Next Article in Journal
A New Three-Parameter Inverse Rayleigh Distribution: Simulation and Application to Real Data
Previous Article in Journal
Statistical Mechanics Approaches for Studying Temperature and Rate Effects in Multistable Systems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data

1
Department of Statistics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
2
Department of Business Administration, Hunan University, Changsha 410082, China
3
Department of Statistics and Operations Research, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(5), 633; https://doi.org/10.3390/sym16050633
Submission received: 6 April 2024 / Revised: 12 May 2024 / Accepted: 17 May 2024 / Published: 20 May 2024
(This article belongs to the Section Mathematics)

Abstract

:
The traditional stratification weight is widely used in survey sampling for estimation under stratified random sampling (StRS). A neutrosophic calibration approach is proposed under neutrosophic statistics for the first time with the aim of improving conventional stratification weight. This addresses the challenge of estimating the empirical cumulative distribution function (CDF) of a finite population using the neutrosophic technique. The neutrosophic technique extends traditional statistics, dealing with indeterminate, vague, and uncertain values. Thus, using additional information, we are able to obtain an effective estimate of the neutrosophic CDF. The suggested estimator yields an interval range in which the population empirical CDF is likely to exist rather than a single numerical value. The proposed family of neutrosophic estimators will be defined under suitable calibration constraints. A simulation study is also computed in order to assess the effectiveness of the suggested and adapted neutrosophic estimators using real-life symmetric and asymmetric datasets.

1. Introduction

Datasets can consist of numerical or categorical variables in classical statistics. Numerous writers have developed a variety of estimators for calculating the countable population mean under classical statistics when additional data are present. In survey studies, supplementary information on a finite population is typically obtainable from census databases or from previous experience. Research on survey sampling has illustrated a vast range of techniques for employing supplementary data in order to improve the sampling design and also obtain progressively more accurate estimates [1]. It is noteworthy that the ratio, regression, and product procedures are appealing when auxiliary information is presented [2]. Therefore, many scholars have combined their efforts to increase the efficiency of these methods in the hopes of developing increasingly skilled estimators of measures of central tendency, measures of dispersion, and CDF, etc.
Neutrosophic statistics are used when there is some degree of indeterminacy in the data. When the data contain neutrosophy, this statistical methodology, which goes beyond the conventional approach, is used. According to [3], neutrosophic statistics are especially helpful when data within the population or sample are unclear, indeterminate, or indefinite.
Ref. [3] referred to a variety of neutrosophic values, including quantitative data that suggest that a given value might lie inside the interval range L ,   U even while the precise value is unknown. The neutrosophic observation is composed of Z N = Z L + Z U I N , where I N I L , I U . As a result, we developed a notation scheme for neutrosophic data representation that uses the interval type Z N Z L , Z U , where L stands for the lower value and U for the upper value.
In the literature, the researchers have estimated the neutrosophic statistics and utilized information on one or more supplementary variables. In simple random sampling (SRS), [4] created neutrosophic ratio-type estimation methods. Ref. [5] developed generalized ratio and product-type estimation methods under neutrosophic ranked set sampling (RSS). Ref. [6] created a two-phase process loss index utilizing the neutrosophic statistical interval technique. Refs. [7,8] developed generalized classes of neutrosophic ratio and exponential estimation methods. Ref. [9] has suggested a generalized neutrosophic exponential robust ratio-type estimation method. Using neutrosophic robust regression, [10] introduced a new family of Hartley–Ross-type estimation techniques for estimating the population parameter. Ref. [11] suggested a neutrosophic predictive estimation method of countable population mean utilizing kernel regression.
Suppose we are interested in a population’s proportion of unclear or indeterminate y i N values. When utilizing sample data from a survey, users often need to estimate the population neutrosophic CDF. Alternatively, they may need to estimate the proportion of population units whose elements are not more than or equal to a specific number t y N . For instance, we could be curious to know how many filtration facilities have lower levels of arsenic in their water than zero or how much agricultural area has fewer consequences of pesticide poisoning than zero. Such a proportion is a certain value of the population’s neutrosophic CDF.
F Y N t y N = 1 M i = 1 M I y i N t y N ,
where I y i N t y N = 1 for y i N t y N and I y i N t y N = 0 , for y i N > t y N . Frequently, when conducting survey sampling, the research variable can only be measured for the units in a sample; thus, the traditional technique of the CDF is based only on the chosen sampling methodology and the sampling ratio of the population. Estimating F Y N t y N can be undertaken as follows:
F ^ y N t y N = 1 m i = 1 m I y i N t y N .
Several authors have computed the CDF utilizing information on sole or various supplementary symmetric and asymmetric data. Firstly, [12] created a technique for evaluating the countable population CDF. Ref. [13] developed both traditional and predictive techniques for estimating the CDF using survey information. Ref. [14] use the model-calibrated pseudo-empirical probability methodology to propose an estimation technique for the population CDF. Ref. [15] examined the problem of CDF and quantiles estimators for a population utilizing extra information. Ref. [16] develop a new class of estimation methods in order to estimate the CDF using extra information. Ref. [17] proposed two new estimation methods that make use of the mean and ranks of the supplemental data to estimate the limited population CDF under SRS and StRS. Ref. [18] created a novel type of exponential estimation technique for evaluating the population CDF with additional data in the form of the rank and average of the additional data under StRS. Ref. [19] also created a novel class of estimation techniques for the population CDF utilizing dual additional information under StRS.
The calibration approach has been a priority as a field of study for survey sampling in recent years. The calibration approach modifies the initial design weights to improve the precision of estimation by utilizing extra data. The calibration approach uses modified weights to minimize the difference between modified and original weights while performing a set of conditions with supplementary variables. See the pioneers in this discipline for more details [20]. Ref. [21] created a calibrated technique for mean estimation. Ref. [22] presented a calibration technique for computing the population parameter in StRS with a variety of calibrated conditions constructed with additional data. Ref. [23] suggested calibrated mean estimation methods based on a stratified RSS method along with calibration variance of the estimator. Ref. [24] creates a calibration technique for the population mean of the research information utilizing novel calibrated weights that use two additional sources of information under StRS. Ref. [25] extended the study by utilizing the properties of linear moments. Refs. [26,27,28] proposed a novel robust calibrated technique for computing the population parameter under StRS. Ref. [29] proposed a calibration CDF estimator using robust measures under StRS. It is important to note that [29] uses i = 0 m . mistakenly, instead of i = 1 m . in F ^ y N t y N and F Y N t y N . However, this is merely a typing error. The calibration technique proposed by Tracy et al. [21] and utilized by many researchers, as discussed above, has not yet to receive much attention in terms of neutrosophic CDF estimation.

Research Gap of Neutrosophic Calibrated Estimation of CDF

All earlier studies on survey sampling have employed only certain, clear, and unambiguous symmetric and asymmetric data. These methods yield a single, clean result, which can occasionally be problematic because it has a probability of being overstated, inaccurate, or overlooked. However, under certain conditions, data are often of a neutrosophic type; this is the moment at which traditional classical methods are ineffective and a neutrosophic approach is used. Neutrosophic data include uncertain, partially unknown, inconsistent, incomplete, and other indeterminate data. Consequently, interval-valued neutrosophic numbers (INN) may be observed in data from populations or experiments. It had been thought that the actual data, which were unknown at the time of collection, belonged to that interval. In reality, there are more unclear facts available than certain information. As a result, more neutrosophic methods are required.
In life, various research data are available, and the collection of data is very costly, particularly when the data are unclear. As a result, using the outdated traditional methods to calculate the population’s actual value for ambiguous data will be costly and risky. When the research and additional information are of the neutrosophic type, there is no technique accessible that is able to resolve the issue using the calibration approach. We now switch to a new approach, known as neutrosophic calibrated estimation of CDF, which offers an entirely new viewpoint on survey techniques. Therefore, this paper proposes a neutrosophic calibrated estimator of CDF.
However, to our knowledge, no work has been undertaken so far on the type of calibrated estimators of neutrosophic CDF under StRS considered by [21]. Thus, we are motivated to suggest the neutrosophic calibration estimators of CDF by adapting the idea of [10]. Because all the authors, under conventional statistics, rely on certain, single-valued numbers to estimate the empirical CDF when additional variable is accessible. These forms of estimations offer biased outcomes. Finding the best estimate for the uncertain empirical CDF value with an optimal (lowest) MSE is our main objective.
The article’s remaining sections are arranged as follows: the adapted neutrosophic CDF calibration estimators are introduced in Section 2. The suggested estimators are given in Section 3. A simulation study is conducted in Section 4, and, in Section 5, the article comes to an end.

