3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena
Abstract
1. Introduction
2. Methodology
2.1. Calculations
2.1.1. Calculation Methods
2.1.2. Chemical Reactivity
2.1.3. Interaction Energy of Metal-Ligand Complexes
2.2. Experimental
2.2.1. Mineral Samples and Chemical Reagents
2.2.2. Flotation Tests
3. Results and Discussion
3.1. Reagent Molecular Structure-Reaction Relationship
3.2. Reagent Ionic Structure-Reaction Relationship
Metal Ion Complexes
3.3. Flotation Separation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, B.; Yin, W.; Zhu, Z.; Wang, D.; Han, H.; Fu, Y.; Sun, H.; Chu, F.; Yao, J. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technol. 2019, 354, 358–368. [Google Scholar] [CrossRef]
- Yin, W.; Yang, B.; Fu, Y.; Chu, F.; Yao, J.; Cao, S.; Zhu, Z. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol. 2019, 343, 578–585. [Google Scholar] [CrossRef]
- Piao, Z.; Wei, D.; Liu, Z.; Liu, W.; Gao, S.; Li, M. Selective depression of galena and chalcopyrite by O, O-bis (2, 3-dihydroxypropyl) dithiophosphate. Trans. Nonferrous Met. Soc. China 2013, 23, 3063–3067. [Google Scholar] [CrossRef]
- Drzymala, J.; Kapusniak, J.; Tomasik, P. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin. Int. J. Miner. Process. 2003, 70, 147–155. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Miner. Eng. 2000, 13, 1405–1416. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, W.; Wei, D. Research progress of flotation separation and separation depressants of copper-molybdenum mixed concentrate. Met. Mine 2018, 4, 35–41. [Google Scholar]
- Valdivieso, A.L.; Cervantes, T.C.; Song, S.; Cabrera, A.R.; Laskowski, J. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Miner. Eng. 2004, 17, 1001–1006. [Google Scholar] [CrossRef]
- Liu, R.; Qin, W.; Fen, J.; Wang, X.; Bin, P.; Yang, Y.; Lai, C. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans. Nonferrous Met. Soc. China 2016, 26, 265–271. [Google Scholar] [CrossRef]
- Qiu, T.; Song, Y.; Qiu, X.; Li, X. Performance of organic depressants in scheelite flotation system. Chin. J. Nonferrous Met. 2017, 27, 1527–1534. [Google Scholar]
- Liu, J.; Wang, Y.; Luo, D.; Zeng, Y. Use of ZnSO4 and SDD mixture as sphalerite depressant in copper flotation. Miner. Eng. 2018, 121, 31–38. [Google Scholar] [CrossRef]
- Piao, Z.; Wei, D.; Liu, Z. Effects of small molecule organic depressants on the flotation behavior of chalcopyrite and galena. J. Northeast. Univ. 2013, 34, 884–888. [Google Scholar]
- Huang, P.; Wang, L.; Liu, Q. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena. Int. J. Miner. Process. 2014, 128, 6–15. [Google Scholar] [CrossRef]
- Grimme, S.; Schreiner, P.R. Computational chemistry: The fate of current methods and future challenges. Angew. Chem. Int. Ed. 2018, 57, 4170–4176. [Google Scholar] [CrossRef] [PubMed]
- Miquel, S.; Frank, D.P.; Matthias, F.B. Special collection: Computational chemistry. Chemistryopen 2019, 8, 814–816. [Google Scholar]
- Mao, Y.; Wang, H.; Hu, P. Theory and applications of surface micro-kinetics in the rational design of catalysts using density functional theory calculations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1321. [Google Scholar] [CrossRef]
- Alipour, M. Dipole moments of molecules with multi-reference character from optimally tuned range-separated density functional theory. J. Comput. Chem. 2018, 39, 1508–1516. [Google Scholar] [CrossRef]
- Wang, L.; Sun, N.; Wang, Z.; Han, H.; Yang, Y.; Liu, R.; Hu, Y.; Tang, H.; Sun, W. Self-assembly of mixed dodecylamine-dodecanol molecules at the air/water interface based on large-scale molecular dynamics. J. Mol. Liq. 2019, 276, 867–874. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Chen, X.; Zhou, Z.; Yang, H.; Yang, B.; Xu, B.; Liu, D. Bimetallic pbncun (n = 2–14) clusters were investigated by density functional theory. Comput. Theor. Chem. 2017, 1106, 21–27. [Google Scholar] [CrossRef]
- Poling, G.W.; Liu, Q. Flotation depression of chalcopyrite with thioglycolic acid. Trans. Inst. Min. Met. Sect. C Miner. Process. Extr. Metall. 1987, 96, C7–C12. [Google Scholar]
