Abstract
This study develops a rigorous analytic framework for solving the Cauchy problem of polyharmonic equations in , highlighting the crucial role of symmetry in the structure, stability, and solvability of solutions. Polyharmonic equations, as higher-order extensions of Laplace and biharmonic equations, frequently arise in elasticity, potential theory, and mathematical physics, yet their Cauchy problems are inherently ill-posed. Using hyperspherical harmonics and homogeneous harmonic polynomials, whose orthogonality reflects the underlying rotational and reflectional symmetries, the study constructs explicit, uniformly convergent series solutions. Through analytic continuation of integral representations, necessary and sufficient solvability criteria are established, ensuring convergence of all derivatives on compact domains. Furthermore, newly derived Green-type identities provide a systematic method to reconstruct boundary information and enforce stability constraints. This approach not only generalizes classical Laplace and biharmonic results to higher-order polyharmonic equations but also demonstrates how symmetry governs boundary data admissibility, convergence, and analytic structure, offering both theoretical insights and practical tools for elasticity, inverse problems, and mathematical physics.