2. Adapted Neutrosophic Calibration Estimators of CDF Using Supplementary Information

Neutrosophic calibration-based estimate techniques involve neutrosophic calibrated or adjusted weights that are designed with the use of auxiliary data and are designed to minimize a specific measure of distance from the original stratum weights. Neutrosophic statistics are used to analyze datasets, or neutrosophic data, that have some uncertainty interval in them. By using this method, researchers may deal with inconsistent or incomplete data and draw more accurate conclusions from the sampled data. Assume that Y N Y L , Y U and X N X L , X U are the research and supplementary neutrosophic variables related with Ω = 1,2 , , N , which is a countable population of size N that is divided into ζ strata, with the ζ t h stratum incorporating N ζ elements, ζ = 1,2 , , ω , and ζ = 1 ω N ζ = N . The weight of each stratum is defined as W ζ = N ζ N . The traditional neutrosophic calibration estimator of CDF, under StRS is as follows:
H A N = ζ = 1 ω W ζ F ^ ζ y N ( t y N ) ,
where F ^ ζ y N t y N = 1 m i = 1 m Ι y i N t y N is the sample neutrosophic CDF estimation for Y N in the ζ t h stratum. We consider the following terms, where y i N y i L , y i U and x i N x i L , x i U are the i t h sample observation of our neutrosophic study variable Y N and supplementary variable X N , respectively. t y N t y L , t y U and t x N t x L , t x U are the sample specific value neutrosophic of our study variable Y N and additional variable X N , respectively. F ^ ζ y N F ^ ζ y L , F ^ ζ y U and F ζ y N F ζ y L , F ζ y U are the ζ t h stratum sample and population neutrosophic CDF of the study variable Y N , respectively. F ^ ζ x N F ^ ζ x L , F ^ ζ x U and F ζ x N F ζ x L , F ζ x U are the ζ t h stratum sample and population neutrosophic CDF, respectively, of the additional variable X N . c ζ x N c ζ x L , c ζ x U and C ζ x N C ζ x L , C ζ x U are the ζ t h stratum sample and population neutrosophic coefficient of variation (CV), respectively, of the additional variable X N .   ψ ζ N ψ ζ L , ψ ζ U are wisely selected neutrosophic weights, determining the estimator’s shape. The traditional neutrosophic calibration estimator of CDF under StRS is H A N H A L , H A U .

Adapted H A i N 1 Family of Neutrosophic CDF Estimators

Taking inspiration from [25], the adapted H A i N 1 family of estimators is as follows in Equation (1):
H A i N 1 = ζ = 1 ω Ω ζ A 1 N F ^ ζ y N t y N ,
where Ω ζ A 1 N Ω ζ A 1 L ,   Ω ζ A 1 U is the neutrosophic calibrated weight. Using the chi-square distance function we obtain the following:
ζ = 1 ω Ω ζ A 1 N W ζ 2 ψ ζ N W ζ ,
and satisfy the calibrated constraints, as follows:
ζ = 1 ω Ω ζ A 1 N F ^ ζ x N t x N = ζ = 1 ω W ζ F ζ x N t x N   ,
ζ = 1 ω Ω ζ A 1 N c ζ x N = ζ = 1 ω W ζ C ζ x N   ,
ζ = 1 ω Ω ζ A 1 N = ϑ = 1 ω W ζ   .
Hence, the function of Lagrange using Equations (2)–(5) with multipliers λ A 1 N λ A 1 L , λ A 1 U , λ A 2 N λ A 2 L , λ A 2 U and λ A 3 N λ A 3 L , λ A 3 U , denoted by Ω ζ A 1 N , W ζ , is given by
Ω ζ A 1 N , W ζ = ζ = 1 ω Ω ζ A 1 N W ζ 2 ψ ζ N W ζ 2 λ A 1 N ζ = 1 ω Ω ζ A 1 N F ^ ζ x N t x N ζ = 1 ω W ζ F ζ x N t x N 2 λ A 2 N ζ = 1 ω Ω ζ A 1 N c ζ x N ζ = 1 ω W ζ C ζ x N 2 λ A 3 N ζ = 1 ω Ω ζ A 1 N ζ = 1 ω W ζ   .
setting Equation (6) ( Ω ζ A 1 N , W ζ ) Ω ζ A 1 N = 0 , we obtain the following:
Ω ζ A 1 N = W ζ + W ζ ψ ζ N λ A 1 N F ^ ζ x N t x N + λ A 2 N c ζ x N + λ A 3 N   .
Substituting Equation (7) in Equations (3)–(5), we obtain the following:
ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ λ A 1 N λ A 2 N λ A 3 N = ζ = 1 ω W ζ F ζ x N t x N F ^ ζ x N t x N ζ = 1 ω W ζ C ζ x N c ζ x N 0
When we solve the system of equations, the expressions of lambdas are as follows:
λ A 1 N = A 1 N B N ,     λ A 2 N = A 2 N B N ,     λ A 3 N = A 3 N B N   ,
A 1 N = ζ = 1 ω W ζ F ζ x N t x N F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ c ζ x N 2 + ζ = 1 ω W ζ C ζ x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N   ,
A 2 N = ζ = 1 ω W ζ C ζ x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N 2 ζ = 1 ω W ζ F ζ x N t x N F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N   ,
A 3 N = ζ = 1 ω W ζ F ζ x N t x N F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N 2 + ζ = 1 ω W ζ C ζ x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 ( t x N ) ζ = 1 ω ψ ζ N W ζ c ζ x N   ,
B N = ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N 2 ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N 2 ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N + 2 ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N   .
Substituting these values in Equations (7) and (1), we obtain the neutrosophic calibrated estimators of CDF, as given below:
H A i N 1 = H A N + λ A 1 N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N F ^ ζ y N t y N + λ A 2 N ζ = 1 ω ψ ζ N W ζ F ^ ζ y N t y N c ζ x N + λ A 3 N ζ = 1 ω ψ ζ N W ζ F ^ ζ y N t y N ,
H A i N 1 = ζ = 1 ω W ζ F ^ ζ y N t y N + β ^ A 1 N ζ = 1 ω W ζ F ζ x N t x N F ^ ζ x N t x N + β ^ A 2 N ζ = 1 ω W ζ C ζ x N c ζ x N   .
where neutrosophic betas β ^ A 1 N β ^ A 1 L , β ^ A 1 U and β ^ A 2 N β ^ A 2 L , β ^ A 2 U are given by
β ^ A 1 N = A 4 N B N     ,   β ^ A 2 N = A 5 N B N   ,
where
A 4 N = ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N F ^ ζ y N t y N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ c ζ x N 2 ζ = 1 ω ψ ζ N W ζ F ^ ζ y N t y N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N + ζ = 1 ω ψ ζ N W ζ F ^ ζ y N t y N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N 2   ,
A 5 N = ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N F ^ ζ y N t y N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ c ζ x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N + ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N 2 + ζ = 1 ω ψ ζ N W ζ F ^ ζ y N t y N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N c ζ x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ζ = 1 ω ψ ζ N W ζ c ζ x N   .
The family members of H A i N 1 are provided in Table 1.
The neutrosophic estimators are developed based on different values of ψ ζ N , such as ψ ζ N = 1 , 1 x ¯ ζ N , 1 s ζ x N , 1 s ζ x N 2 , 1 c ζ x N , where x ¯ ζ N x ¯ ζ L , x ¯ ζ U , s ζ x N s ζ x L , s ζ x U , s ζ x N 2 s ζ x L 2 , s ζ x U 2 and c ζ x N c ζ x L , c ζ x U , are the sample neutrosophic mean, sample neutrosophic standard deviation, sample neutrosophic variance, sample neutrosophic CV, of the supplementary information of X N in the ζ t h stratum, respectively.

3. Proposed Class of Neutrosophic CDF Estimators

Proposed H P i N 1 Family of Neutrosophic CDF Estimators

Taking motivation from adapted H A i N 1 estimators, we proposed H P i N 1 the following class of neutrosophic CDF estimators in Equation (8)
H P i N 1 = ζ = 1 ω Ω ζ P 1 N F ^ ζ y N t y N   ,
where Ω ζ P 1 N Ω ζ P 1 L , Ω ζ P 1 U is the neutrosophic calibrated weight. Using the chi-square distance function we obtain the following:
ζ = 1 ω Ω ζ P 1 N W ζ 2 ψ ζ N W ζ   ,
and satisfy the calibrated constraint, as follows:
ζ = 1 ω Ω ζ P 1 N F ^ ζ x N t x N = ζ = 1 ω W ζ F ζ x N t x N   ,
where F ^ ζ x N t x N ,   F ζ x N t x N are the ζ t h stratum sample and population neutrosophic CDF, respectively, of the auxiliary variable X N and, ψ ζ N are wisely selected neutrosophic weights, determining the estimator’s shape. Different values of ψ ζ N are available in Table 2. Hence, the function of Lagrange using Equations (9) and (10), with multipliers λ P 1 N λ P 1 L , λ P 1 U and denoted by Ω ζ P 1 N , W ζ , is given as follows:
Ω ζ P 1 N , W ζ = ζ = 1 ω Ω ζ P 1 N W ζ 2 ψ ζ N W ζ 2 λ P 1 N ζ = 1 ω Ω ζ P 1 N F ^ ζ x N t x N ζ = 1 ω W ζ F ζ x N t x N   .
Setting Equation (11),   ( Ω ζ P 1 N , W ζ ) Ω ζ P 1 N = 0 , we obtain the neutrosophic calibrated weight as follows:
Ω ζ P 1 N = W ζ + λ P 1 N F ^ ζ x N t x N ψ ζ N W ζ   .
Substituting Equation (12) in Equation (10), and solving for neutrosophic lambda, we obtain the following:
λ P 1 N = ζ = 1 ω W ζ F ζ x N t x N ζ = 1 ω W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N   .
Substituting Equation (13) in Equation (12), we obtain the neutrosophic calibration weight, as follows:
Ω ζ P 1 N = W ζ + ζ = 1 ω W ζ F ζ x N t x N ζ = 1 ω W ζ F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ψ ζ N W ζ F ^ ζ x N t x N   .
Substituting Equation (14) in Equation (8), we obtain the neutrosophic calibrated estimator of CDF, as given below:
H P i N 1 = ζ = 1 ω W ζ F ^ ζ y N t y N + ζ = 1 ω W ζ F ζ x N t x N F ^ ζ x N t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N 2 t x N ζ = 1 ω ψ ζ N W ζ F ^ ζ x N t x N F ^ ζ y N t y N   .
The family members of H P i N 1 are provided in Table 2.

