Four-Dimensional Spaces of Complex Numbers and Unitary States of Two-Qubit Quantum Systems
Abstract
1. Introduction
2. Spaces of Four-Dimensional Numbers with Complex Components
3. Basis Spaces of Four-Dimensional Numbers
4. Matrix Spaces for Four-Dimensional Numbers
- 1.
- ;
- 2.
- for any ;
- 3.
- ;
- 4.
- ;
- 5.
- ;
- 6.
- ;
- 7.
- ;
- 8.
- , if the symplectic module of X is nonzero,
5. Commutative Gate Groups for Two-Qubit Quantum Systems
6. Unitary States of Two-Qubit Quantum Systems
7. Discussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Lemma 1
References
- Abenov, M.M.; Gabbassov, M.B.; Kuanov, T.Z.; Tuleuov, B.I. Anisotropic Four-Dimensional Spaces of Real Numbers. Symmetry 2025, 17, 795. [Google Scholar] [CrossRef]
- Sysoev, S.S. Introduction to Quantum Computing. Quantum Algorithms. Study Guide; Publishers of St. Petersburg University: St. Petersburg, Russia, 2019; p. 144. [Google Scholar]
- Hidari, J.D. Quantum Computing: An Applied Approach; DMK Press: Moscow, Russia, 2021; p. 370. [Google Scholar]
- Wie, C.-R. Two-Qubit Bloch Sphere. Physics 2020, 2, 383–396. [Google Scholar] [CrossRef]
- Filatov, S.; Auzinsh, M. Towards Two Bloch Sphere Representation of Pure Two-Qubit States and Unitaries. Entropy 2024, 26, 280. [Google Scholar] [CrossRef] [PubMed]
- Alsing, P.M.; Cafaro, C.; Felice, D.; Luongo, O. Geometric Aspects of Mixed Quantum States inside the Bloch Sphere. Quantum Rep. 2024, 6, 90–109. [Google Scholar] [CrossRef]
- Nikitin, N.V.; Toms, K.S.; Fotina, O.V. Axioms of Quantum Mechanics; Universitetskaya Kniga: Moscow, Russia, 2015; p. 126. [Google Scholar]
- Abenov, M.M. Four-Dimensional Mathematics: Methods and Applications; KazNU Publishing: Almaty, Kazakhstan, 2019; p. 175. [Google Scholar]
- Abenov, M.M.; Gabbassov, M.B. Anisotropic Four-Dimensional Spaces; Preprint: Astana, Kazakhstan, 2020; p. 65. [Google Scholar]
- Lopez-Saldivar, J.A.; Castanos, O.; Nahmad-Achar, E.; Lopez-Pena, R.; Man’ko, M.A.; Man’ko, V.I. Geometry and Entanglement of Two-Qubit States in the Quantum Probabilistic Representation. Entropy 2018, 20, 630. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Khalek, S.; Berrada, K.; Khalil, E.M.; Almalki, F. Entanglement of General Two-Qubit States in a Realistic Framework. Symmetry 2021, 13, 386. [Google Scholar] [CrossRef]
- Gnonfin, H.; Gouba, L. The Separability Problem in Two-Qubits Revisited. Symmetry 2023, 15, 2089. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Probability Distributions Describing Qubit-State Superpositions. Entropy 2023, 25, 1366. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.-B.A.; Khalil, E.M.; Yassen, M.F.; Eleuch, H. Two-Qubit Local Fisher Information Correlation beyond Entanglement in a Nonlinear Generalized Cavity with an Intrinsic Decoherence. Entropy 2021, 23, 311. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-S.; Song, H.-S. Global Entanglement for Multipartite Quantum States. Phys. Rev. A 2006, 73, 022325. [Google Scholar] [CrossRef]
- Neven, A.; Bastin, T. The Quantum Separability Problem is a Simultaneous Hollowisation Matrix Analysis Problem. J. Phys. A Math. Theor. 2018, 51, 315305. [Google Scholar] [CrossRef]
- De Zela, F. Generalizing Wave-Particle Duality: Two-Qubit Extension of the Polarization Coherence Theorem. Quantum Rep. 2020, 2, 501–513. [Google Scholar] [CrossRef]
- Wang, K.; Yu, X.-T.; Cai, X.-F.; Zhang, Z.-C. Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel. Entropy 2018, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Kalaga, J.K.; Leonski, W.; Szczesniak, R.; Perina, J., Jr. Mixedness, Coherence and Entanglement in a Family of Three-Qubit States. Entropy 2022, 24, 324. [Google Scholar] [CrossRef] [PubMed]
- Perina, J. Coherence of Light; Kluwer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Perina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Rakhimova, A.T.; Gabbassov, M.B.; Shapen, K.M. About One Space of Four-Dimensional Numbers. Vestnik KazNU. Ser. Math. Mech. Inform. 2020, 108, 81–98. [Google Scholar]
- Rakhimova, A.T.; Gabbassov, M.B.; Shapen, K.M. Functions in One Space of Four-Dimensional Numbers. Vestnik KazNU. Ser. Math. Mech. Comp. Sci. 2021, 110, 139–154. [Google Scholar] [CrossRef]
- Sutor, R.S. Dancing with Qubits: How Quantum Computing Works and How It Can Change the World; Packt Publishing: Birmingham, UK, 2019; p. 510. [Google Scholar]
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
| 1 | |||||
| i | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbassov, M.B.; Kuanov, T.Z.; Yermagambetov, T.K.; Tuleuov, B.I. Four-Dimensional Spaces of Complex Numbers and Unitary States of Two-Qubit Quantum Systems. Symmetry 2025, 17, 1789. https://doi.org/10.3390/sym17111789
Gabbassov MB, Kuanov TZ, Yermagambetov TK, Tuleuov BI. Four-Dimensional Spaces of Complex Numbers and Unitary States of Two-Qubit Quantum Systems. Symmetry. 2025; 17(11):1789. https://doi.org/10.3390/sym17111789
Chicago/Turabian StyleGabbassov, Mars B., Tolybay Z. Kuanov, Turganbay K. Yermagambetov, and Berik I. Tuleuov. 2025. "Four-Dimensional Spaces of Complex Numbers and Unitary States of Two-Qubit Quantum Systems" Symmetry 17, no. 11: 1789. https://doi.org/10.3390/sym17111789
APA StyleGabbassov, M. B., Kuanov, T. Z., Yermagambetov, T. K., & Tuleuov, B. I. (2025). Four-Dimensional Spaces of Complex Numbers and Unitary States of Two-Qubit Quantum Systems. Symmetry, 17(11), 1789. https://doi.org/10.3390/sym17111789

