral Rb–Sr Geochronology" Minerals 11, no. 1: 45. https://doi.org/10.3390/min11010045
APA StyleZhong, S., Liu, W., Zhang, J., & Gan, Q. (2021). Origin of Qinxi Silver Polymetallic Deposit in Southeast Coast, China: Evidences from H–O–S–Pb Isotopes and Mineral Rb–Sr Geochronology. Minerals, 11(1), 45. https://doi.org/10.3390/min11010045