4. Simulation Study

To the best of the authors’ knowledge, no research has been undertaken on the neutrosophic calibration estimation of CDF thus far. This is because, the idea of evaluating the effectiveness of the suggested neutrosophic calibration estimation of CDF using supplementary information is still a novel idea. Thus, we examined the mean square error (MSE) of the developed family of neutrosophic estimators given in Table 2 with the adapted family of neutrosophic estimators given in Table 1 in order to evaluate the most effective estimators by identifying the neutrosophic estimators. We perform the simulation study steps for MSE and percentage relative efficiency (PRE) estimates by following [25], as stated below:
  • Step 1: Using simple random sampling without replacement (SRSWOR) from stratum ζ , choose a random sample of size n ζ .
  • Step 2: Find the CDF estimate value, for instance τ Q = H A i N 1 ,   H P i N 1
  • Step 3: Repeat the previous steps R = 5000 times to achieve τ Q 1 ,   τ Q 2 ,   ,   τ Q R .
  • Step 4: Evaluate the MSE, as follows:
    M S E τ Q N = 1 R i = 1 R τ Q F Y N ( t y N ) 2   .
  • Step 5: Compute the PRE, as follows:
    P R E τ Q N = M S E H A i N 1 M S E H P i N 1 × 100   .
The MSEs and PREs are provided in Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25 and Table 26 based on three quantile points i.e., ( t = 0.25 ,   0.50 ,   0.75 ) .

4.1. Weather Data Sets

We performed a numerical study utilizing interval/ambiguous values with indeterminate values from the weather datasets in Pakistani cities like Karachi, Lahore, Multan, and Peshawar. The data are composed of uncertain neutrosophic values that fall into a specific range. One reason to consider weather datasets contain neutrosophic data is that their values diverge in an interval form, with the recorded weather data for the day potentially being the highest, lowest, or any value in between. For the purposes of this article, we have considered four populations—temperature, dew point, humidity, and pressure datasets. The symmetric and asymmetric data are taken from a website (https://www.wunderground.com, accessed on 20 June 2023) that was open to the public.

4.1.1. Temperature Data (Population 1)

We have considered the temperature data of four cities in Pakistan—stratum I: Karachi temperature data with 365 days; stratum II: Lahore temperature data with 365 days; stratum III: Peshawar temperature data with 365 days; and stratum-IV: Multan temperature data with 365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is represented by the number of days. We select various neutrosophic samples of sizes 5%, 10% and 15%, as given below:
N 1 = 365 ,     N 2 = 365 ,     N 3 = 365 ,     N 4 = 365
For 5% sample size:
n 1 = 18 ,   n 2 = 18 ,   n 3 = 18 ,   n 4 = 18
For 10% sample size:
n 1 = 37 ,   n 2 = 37 ,   n 3 = 37 ,   n 4 = 37
For 15% sample size:
n 1 = 55 ,   n 2 = 55 ,   n 3 = 55 ,   n 4 = 55
For population 1, we take the following factors into consideration:
  • x N = Neutrosophic temperature 1 January 2021 to 31 December 2021
  • y N = Neutrosophic temperature 1 January 2022 to 31 December 2022

4.1.2. Dew Point Temperature Data (Population 2)

We have considered the dew point temperature data of four (cities) in Pakistan—stratum I: Karachi dew point temperature data with 365 days; stratum II: Lahore dew point temperature data with 365 days; stratum III: Peshawar dew point temperature data with 365 days; and stratum IV: Multan dew point temperature data with 365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is represented by the number of days. We select various neutrosophic samples of sizes 5%, 10% and 15%, as given below:
For 5% sample size:
n 1 = 18 ,   n 2 = 18 ,   n 3 = 18 ,   n 4 = 18
For 10% sample size:
n 1 = 37 ,   n 2 = 37 ,   n 3 = 37 ,   n 4 = 37
For 15% sample size:
n 1 = 55 ,   n 2 = 55 ,   n 3 = 55 ,   n 4 = 55
For population 2, we take the following factors into consideration:
  • x N = Neutrosophic dew-point 1 January 2021 to 31 December 2021
  • y N = Neutrosophic dew-point 1 January 2022 to 31 December 2022

4.1.3. Humidity Data (Population 3)

We have considered the humidity data of four (cities) in Pakistan—stratum I: Karachi humidity data with 365 days; stratum-II: Lahore humidity data with 365 days; stratum-III: Peshawar humidity data with 365 days; and stratum-IV: Multan humidity data with 365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is represented by the number of days. We select various neutrosophic samples of sizes 5%, 10% and 15%, as given below:
N 1 = 365 ,     N 2 = 365 ,     N 3 = 365 ,     N 4 = 365
For 5% sample size:
n 1 = 18 ,   n 2 = 18 ,   n 3 = 18 ,   n 4 = 18
For 10% sample size:
n 1 = 37 ,   n 2 = 37 ,   n 3 = 37 ,   n 4 = 37
For 15% sample size:
n 1 = 55 ,   n 2 = 55 ,   n 3 = 55 ,   n 4 = 55
For population 3, we take the following factors into consideration:
  • x N = Neutrosophic humidity 1 January 2021 to 31 December 2021
  • y N = Neutrosophic humidity 1 January 2022 to 31 December 2022

4.1.4. Pressure Data (Population 4)

We have considered the pressure temperature data of four (cities) in Pakistan—stratum I: Karachi pressure data with 365 days; stratum II: Lahore pressure data with 365 days; stratum III: Peshawar pressure data with 365 days; and stratum IV: Multan pressure data with 365 days—from 1 January 2021, to 31 December 2022. Each stratum’s size is represented by the number of days. We select various neutrosophic samples of sizes 5%, 10% and 15% as given below:
N 1 = 365 ,     N 2 = 365 ,     N 3 = 365 ,     N 4 = 365
For 5% sample size:
n 1 = 18 ,   n 2 = 18 ,   n 3 = 18 ,   n 4 = 18
For 10% sample size:
n 1 = 37 ,   n 2 = 37 ,   n 3 = 37 ,   n 4 = 37
For 15% sample size:
n 1 = 55 ,   n 2 = 55 ,   n 3 = 55 ,   n 4 = 55
For population 4, we take the following factors into consideration:
  • x N = Neutrosophic pressure 1 January 2021 to 31 December 2021
  • y N = Neutrosophic pressure 1 January 2022 to 31 December 2022

4.2. Interpretations and Figures

4.2.1. When Sample Size Is 5%

The results for 5% sample size are mentioned in Table 3, Table 4, Table 5 and Table 6 and indicate the following:
For population 1, the lower and upper values of adapted neutrosophic estimator H A i L 1 for i = 3 has a minimum value of MSE for H A 3 L 1 = 0.01233337 at quantile ( t = 0.75 ), while H A i U 1 for i = 3 has a minimum value of MSE for H A 3 U 1 = 0.01194092 at quantile ( t = 0.75 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 3 has a minimum value of MSE for H P 3 L 1 = 0.00043422 at quantile ( t = 0.25 ), while H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00106791 at quantile ( t = 0.25 ).
For population 2, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 4 has a minimum value of MSE for H A 4 L 1 = 0.00993667 at quantile ( t = 0.75 ) and H A i U 1 for i = 3 has a minimum value of MSE for H A 3 U 1 = 0.01630728 at quantile ( t = 0.75 ). The lower and upper values of proposed neutrosophic estimator H P i L 1 for i = 4 has a minimum value of MSE for H P 4 L 1 = 0.00055121 at quantile ( t = 0.25 ) and H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00083560 at quantile ( t = 0.25 ).
For population 3, the lower and upper values of adapted neutrosophic estimator H A i L 1 for i = 3 have a minimum value of MSE for H A 3 L 1 = 0.01523818 at quantile ( t = 0.75 ) and H A i U 1 for i = 3 has a minimum value of MSE for H A 3 U 1 = 0.02339384 at quantile ( t = 0.50 ). The lower and upper values of proposed neutrosophic estimator H P i L 1 for i = 4 have a minimum value of MSE for H P 4 L 1 = 0.00025804 at quantile ( t = 0.25 ) and H P i U 1 for i = 4 has minimum value of MSE for H P 4 U 1 = 0.00092036 at quantile ( t = 0.25 ).
For population 4, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 4 have a minimum value of MSE for H A 4 L 1 = 1354.67600000 at quantile ( t = 0.75 ) and H A i U 1 for i = 1 has a minimum value of MSE for H A 1 U 1 = 34.80282000 at quantile ( t = 0.50 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 2 have a minimum value of MSE for H P 2 L 1 = 0.00225184 at quantile ( t = 0.50 ) and H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00253049 at quantile ( t = 0.25 ).
The same pattern of the proposed neutrosophic estimators PRE’s for a 5% sample size can be seen in Table 7, Table 8, Table 9 and Table 10 for all i = 1 , 2 , 3 , 4 , 5 .
The visual representation of MSE’s results based on a 5% sample size is provided in Figure 1, Figure 2, Figure 3 and Figure 4.