- Huang, H.; Wang, J.; Geng, Z.; Gao, Z. A study of the chalcopyrite depression mechanism by thioglycolic acid. Conserv. Util. Min. Resour. 2015, 6, 22–26. [Google Scholar]
- Chen, J.; Feng, Q.; Lu, Y. Research on the interaction of tga with chalocopyrite and sphalerite. Conserv. Util. Min. Resour. 2002, 5, 22–24. [Google Scholar]
- Bala, T.; Prasad, B.; Sastry, M.; Kahaly, M.U.; Waghmare, U.V. Interaction of different metal ions with carboxylic acid group: A quantitative study. J. Phys. Chem. A 2007, 111, 6183–6190. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Yao, C.; Wang, Y. Sorption behaviour and mechanism of ytterbium (III) on imino-diacetic acid resin. Hydrometallurgy 2006, 82, 190–194. [Google Scholar] [CrossRef]
- Chen, L.; Liu, T.; Ma, C. Metal complexation and biodegradation of edta and s, s-edds: A density functional theory study. J. Phys. Chem. A 2010, 114, 443–454. [Google Scholar] [CrossRef] [PubMed]
Sample | Cu | Pb | Fe | S | Si | Other |
---|---|---|---|---|---|---|
chalcopyrite | 32.12 | / | 30.73 | 34.67 | 1.12 | 1.36 |
galena | / | 81.17 | 1.21 | 13.15 | 2.20 | 2.27 |
Reagent | Mulliken Charges/e | Front Orbital Energy/ev | Electronegativity | |||
---|---|---|---|---|---|---|
–SH,S | –OH,O | S+O | EHOMO | ELUMO | (χ) | |
3-mercaptopropionic acid | −0.142 | −0.571 | −0.713 | −0.24598 | 0.00350 | 0.12474 |
3-mercaptoisobutyrate acid | −0.138 | −0.571 | −0.709 | −0.24720 | 0.00248 | 0.12484 |
mercaptoacetic acid | −0.100 | −0.553 | −0.653 | −0.25017 | −0.01000 | 0.12009 |
Reagent | Mulliken Charges/e | Front Orbital Energy/ev | Electronegativity | |||
---|---|---|---|---|---|---|
–SH, S | –OH,O | S+O | EHOMO | ELUMO | (χ) | |
depressant ions generated by removing hydrogen atoms from carboxyl group | ||||||
3-mercaptopropionic acid | −0.183 | −0.674 | −0.857 | −0.18904 | 0.03703 | 0.11304 |
3-mercaptoisobutyrate acid | −0.182 | −0.669 | −0.851 | −0.18892 | 0.03665 | 0.11279 |
mercaptoacetic acid | −0.187 | −0.633 | −0.820 | −0.20040 | 0.05053 | 0.12547 |
depressant ions produced by removing hydrogen atoms from sulfhydryl groups | ||||||
3-mercaptopropionic acid | −0.858 | −0.576 | −1.434 | −0.16358 | 0.01562 | 0.08960 |
3-mercaptoisobutyrate acid | −0.858 | −0.578 | −1.436 | −0.16346 | 0.01777 | 0.09062 |
mercaptoacetic acid | −0.792 | −0.576 | −1.368 | −0.17134 | 0.01520 | 0.09327 |
Reagent | Mental | Energy | A | B | C |
---|---|---|---|---|---|
3-mercaptopropionic acid | Cu | Totalenergy(E)/(a.u.) | −1528.115 | −1528.166 | −1528.157 |
Binding energy(ΔE)/(KJ/mol) | −861.371 | −907.302 | −874.720 | ||
Pb | Totalenergy(E)/(a.u.) | −1335.507 | −1335.521 | −1335.521 | |
Binding energy(ΔE)/(KJ/mol) | −503.090 | −557.591 | −549.989 | ||
3-mercaptoisobutyrate acid | Cu | Totalenergy(E)/(a.u.) | −1606.794 | −1606.793 | −1606.799 |
Binding energy(ΔE)/(KJ/mol) | −891.434 | −904.917 | −912.499 | ||
Pb | Totalenergy(E)/(a.u.) | −1414.126 | −1414.160 | −1414.156 | |
Binding energy(ΔE)/(KJ/mol) | −481.762 | −587.515 | −567.833 | ||
mercaptoacetic acid | Cu | Totalenergy(E)/(a.u.) | −1449.517 | −1449.528 | −1449.539 |
Binding energy(ΔE)/(KJ/mol) | −818.482 | −863.343 | −885.255 | ||
Pb | Totalenergy(E)/(a.u.) | −1256.890 | −1256.899 | −1256.899 | |
Binding energy(ΔE)/(KJ/mol) | −516.158 | −554.749 | −546.243 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Xu, R.; Wang, L.; Jiang, F.; Jin, J.; Gao, Z.; Tang, H.; Sun, W. 3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena. Minerals 2020, 10, 258. https://doi.org/10.3390/min10030258
Liu R, Xu R, Wang L, Jiang F, Jin J, Gao Z, Tang H, Sun W. 3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena. Minerals. 2020; 10(3):258. https://doi.org/10.3390/min10030258
Chicago/Turabian StyleLiu, Ruohua, Rui Xu, Li Wang, Feng Jiang, Jiao Jin, Zhiyong Gao, Honghu Tang, and Wei Sun. 2020. "3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena" Minerals 10, no. 3: 258. https://doi.org/10.3390/min10030258
APA StyleLiu, R., Xu, R., Wang, L., Jiang, F., Jin, J., Gao, Z., Tang, H., & Sun, W. (2020). 3-Mercaptopropionic/3-Mercaptoisobutyric Acids Used as Novel Selective Depressants for Improved Flotation of Chalcopyrite from Galena. Minerals, 10(3), 258. https://doi.org/10.3390/min10030258