Abstract
The biological accumulation of microcontaminants and associated antibiotic resistance in food poses significant threats to both human and environmental health. Therefore, it is particularly crucial to design and develop methods of efficient identification and detection. Recently, molecularly imprinted polymers (MIPs) and aptamers (Apts), as novel hybrid recognition elements, have received widespread attention from researchers. Because the dual recognition-based sensors have demonstrated enhanced performance and desirable characteristics, including high sensitivity, strong binding affinity, a low detection limit, and excellent stability under harsh environmental conditions, which are expected to be applied in food safety fields. This paper compares the characteristics of MIP and Apt, highlighting the significant advantages of molecularly imprinted polymer–aptamer (MIP-Apt) dual recognition in selectivity, sensitivity, and stability, which stems from their symmetric integration, akin to an extension of the ‘lock-and-key’ model. It then systematically discusses three synthetic strategies for MIP-Apt hybrid recognition systems and their applications for food safety detection, focusing on analyzing their detection strategies, sensing mechanisms, construction methodologies, performance evaluations, and potential application value. It also offers substantive perspectives on both the prevailing limitations and promising developmental pathways for MIP-Apt hybrid recognition-based sensing platforms.