4.2.2. When Sample Size Is 10%

The results for 10% sample size are mentioned in Table 11, Table 12, Table 13 and Table 14 and indicate that:
For population 1, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 3 have a minimum value of MSE for H A 3 L 1 = 0.00445610 at quantile ( t = 0.75 ) and H A i U 1 for i = 3 has a minimum value of MSE for H A 3 U 1 = 0.00388231 at quantile ( t = 0.75 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 4 has a minimum value of MSE for H P 4 L 1 = 0.00029552 at quantile ( t = 0.25 ) and H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00059382 at quantile ( t = 0.75 ).
For population 2, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 4 have a minimum value of MSE for H A 4 L 1 = 0.00326247 at quantile ( t = 0.75 ) and H A i U 1 for i = 4 has a minimum value of MSE for H A 4 U 1 = 0.00699018 at quantile ( t = 0.75 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 4 has a minimum value of MSE for H P 4 L 1 = 0.00034189 at quantile ( t = 0.25 ) and H P i U 1 for i = 5 has a minimum value of MSE for H P 5 U 1 = 0.00065199 at quantile ( t = 0.50 ).
For population 3, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 2 have a minimum value of MSE for H A 2 L 1 = 0.00468516 at quantile ( t = 0.75 ) and H A i U 1 for i = 3 has a minimum value of MSE for H A 3 U 1 = 0.00701938 at quantile ( t = 0.50 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 4 have a minimum value of MSE for H P 4 L 1 = 0.00014952 at quantile ( t = 0.25 ) and H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00078854 at quantile ( t = 0.25 ).
For population 4, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 1 have a minimum value of MSE for H A 1 L 1 = 0.10202770 at quantile ( t = 0.75 ) and H A i U 1 for i = 1 has a minimum value of MSE for H A 1 U 1 = 17.38877000 at quantile ( t = 0.25 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 2 have a minimum value of MSE for H P 2 L 1 = 0.00146069 at quantile ( t = 0.50 ) and H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00185844 at quantile ( t = 0.25 ).
The same pattern of the proposed neutrosophic estimators PRE’s for a 10% sample size can be seen in Table 15, Table 16, Table 17 and Table 18 for all i = 1 , 2 , 3 , 4 , 5 .
A visual representation of MSE’s results based on a 10% sample size is provided in Figure 5, Figure 6, Figure 7 and Figure 8.

4.2.3. When Sample Size Is 15%

The results for 15% sample size are mentioned in Table 19, Table 20, Table 21 and Table 22 and indicate that:
For population 1, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 2 have a minimum value of MSE for H A 2 L 1 = 0.00405645 at quantile ( t = 0.75 ) and H A i U 1 for i = 4 has a minimum value of MSE for H A 4 U 1 = 0.00309671 at quantile ( t = 0.75 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 4 have a minimum value of MSE for H P 4 L 1 = 0.00024327 at quantile ( t = 0.25 ) and H P i U 1 for i = 1 has a minimum value of MSE for H P 1 U 1 = 0.00050901 at quantile ( t = 0.25 ).
For population 2, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 5 have a minimum value of MSE for H A 5 L 1 = 0.00171219 at quantile ( t = 0.75 ) and H A i U 1 for i = 4 has a minimum value of MSE for H A 4 U 1 = 0.00430275 at quantile ( t = 0.50 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 1 have a minimum value of MSE for H P 1 L 1 = 0.00029563 at quantile ( t = 0.75 ) and H P i U 1 for i = 5 has a minimum value of MSE for H P 5 U 1 = 0.00051865 at quantile ( t = 0.50 ).
For population 3, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 2 have a minimum value of MSE for H A 2 L 1 = 0.00248699 at quantile ( t = 0.75 ) and H A i U 1 for i = 2 has a minimum value of MSE for H A 2 U 1 = 0.00702091 at quantile ( t = 0.50 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 4 have a minimum value of MSE for H P 4 L 1 = 0.00013009 at quantile ( t = 0.25 ) and H P i U 1 for i = 5 has a minimum value of MSE for H P 5 U 1 = 0.00076808 at quantile ( t = 0.25 ).
For population 4, the lower and upper values of the adapted neutrosophic estimator H A i L 1 for i = 4 have a minimum value of MSE for H A 4 L 1 = 0.02110268 at quantile ( t = 0.50 ) and H A i U 1 for i = 3 has a minimum value of MSE for H A 3 U 1 = 13.02999000 at quantile ( t = 0.50 ). The lower and upper values of the proposed neutrosophic estimator H P i L 1 for i = 2 have a minimum value of MSE for H P 2 L 1 = 0.00112126 at quantile ( t = 0.50 ) and H P i U 1 for i = 4 has a minimum value of MSE for H P 4 U 1 = 0.00147402 at quantile ( t = 0.25 ).
The same pattern of the proposed neutrosophic estimators PRE’s for a 15% sample size can be seen in Table 23, Table 24, Table 25 and Table 26 for all i = 1 , 2 , 3 , 4 , 5 .
A visual representation of MSE’s results based on a 15% sample size is provided in Figure 9, Figure 10, Figure 11 and Figure 12.
After analyzing the performance of all the neutrosophic estimators, it can be concluded that the proposed neutrosophic class outperforms the adapted neutrosophic estimators in all four symmetric and asymmetric populations, with the lowest MSEs and the highest PREs values.

5. Conclusions

This work aims to adapt the neutrosophic calibration estimation of CDF derived by StRS when supplementary information and neutrosophic studies are present. The distinctive feature of neutrosophic outcomes is the presence of values that are ambiguous, unclear, or uncertain. The traditional CDF approach gives single-valued outcomes, which are often not accurate, mostly in neutrosophic value. In this paper, a novel calibration estimation of CDF using a neutrosophic approach is suggested under StRS. We performed simulation research utilizing real-world symmetric and asymmetric datasets to evaluate the effectiveness of the proposed neutrosophic calibrated estimators with the adapted neutrosophic calibrated estimators. For the neutrosophic calibration estimators, we calculate the PREs and MSEs. The outcomes show that the recommended estimators outperform the adapted estimators in terms of effectiveness. In future research, the study can be built to incorporate other sampling methodologies, and novel ideas can be contrasted to past techniques. In future studies, the work can be extended under ranked set sampling, as suggested by [30].

Author Contributions

Conceptualization, U.S.; data curation, H.A.; formal analysis, M.M.; funding acquisition, W.E.; investigation, M.M.; methodology, H.A., U.S., W.E. and M.H.; software, U.S. and N.A.; validation, M.M.; writing—original draft, H.A., U.S., W.E., M.H. and N.A.; writing—review and editing, H.A., U.S., W.E., M.H., N.A. and M.M. All authors have read and agreed to the published version of the manuscript.

Funding

The study was funded by Researchers Supporting Project number (RSPD2024R749), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

All the relevant data information is available within the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bhushan, S.; Kumar, A. Predictive estimation approach using difference and ratio type estimators in ranked set sampling. J. Comput. Appl. Math. 2022, 410, 114214. [Google Scholar] [CrossRef]
  2. Bulut, H.; Zaman, T. An improved class of robust ratio estimators by using the minimum covariance determinant estimation. Commun. Stat.-Simul. Comput. 2022, 51, 2457–2463. [Google Scholar] [CrossRef]
  3. Smarandache, F. Introduction to Neutrosophic Statistics; Sitech and Education Publisher: Craiova, Romania; Romania-Educational Publisher: Columbus, OH, USA, 2014; p. 123. [Google Scholar]
  4. Tahir, Z.; Khan, H.; Aslam, M.; Shabbir, J.; Mahmood, Y.; Smarandache, F. Neutrosophic ratio-type estimators for estimating the population mean. Complex Intell. Syst. 2021, 7, 2991–3001. [Google Scholar] [CrossRef]
  5. Vishwakarma, G.K.; Singh, A. Generalized estimator for computation of population mean under neutrosophic ranked set technique: An application to solar energy data. Comput. Appl. Math. 2022, 41, 144. [Google Scholar] [CrossRef]
  6. Aslam, M.; Rao, G.S.; Khan, N.; Ahmad, L. Two-stage sampling plan using process loss index under neutrosophic statistics. Commun. Stat. Simul. Comput. 2022, 51, 2831–2841. [Google Scholar] [CrossRef]
  7. Kumar, S.; Kour, S.P.; Choudhary, M.; Sharma, V. Determination of Population Mean Using Neutrosophic, Exponential-Type Estimator. Lobachevskii J. Math. 2022, 43, 3359–3367. [Google Scholar] [CrossRef]
  8. Yadav, S.K.; Smarandache, F. Generalized Neutrosophic Sampling Strategy for Elevated estimation of Population Mean. Neutrosophic Sets Syst. 2023, 53, 14. [Google Scholar] [CrossRef]
  9. Raghav, Y.S. Neutrosophic generalized exponential robust ratio type estimators. Int. J. Anal. Appl. 2023, 21, 41. [Google Scholar] [CrossRef]
  10. Alomair, A.M.; Shahzad, U. Neutrosophic Mean Estimation of Sensitive and Non-Sensitive Variables with Robust Hartley–Ross-Type Estimators. Axioms 2023, 12, 578. [Google Scholar] [CrossRef]
  11. Anwar, M.B.; Hanif, M.; Shahzad, U.; Emam, W.; Anas, M.M.; Ali, N.; Shahzadi, S. Incorporating the neutrosophic framework into kernel regression for predictive mean estimation. Heliyon 2024, 10, e25471. [Google Scholar] [CrossRef] [PubMed]
  12. Chambers, R.L.; Dunstan, R. Estimating distribution functions from survey data. Biometrika 1986, 73, 597–604. [Google Scholar] [CrossRef]
  13. Kuk, A.Y. A kernel method for estimating finite population distribution functions using auxiliary information. Biometrika 1993, 80, 385–392. [Google Scholar] [CrossRef]
  14. Chen, J.; Wu, C. Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method. Stat. Sin. 2002, 12, 1223–1239. [Google Scholar]
  15. Singh, H.P.; Singh, S.; Kozak, M. A family of estimators of finite-population distribution function using auxiliary information. Acta Appl. Math. 2008, 104, 115–130. [Google Scholar] [CrossRef]
  16. Yaqub, M.; Shabbir, J. Estimation of population distribution function in the presence of non-response. Hacet. J. Math. Stat. 2018, 47, 471–511. [Google Scholar] [CrossRef]
  17. Hussain, S.; Ahmad, S.; Saleem, M.; Akhtar, S. Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling. PLoS ONE 2020, 15, e0239098. [Google Scholar] [CrossRef] [PubMed]
  18. Ahmad, S.; Aamir, M.; Hussain, S.; Shabbir, J.; Zahid, E.; Subkrajang, K.; Jirawattanapanit, A. A new generalized class of exponential factor-type estimators for population distribution function using two auxiliary variables. Math. Probl. Eng. 2022, 2022, 2545517. [Google Scholar] [CrossRef]
  19. Ahmad, S.; Hussain, S.; Zahid, E.; Iftikhar, A.; Hussain, S.; Shabbir, J.; Aamir, M. A Simulation Study: Population Distribution Function Estimation Using Dual Auxiliary Information under Stratified Sampling Scheme. Math. Probl. Eng. 2022, 2022, 3263022. [Google Scholar] [CrossRef]
  20. Deville, J.C.; Särndal, C.E. Calibration estimators in survey sampling. J. Am. Stat. Assoc. 1992, 87, 376–382. [Google Scholar] [CrossRef]
  21. Tracy, D.S.; Singh, S.; Arnab, R. Note on calibration in stratified and double sampling. Surv. Methodol. 2003, 29, 99–104. [Google Scholar]
  22. Koyuncu, N.; Kadilar, C. Calibration Weighting in Stratified Random Sampling. Commun. Stat. Simul. Comput. 2016, 45, 2267–2275. [Google Scholar] [CrossRef]
  23. Koyuncu, N. Calibration estimator of population mean under stratified ranked set sampling design. Commun. Stat. Theory Methods 2018, 47, 5845–5853. [Google Scholar] [CrossRef]
  24. Ozgul, N. New Calibration Estimator Based on Two Auxiliary Variables in Stratified Sampling. Commun. Stat. Theory Methods 2019, 48, 1481–1492. [Google Scholar] [CrossRef]
  25. Shahzad, U.; Ahmad, I.; Almanjahie, I.; Al-Noor, N.H.; Hanif, M. A new class of L-Moments based calibration variance Estimators. Comput. Mater. Contin. 2021, 66, 3013–3028. [Google Scholar] [CrossRef]
  26. Alam, S.; Singh, S.; Shabbir, J. Calibrated estimators using non-linear calibration constraints. J. Stat. Comput. Simul. 2020, 90, 489–514. [Google Scholar] [CrossRef]
  27. Alam, S.; Singh, S.; Shabbir, J. Optimal calibrated weights while minimizing a variance function. Commun. Stat. Theory Methods 2023, 52, 1634–1651. [Google Scholar] [CrossRef]
  28. Zaman, T.; Bulut, H. Robust calibration for estimating the population mean using stratified random sampling. Sci. Iran. 2023; in press. [Google Scholar] [CrossRef]
  29. Abbasi, H.; Hanif, M.; Shahzad, U.; Emam, W.; Tashkandy, Y.; Iftikhar, S.; Shahzadi, S. Calibration Estimation of Cumulative Distribution Function Using Robust Measures. Symmetry 2023, 15, 1157. [Google Scholar] [CrossRef]
  30. Wang, S.; Chen, W.X.; Yang, R. Fisher information in ranked set sampling from the simple linear regression model. Commun. Stat. Simul. Comput. 2024, 53, 1274–1284. [Google Scholar] [CrossRef]
Figure 1. MSE for population 1 when sample size is 5%.
Figure 1. MSE for population 1 when sample size is 5%.
Symmetry 16 00633 g001
Figure 2. MSE for population 2 when sample size is 5%.
Figure 2. MSE for population 2 when sample size is 5%.
Symmetry 16 00633 g002
Figure 3. MSE for population 3 when sample size is 5%.
Figure 3. MSE for population 3 when sample size is 5%.
Symmetry 16 00633 g003
Figure 4. MSE for population 4 when sample size is 5%.
Figure 4. MSE for population 4 when sample size is 5%.
Symmetry 16 00633 g004
Figure 5. MSE for population 1 when sample size is 10%.
Figure 5. MSE for population 1 when sample size is 10%.
Symmetry 16 00633 g005
Figure 6. MSE for population 2 when sample size is 10%.
Figure 6. MSE for population 2 when sample size is 10%.
Symmetry 16 00633 g006
Figure 7. MSE for population 3 when sample size is 10%.
Figure 7. MSE for population 3 when sample size is 10%.
Symmetry 16 00633 g007
Figure 8. MSE for population 4 when sample size is 10%.
Figure 8. MSE for population 4 when sample size is 10%.
Symmetry 16 00633 g008
Figure 9. MSE for population 1 when sample size is 15%.
Figure 9. MSE for population 1 when sample size is 15%.
Symmetry 16 00633 g009
Figure 10. MSE for population 2 when sample size is 15%.
Figure 10. MSE for population 2 when sample size is 15%.
Symmetry 16 00633 g010
Figure 11. MSE for population 3 when sample size is 15%.
Figure 11. MSE for population 3 when sample size is 15%.
Symmetry 16 00633 g011
Figure 12. MSE for population 4 when sample size is 15%.
Figure 12. MSE for population 4 when sample size is 15%.
Symmetry 16 00633 g012
Table 1. Adapted H A i N 1 family of neutrosophic CDF estimators.
Table 1. Adapted H A i N 1 family of neutrosophic CDF estimators.
i H A i N 1 ψ ζ N
1 H A 1 N 1 1
2 H A 2 N 1 1 x ¯ ζ N
3 H A 3 N 1 1 s ζ x N
4 H A 4 N 1 1 s ζ x N 2
5 H A 5 N 1 1 c ζ x N
Table 2. Proposed H P i N 1 family of neutrosophic CDF estimators.
Table 2. Proposed H P i N 1 family of neutrosophic CDF estimators.
i H P i N 1 ψ ζ N
1 H P 1 N 1 1
2 H P 2 N 1 1 x ¯ ζ N
3 H P 3 N 1 1 s ζ x N
4 H P 4 N 1 1 s ζ x N 2
5 H P 5 N 1 1 c ζ x N
Table 3. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 1 when sample size is 5%.
Table 3. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 1 when sample size is 5%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.12550700 ,   0.09495555 0.07372283 ,   0.03183353 0.01307641 ,   0.01275580
H A 2 N 1 0.10600970 ,   0.07969699 0.05155015 ,   0.02133777 0.01260893 ,   0.01200653
H A 3 N 1 0.11414690 ,   0.06854242 0.04894732 ,   0.02054492 0.01233337 ,   0.01194092
H A 4 N 1 0.11769560 ,   0.07805772 0.05129713 ,   0.02270461 0.01273243 ,   0.01196914
H A 5 N 1 0.13526440 ,   0.10382170 0.06075261 ,   0.02671161 0.01261490 ,   0.01244723  
H P 1 N 1 0.00043587 ,   0.00107817 0.00069142 ,   0.00182162 0.00127275 ,   0.00111091
H P 2 N 1 0.00043552 ,   0.00107847 0.00069379 ,   0.00182357 0.00127149 ,   0.00111071
H P 3 N 1 0.00043422 ,   0.00107233 0.00068692 ,   0.00179739 0.00127309 ,   0.00111534
H P 4 N 1 0.00043474 ,   0.00106791 0.00068392 ,   0.00177883 0.00127401 ,   0.00112097
H P 5 N 1 0.00043513 ,   0.00107207 0.00068482 ,   0.00179573 0.00127456 ,   0.00111567
Table 4. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 2 when sample size is 5%.
Table 4. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 2 when sample size is 5%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.09938451 ,   0.07907769 0.06012644 ,   0.04282329 0.01116777 ,   0.01742282
H A 2 N 1 0.08471047 ,   0.06887898 0.04339170 ,   0.03047215 0.01013658 ,   0.01639673
H A 3 N 1 0.07956097 ,   0.06311932 0.04244550 ,   0.03046902 0.00999788 ,   0.01630728
H A 4 N 1 0.08444315 ,   0.06629178 0.04221479 ,   0.03115415 0.00993667 ,   0.01708019
H A 5 N 1 0.09192286,0.07363932 0.05034084 ,   0.03660268 0.01077619 ,   0.01742002
H P 1 N 1 0.00055561 ,   0.00084529 0.00073901 ,   0.00106629 0.00071978 ,   0.00329068
H P 2 N 1 0.00055524 ,   0.00084509 0.00073910 ,   0.00106812 0.00071974 ,   0.00328824
H P 3 N 1 0.00055210 ,   0.00083945 0.00073793 ,   0.00106376 0.00071935 ,   0.00329016
H P 4 N 1 0.00055121 ,   0.00083560 0.00073726 ,   0.00106182 0.00071909 ,   0.00328999
H P 5 N 1 0.00055307 ,   0.00084024 0.00073794 ,   0.00106213 0.00071937 ,   0.00329285
Table 5. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 3 when sample size is 5%.
Table 5. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 3 when sample size is 5%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.16533400 ,   0.12493000 0.10604800 ,   0.03462509 0.01699839 ,   0.02947149
H A 2 N 1 0.14090010 ,   0.10346060 0.07543888 ,   0.02562175 0.01530376 ,   0.02928658
H A 3 N 1 0.14371760 ,   0.10536490 0.07553381 ,   0.02339384 0.01523818 ,   0.02893875
H A 4 N 1 0.13801410 ,   0.10476130 0.07562968 ,   0.02466783 0.01603289 ,   0.02895724
H A 5 N 1 0.16912520 ,   0.11837020 0.09032016 ,   0.02998409 0.01754146 ,   0.02905653
H P 1 N 1 0.00025958 ,   0.00093281 0.00038758 ,   0.00166299 0.00043079 ,   0.00428377
H P 2 N 1 0.00025913 ,   0.00093546 0.00038773 ,   0.00166369 0.00043080 ,   0.00428058
H P 3 N 1 0.00025825 ,   0.00092476 0.00038684 ,   0.00166057 0.00043079 ,   0.00428438
H P 4 N 1 0.00025804 ,   0.00092036 0.00038640 ,   0.00165903 0.00043083 ,   0.00428603
H P 5 N 1 0.00025890 ,   0.00092286 0.00038676 ,   0.00166006 0.00043081 ,   0.00428734
Table 6. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 4 when sample size is 5%.
Table 6. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 4 when sample size is 5%.
Estimators 0.25 0.50 0.75
H A 1 N 1 12659.18000000 ,   52.95105000 9848.06500000 ,   34.80282000 1390.32900000 ,   43.79722000
H A 2 N 1 12848.09000000 ,   52.90249000 9937.59300000 ,   34.83687000 1393.63900000 ,   43.87352000
H A 3 N 1 12878.36000000 ,   52.75121000 9804.92700000 ,   35.03531000 1378.85400000 ,   43.62861000
H A 4 N 1 13396.63000000 ,   52.73636000 8401.08800000 ,   35.32916000 1354.67600000 ,   43.55621000
H A 5 N 1 12652.08000000 ,   52.79689000 9867.90100000 ,   35.00586000 1376.04100000 ,   43.56635000
H P 1 N 1 0.00235515 ,   0.00254313 0.00225229 ,   0.00328725 0.00273807 ,   0.00295161
H P 2 N 1 0.00236679 ,   0.00254399 0.00225184 ,   0.00328669 0.00273411 ,   0.00295103
H P 3 N 1 0.00239635 ,   0.00253732 0.00231006 ,   0.00329569 0.00275508 ,   0.00295577
H P 4 N 1 0.00241799 ,   0.00253049 0.00232416 ,   0.00329873 0.00275984 ,   0.00295528
H P 5 N 1 0.00239698 ,   0.00253698 0.00231220 ,   0.00329621 0.00275649 ,   0.00295604
Table 7. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 1 when sample size is 5%.
Table 7. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 1 when sample size is 5%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 28794.92000000 ,   8807.07900000 10662.49000000 ,   1747.53700000 1027.41400000 ,   1148.22900000
H P 2 N 1 , H A 2 N 1 24340.81000000 ,   7389.79700000 7430.19800000 ,   1170.10700000 991.65840000 ,   1080.97800000
H P 3 N 1 , H A 3 N 1 26287.65000000 ,   6391.93400000 7125.59300000 ,   1143.04200000 968.77530000 ,   1070.61100000
H P 4 N 1 , H A 4 N 1 27072.90000000 ,   7309.39900000 7500.47400000 ,   1276.38200000 999.39660000 ,   1067.75100000
H P 5 N 1 , H A 5 N 1 31086.07000000 ,   9684.18600000 8871.29900000 ,   1487.51100000 989.74450000 ,   1115.67000000
Table 8. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 2 when sample size is 5%.
Table 8. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 2 when sample size is 5%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 17887.42000000,9354.99300000 8135.97600000 ,   4016.08000000 1551.54900000 ,   529.45880000
H P 2 N 1 , H A 2 N 1 15256.49000000 ,   8150.48500000 5870.84100000 ,   2852.85700000 1408.35400000 ,   498.64720000
H P 3 N 1 , H A 3 N 1 14410.60000000 ,   7519.11700000 5751.94100000 ,   2864.25400000 1389.8400000 ,   495.63750000
H P 4 N 1 , H A 4 N 1 15319.61000000 ,   7933.41400000 5725.91500000 ,   2934.01700000 1381.83600000 ,   519.15620000
H P 5 N 1 , H A 5 N 1 16620.42000000 ,   8764.01800000 6821.77200000 ,   3446.14300000 1498.00100000 ,   529.02580000
Table 9. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 3 when sample size is 5%.
Table 9. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 3 when sample size is 5%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 63693.23000000 , 13392.82000000 27361.67000000 , 2082.10100000 3945.78400000 , 687.98060000
H P 2 N 1 , H A 2 N 1 54373.39000000 , 11059.91000000 19456.74000000 , 1540.04800000 3552.39400000 , 684.17400000
H P 3 N 1 , H A 3 N 1 55650.08000000 , 11393.73000000 19525.93000000 , 1408.78300000 3537.18500000 , 675.44740000
H P 4 N 1 , H A 4 N 1 53484.81000000 , 11382.60000000 19572.67000000 , 1486.88000000 3721.41100000 , 675.61890000
H P 5 N 1 , H A 5 N 1 65323.39000000 , 12826.46000000 23353.06000000 , 1806.20600000 4071.70300000 , 677.72930000
Table 10. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 4 when sample size is 5%.
Table 10. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 4 when sample size is 5%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 537510420.10000000 ,   2082123.10000000 437247684.10000000 ,   1058722.10000000 50777790.10000000 ,   1483841.10000000
H P 2 N 1 , H A 2 N 1 542848807.10000000 ,   2079502.10000000 441309532.10000000 ,   1059936.10000000 50972385.10000000 ,   1486719.10000000
H P 3 N 1 , H A 3 N 1 537415642.10000000 ,   2079013.10000000 424445080.10000000 ,   1063066.10000000 50047658.10000000 ,   1476051.10000000
H P 4 N 1 , H A 4 N 1 554039427.10000000 ,   2084033.10000000 361467699.10000000 ,   1070992.10000000 49085369.10000000 ,   1473845.10000000
H P 5 N 1 , H A 5 N 1 527835504.10000000 ,   2081090.10000000 426775100.10000000 ,   1062002.10000000 49920017.10000000 ,   1473811.10000000
Table 11. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 1 when sample size is 10%.
Table 11. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 1 when sample size is 10%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.05278514 ,   0.03103824 0.02293561 ,   0.00863221 0.00452109 ,   0.00408159
H A 2 N 1 0.04556192 ,   0.02622204 0.01839788 ,   0.00727704 0.00445757 ,   0.00394331
H A 3 N 1 0.04738312 ,   0.02172956 0.01941909 ,   0.00664607 0.00445610 ,   0.00388231
H A 4 N 1 0.04985967 ,   0.02567838 0.01922507 ,   0.00742291 0.00446277 ,   0.00393611
H A 5 N 1 0.05599423 ,   0.03178389 0.02329781 ,   0.00880282 0.00461344 ,   0.00406053
H P 1 N 1 0.00029686 ,   0.00085081 0.00038942 ,   0.00148873 0.00072948 ,   0.00059511
H P 2 N 1 0.00029691 ,   0.00085084 0.00039149 ,   0.00149078 0.00072966 ,   0.00059520
H P 3 N 1 0.00029594 ,   0.00085053 0.00038628 ,   0.00146474 0.00072864 ,   0.00059438
H P 4 N 1 0.00029552 ,   0.00085090 0.00038371 ,   0.00144341 0.00072797 ,   0.00059382
H P 5 N 1 0.00029603 ,   0.00085054 0.00038423 ,   0.00146279 0.00072849 ,   0.00059430
Table 12. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 2 when sample size is 10%.
Table 12. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 2 when sample size is 10%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.03201772 ,   0.02207009 0.01571671 ,   0.00894583 0.00344596 ,   0.00730504
H A 2 N 1 0.02698789 ,   0.01722464 0.01417302 ,   0.00769259 0.00334932 ,   0.00728080
H A 3 N 1 0.02530204 ,   0.01732694 0.01295956 ,   0.00786451 0.00328828 ,   0.00701269
H A 4 N 1 0.02508618 ,   0.01825600 0.01440447 ,   0.00717085 0.00326247 ,   0.00699018
H A 5 N 1 0.03044012 ,   0.02105985 0.01630019 ,   0.00899331 0.00343424 ,   0.00720987
H P 1 N 1 0.00034510 ,   0.00065756 0.00046213 ,   0.00065388 0.00039188 ,   0.00250048
H P 2 N 1 0.00034504 ,   0.00065742 0.00046220 ,   0.00065570 0.00039229 ,   0.00249942
H P 3 N 1 0.00034320 ,   0.00065497 0.00046140 ,   0.00065368 0.00039276 ,   0.00249928
H P 4 N 1 0.00034189 ,   0.00065279 0.00046087 ,   0.00065372 0.00039366 ,   0.00249803
H P 5 N 1 0.00034337 ,   0.00065530 0.00046139 ,   0.00065199 0.00039234 ,   0.00250031
Table 13. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 3 when sample size is 10%.
Table 13. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 3 when sample size is 10%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.07023669 ,   0.05348943 0.03667399 ,   0.00787167 0.00542214 ,   0.01255324
H A 2 N 1 0.05989029 ,   0.04451275 0.03216543 ,   0.00717289 0.00468516 ,   0.01254090
H A 3 N 1 0.05978501 ,   0.04081650 0.02805722 ,   0.00701938 0.00480273 ,   0.01252107
H A 4 N 1 0.05903541 ,   0.04616470 0.03090341 ,   0.00770717 0.00469045 ,   0.01256707
H A 5 N 1 0.07292860 ,   0.05298113 0.03687221 ,   0.00815749 0.00587575 ,   0.01261741
H P 1 N 1 0.00015005 ,   0.00079295 0.00021372 ,   0.00116272 0.00025309 ,   0.00353636
H P 2 N 1 0.00014986 ,   0.00079444 0.00021384 ,   0.00116275 0.00025297 ,   0.00353541
H P 3 N 1 0.00014969 ,   0.00079034 0.00021347 ,   0.00116161 0.00025333 ,   0.00353626
H P 4 N 1 0.00014952 ,   0.00078854 0.00021325 ,   0.00116067 0.00025358 ,   0.00353625
H P 5 N 1 0.00014988 ,   0.00078909 0.00021338 ,   0.00116164 0.00025344 ,   0.00353711
Table 14. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 4 when sample size is 10%.
Table 14. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 4 when sample size is 10%.
Estimators 0.25 0.50 0.75
H A 1 N 1 18.26232000 ,   17.38877000 21.55961000 ,   33.46750000 0.10202770 ,   33.07366000
H A 2 N 1 17.55407000 ,   17.3972 0000 21.54354000 ,   33.44364000 0.10302250 ,   33.18657000
H A 3 N 1 17.55962000 ,   17.48267000 21.54388000 ,   33.35970000 0.10314110 ,   33.06412000
H A 4 N 1 16.89388000 ,   17.62576000 21.52976000 ,   33.28332000 0.10612860 ,   33.12167000
H A 5 N 1 18.26487000 ,   17.47264000 21.56045000 ,   33.38678000 0.10213000 ,   32.95957000
H P 1 N 1 0.00160199 ,   0.00186467 0.00146192 ,   0.00209583 0.00175950 ,   0.00187631
H P 2 N 1 0.00160980 ,   0.00186595 0.00146069 ,   0.00209569 0.00175860 ,   0.00187565
H P 3 N 1 0.00159285 ,   0.00186075 0.00148106 ,   0.00209416 0.00176694 ,   0.00188578
H P 4 N 1 0.00159198 ,   0.00185844 0.00148989 ,   0.00209369 0.00176976 ,   0.00188666
H P 5 N 1 0.00159077 ,   0.00186014 0.00148256 ,   0.00209447 0.00176760 ,   0.00188607
Table 15. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 1 when sample size is 10%.
Table 15. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 1 when sample size is 10%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 17780.95000000 ,   3648.09100000 5889.61800000 ,   579.83620000 619.77080000 ,   685.85570000
H P 2 N 1 , H A 2 N 1 15345.24000000 ,   3081.90500000 4699.33200000 ,   488.13630000 610.91250000 ,   662.51650000
H P 3 N 1 , H A 3 N 1 16011.10000000 ,   2554.82500000 5027.23400000 ,   453.73750000 611.56170000 ,   653.16850000
H P 4 N 1 , H A 4 N 1 16872.02000000 ,   3017.79000000 5010.33400000 ,   514.26390000 613.04340000 ,   662.84210000
H P 5 N 1 , H A 5 N 1 18914.78000000 ,   3736.89500000 6063.45400000 ,   601.78430000 633.28420000 ,   683.23970000
Table 16. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 2 when sample size is 10%.
Table 16. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 2 when sample size is 10%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 9277.77100000 ,   3356.37900000 3400.92700000 ,   1368.12000000 879.34680000 ,   292.14510000
H P 2 N 1 , H A 2 N 1 7821.72800000 ,   2620.05100000 3066.40300000 ,   1173.18100000 853.79040000 ,   291.30000000
H P 3 N 1 , H A 3 N 1 7372.31400000 ,   2645.43700000 2808.72600000 ,   1203.11100000 837.22350000 ,   280.58850000
H P 4 N 1 , H A 4 N 1 7337.58200000 ,   2796.57100000 3125.48500000 ,   1096.93700000 828.76440000 ,   279.82740000
H P 5 N 1 , H A 5 N 1 8865.21700000 ,   3213.75900000 3532.78700000 ,   1379.35400000 875.31730000 ,   288.35920000
Table 17. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 3 when sample size is 10%.
Table 17. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 3 when sample size is 10%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 46810.30000000 ,   6745.63900000 17160.10000000 ,   677.00780000 2142.41100000 ,   354.97660000
H P 2 N 1 , H A 2 N 1 39963.99000000 ,   5603.04500000 15041.75000000 ,   616.89100000 1852.07800000 ,   354.72230000
H P 3 N 1 , H A 3 N 1 39939.96000000 ,   5164.40000000 13143.36000000 ,   604.27990000 1895.80800000 ,   354.07640000
H P 4 N 1 , H A 4 N 1 39482.56000000 ,   5854.48500000 14491.48000000 ,   664.02660000 1849.66100000 ,   355.37810000
H P 5 N 1 , H A 5 N 1 48659.02000000 ,   6714.22000000 17280.26000000 ,   702.23720000 2318.41100000 ,   356.71520000
Table 18. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 4 when sample size is 10%.
Table 18. PRE of proposed H P i N 1 estimator’s w.r.t adapted H A i N 1 estimators for population 4 when sample size is 10%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 1139971.10000000 ,   932538.90000000 1474744.10000000 ,   1596858.10000000 5798.66700000 ,   1762694.10000000
H P 2 N 1 , H A 2 N 1 1090450.10000000 ,   932351.20000000 1474892.10000000 ,   1595827.10000000 5858.19800000 ,   1769333.10000000
H P 3 N 1 , H A 3 N 1 1102405.10000000 ,   939549.20000000 1454625.10000000 ,   1592991.10000000 5837.26300000 ,   1753342.10000000
H P 4 N 1 , H A 4 N 1 1061188.10000000 ,   948418.10000000 1445049.10000000 ,   1589694.10000000 5996.78200000 ,   1755568.10000000
H P 5 N 1 , H A 5 N 1 1148177.10000000 ,   939318.10000000 1454269.10000000 ,   1594042.10000000 5777.89300000 ,   1747524.10000000
Table 19. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 1 when sample size is 15%.
Table 19. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 1 when sample size is 15%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.02423724 ,   0.02521752 0.01013707 ,   0.00436531 0.00423744 ,   0.00318711
H A 2 N 1 0.02032192 ,   0.02182145 0.01035944 ,   0.00410658 0.00405645 ,   0.00317238
H A 3 N 1 0.02256156 ,   0.02226276 0.00977304 ,   0.00435874 0.00420122 ,   0.00311620
H A 4 N 1 0.02388722 ,   0.02348978 0.00978326 ,   0.00443506 0.00428133 ,   0.00309671
H A 5 N 1 0.02541181 ,   0.02641287 0.01217725 ,   0.00453425 0.00430458 ,   0.00325799
H P 1 N 1 0.00024404 ,   0.00084491 0.00028227 ,   0.00138944 0.00061685 ,   0.00050901
H P 2 N 1 0.00024416 ,   0.00084417 0.00028367 ,   0.00139088 0.00061677 ,   0.00050904
H P 3 N 1 0.00024361 ,   0.00085899 0.00028035 ,   0.00137184 0.00061657 ,   0.00050933
H P 4 N 1 0.00024327 ,   0.00087593 0.00027869 ,   0.00135528 0.00061634 ,   0.00050985  
H P 5 N 1 0.00024349 ,   0.00086004 0.00027892 ,   0.00137041 0.00061668 ,   0.00050933
Table 20. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 2 when sample size is 15%.
Table 20. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 2 when sample size is 15%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.01217292 ,   0.00915546 0.00574358 ,   0.00473178 0.00190995 ,   0.01581105
H A 2 N 1 0.01133602 ,   0.00925104 0.00587575 ,   0.00454565 0.00183164 ,   0.01569076
H A 3 N 1 0.01050344 ,   0.00782591 0.00539212 ,   0.00472929 0.00186089 ,   0.01565197
H A 4 N 1 0.01188887 ,   0.00812091 0.00578986 ,   0.00430275 0.00176988 ,   0.01585948
H A 5 N 1 0.01490505 ,   0.00945394 0.00692203 ,   0.00508339 0.00171219 ,   0.01582575
H P 1 N 1 0.00029955 ,   0.00058966 0.00039184 ,   0.00052005 0.00029563 ,   0.00233310
H P 2 N 1 0.00029933 ,   0.00058969 0.00039191 ,   0.00052105 0.00029581 ,   0.00233216
H P 3 N 1 0.00029846 ,   0.00058849 0.00039124 ,   0.00051958 0.00029598 ,   0.00233165
H P 4 N 1 0.00029754 ,   0.00058745 0.00039072 ,   0.00051922 0.00029634 ,   0.00233019
H P 5 N 1 0.00029871 ,   0.00058853 0.00039119 ,   0.00051865 0.00029579 ,   0.00233258
Table 21. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 3 when sample size is 15%.
Table 21. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 3 when sample size is 15%.
Estimators 0.25 0.50 0.75
H A 1 N 1 0.03657191 ,   0.02439917 0.01808088 ,   0.00722918 0.00316343 ,   0.02164782
H A 2 N 1 0.03463097 ,   0.02389522 0.01817396 ,   0.00702091 0.00248699 ,   0.02219127
H A 3 N 1 0.03279962 ,   0.02120182 0.01759832 ,   0.00715856 0.00295482 ,   0.02050702
H A 4 N 1 0.03333753 ,   0.02501256 0.01829039 ,   0.00744975 0.00288229 ,   0.01942301
H A 5 N 1 0.04454848 ,   0.02675314 0.02226382 ,   0.00736752 0.00354308 ,   0.02002272
H P 1 N 1 0.00013042 ,   0.00076973 0.00017573 ,   0.00109067 0.00020431 ,   0.00271852
H P 2 N 1 0.00013036 ,   0.00077070 0.00017576 ,   0.00109061 0.00020429 ,   0.00271754
H P 3 N 1 0.00013023 ,   0.00076896 0.00017562 ,   0.00109000 0.00020435 ,   0.00271849
H P 4 N 1 0.00013009 ,   0.00076839 0.00017553 ,   0.00108942 0.00020439 ,   0.00271853
H P 5 N 1 0.00013029 ,   0.00076808 0.00017559 ,   0.00109009 0.00020436 ,   0.00271937
Table 22. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 4 when sample size is 15%.
Table 22. MSE of proposed H P i N 1 and adapted H A i N 1 estimators for population 4 when sample size is 15%.
Estimators 0.25 0.50 0.75
H A 1 N 1 1.07473400 ,   30.53655000 0.02329777 ,   13.03802000 11.04803000 ,   191.03530000
H A 2 N 1 1.08310400 ,   30.64574000 0.02184079 ,   13.03078000 10.55876000 ,   191.62410000
H A 3 N 1 1.08276600 ,   30.45685000 0.02201946 ,   13.02999000 12.62746000 ,   191.98260000
H A 4 N 1 1.09153000 ,   30.40495000 0.02110268 ,   13.04988000 14.70891000 ,   193.06520000
H A 5 N 1 1.07416700 ,   30.35368000 0.02333948 ,   13.03710000 13.33633000 ,   191.40170000
H P 1 N 1 0.00153637 ,   0.00148698 0.00112341 ,   0.00169163 0.00144035 ,   0.00183146
H P 2 N 1 0.00154792 ,   0.00148857 0.00112126 ,   0.00169154 0.00143918 ,   0.00183071
H P 3 N 1 0.00151023 ,   0.00147533 0.00113311 ,   0.00168989 0.00144614 ,   0.00184546
H P 4 N 1 0.00149851 ,   0.00147402 0.00113987 ,   0.00168964 0.00144949 ,   0.00184714
H P 5 N 1 0.00150502 ,   0.00147458 0.00113491 ,   0.00169020 0.00144707 ,   0.00184578
Table 23. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 1 when sample size is 15%.
Table 23. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 1 when sample size is 15%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 9931.80600000 ,   2984.63400000 3591.28400000 ,   314.17690000 686.94460000 ,   626.13370000
H P 2 N 1 , H A 2 N 1 8323.19100000 ,   2584.96200000 3651.99500000 ,   295.25020000 657.68740000 ,   623.21460000
H P 3 N 1 , H A 3 N 1 9261.49500000 ,   2591.70800000 3486.00200000 ,   317.72880000 681.38970000 ,   611.82030000
H P 4 N 1 , H A 4 N 1 9819.03300000 ,   2681.69900000 3510.33800000 ,   327.24400000 694.63330000 ,   607.37980000
H P 5 N 1 , H A 5 N 1 10436.12000000 ,   3071.13900000 4365.88600000 ,   330.86760000 698.02840000 ,   639.65900000
Table 24. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 2 when sample size is 15%.
Table 24. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 2 when sample size is 15%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 4063.80300000 ,   1552.66600000 1465.80900000 ,   909.87520000 646.06990000 ,   677.68400000
H P 2 N 1 , H A 2 N 1 3787.15100000 ,   1568.79300000 1499.25900000 ,   872.40520000 619.19780000 ,   672.80020000
H P 3 N 1 , H A 3 N 1 3519.26900000,1329.81700000 1378.22800000 ,   910.21660000 628.72390000 ,   671.28430000
H P 4 N 1 , H A 4 N 1 3995.67100000 ,   1382.40400000 1481.84800000 ,   828.69940000 597.24690000 ,   680.60890000
H P 5 N 1 , H A 5 N 1 4989.83700000 ,   1606.35900000 1769.48300000 ,   980.11500000 578.86400000 ,   678.46490000
Table 25. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 3 when sample size is 15%.
Table 25. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 3 when sample size is 15%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 28041.68000000 ,   3169.83400000 10289.24000000 ,   662.82300000 1548.33800000 ,   796.30850000
H P 2 N 1 , H A 2 N 1 26566.22000000 ,   3100.44000000 10339.93000000 ,   643.75970000 1217.35200000 ,   816.59290000
H P 3 N 1 , H A 3 N 1 25185.16000000 ,   2757.19500000 10020.47000000 ,   656.74930000 1445.97100000 ,   754.35340000
H P 4 N 1 , H A 4 N 1 25627.92000000 ,   3255.18800000 10420.04000000 ,   683.82710000 1410.20400000 ,   714.46790000
H P 5 N 1 , H A 5 N 1 34192.70000000 ,   3483.14700000 12679.06000000 ,   675.86270000 1733.71500000 ,   736.29930000
Table 26. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 4 when sample size is 15%.
Table 26. PRE of proposed H P i N 1 estimators w.r.t adapted H A i N 1 estimators for population 4 when sample size is 15%.
Estimators 0.25 0.50 0.75
H P 1 N 1 , H A 1 N 1 69953.01000000 ,   2053589.10000000 2073.83700000 ,   770736.30000000 767040.50000000 ,   10430743.10000000
H P 2 N 1 , H A 2 N 1 69971.57000000 ,   2058739.10000000 1947.87600000 ,   770349.50000000 733666.60000000 ,   10467204.10000000
H P 3 N 1 , H A 3 N 1 71695.46000000 ,   2064414.10000000 1943.28000000 ,   771053.10000000 873186.30000000 ,   10402960.10000000
H P 4 N 1 , H A 4 N 1 72841.01000000 ,   2062729.10000000 1851.32000000 ,   772345.70000000 1014767.10000000 ,   10452121.10000000
H P 5 N 1 , H A 5 N 1 71372.46000000 ,   2058464.10000000 2056.50600000 ,   771333.50000000 921611.10000000 ,   10369700.10000000
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Abbasi, H.; Shahzad, U.; Emam, W.; Hanif, M.; Ali, N.; Mukhtar, M. Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data. Symmetry 2024, 16, 633. https://doi.org/10.3390/sym16050633

AMA Style

Abbasi H, Shahzad U, Emam W, Hanif M, Ali N, Mukhtar M. Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data. Symmetry. 2024; 16(5):633. https://doi.org/10.3390/sym16050633

Chicago/Turabian Style

Abbasi, Hareem, Usman Shahzad, Walid Emam, Muhammad Hanif, Nasir Ali, and Mubeen Mukhtar. 2024. "Calibrated Empirical Neutrosophic Cumulative Distribution Function Estimation for Both Symmetric and Asymmetric Data" Symmetry 16, no. 5: 633. https://doi.org/10.3390/sym16050633

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop