Self-Similar Solutions of a Bianchi Type-III Model with a Perfect Fluid and Cosmic String Cloud in Riemannian Geometry
Abstract
:1. Introduction
2. Space-Time and Homothetic Vector Field
Homothetic Bivector Field
3. Einstein’s Field Equations and Dynamical Variables of the Model for Perfect Fluid Distribution
4. Two Special Cases
4.1. HVF Parallel to 4-Velocity Vector
4.2. HVF Orthogonal to 4-Velocity Vector Field
5. Gravitational Effects of a Cosmic Strings Cloud
6. Physical and Kinematical Parameters of the Obtained Solutions
- The spatial volume is defined bywhere is the average scale factor of the universe.
- The scalar expansion, , is
- The components of the shear tensor are given by
- The shear scalar is given by
- The average Hubble parameter is defined as
- The anisotropy parameter of the expansion isin which represent the Hubble parameter in the directions of x, y, and z, respectively.
7. Solution (46)
8. Solution (51)
9. Solution (63)
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, G.S. Symmetries and Curvature Structure in General Relativity; World Scientific: Singapore, 2004. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselears, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Hall, G.S. Symmetries and geometry in general relativity. Diff. Geom. Appl. 1991, 1, 35–45. [Google Scholar] [CrossRef]
- Hall, G.S. Some Remarks on Symmetries and Transformation Groups in General Relativity. Gen. Relativ. Gravit. 1998, 30, 1099–1110. [Google Scholar] [CrossRef]
- Cahill, M.E.; Taub, A.H. Spherically Symmetric Similarity Solutions of the Einstein Field Equations for a Perfect Fluid. Commun. Math. 1971, 21, 1–40. [Google Scholar] [CrossRef]
- Eardley, D.M. Death of White Holes in the Early Universe. Phys. Rev. Lett. 1974, 33, 442. [Google Scholar] [CrossRef]
- Eardley, D.M. Self-Similar Spacetimes: Geometry and Dynamics. Commun. Math. Phys. 1974, 37, 287–309. [Google Scholar] [CrossRef]
- Carter, B.; Henriksen, R.N. A Systematic Approach to Self-Similarity in Newtonian Space-Time. J. Math. 1991, 32, 2580. [Google Scholar] [CrossRef]
- Carr, B.J.; A Coley, A. Self-similarity in general relativity. Class. Quantum Gravity 1999, 16, R31–R71. [Google Scholar] [CrossRef]
- Sintes, A.M.; Benoit, P.M.; Coley, A.A. Infinite Kinematic Self-Similarity and Perfect Fluid Spacetimes. Gen. Relativ. Gravit. 2001, 33, 1863–1895. [Google Scholar] [CrossRef]
- Wainwright, J. Asymptotic Self-similarity Breaking in Cosmology. Gen. Relativ. Gravit. 2000, 32, 1041–1054. [Google Scholar] [CrossRef]
- Wesson, P.S. An exact solution to Einstein’s equations with a stiff equation of state. J. Math. Phys. 1978, 19, 2283–2284. [Google Scholar] [CrossRef]
- Collins, C.B.; Lang, J.M. A class of self-similar perfect-fluid spacetimes, and a generalisation. Class. Quantum Gravity 1987, 4, 61–78. [Google Scholar] [CrossRef]
- Sussman, R.A. Spherically symmetric solutions admitting a spacelike self-similar motion. J. Math. Phys. 1991, 32, 223–230. [Google Scholar] [CrossRef]
- Barreto, W.; Ovalle, J.; Rodriguez, B. A Self-Similar Dynamics in Viscous Spheres. Gen. Relat. Gravit. 1998, 30, 15–26. [Google Scholar] [CrossRef]
- Ori, A.; Piran, T. Naked singularities and other features of self-similar general-relativistic gravitational collapse. Phys. Rev. D 1990, 42, 1068. [Google Scholar] [CrossRef]
- Gad, R.M. On Spherically Symmetric Perfect-Fluid Solutions Admitting Conformal Motions. Nuovo C. 2002, 117, 533. [Google Scholar]
- Gad, R.M. On Spherically Symmetric Non-Static Space-Times Admitting Homothetic Motions. Nuovo C. 2009, 124B, 61–67. [Google Scholar] [CrossRef]
- Gad, R.M.; Hassan, M.M. On The Geometrical and Physical Properties of Spherically Symmetric Non-Static Space-Times: Self-Similarity. Nuovo C. 2003, 118B, 759–765. [Google Scholar] [CrossRef]
- Collinson, C.D.; French, D.C. Null Tetrad Approach to Motions in Empty Space-Time. J. Math. Phys. 1967, 8, 701–708. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J.; Davis, W.R. Curvature Collineations: A Fundamental Symmetry Property of the Space-Times of General Relativity Defined by the Vanishing Lie Derivative of the Riemann Curvature Tensor. J. Math. Phys. 1969, 10, 617–629. [Google Scholar] [CrossRef]
- Collinson, C.D. Curvature Collineations in Empty Space-Times. J. Math. Phys. 1970, 11, 818–819. [Google Scholar] [CrossRef]
- Sharif, M.; Majeed, B. Teleparallel Killing Vectors of Spherically Symmetric Spacetimes. Commun. Theor. Phys. 2009, 52, 435–440. [Google Scholar] [CrossRef]
- Shabbir, G.; Khan, S. Classification of Bianchi Type I Spacetimes According to Their Proper Teleparallel Homothetic Vector Fields in the Teleparallel Theory of Gravitation. Mod. Phys. Lett. 2010, 25, 2145–2153. [Google Scholar] [CrossRef]
- Shabbir, G.; Ali, A.; Khan, S. A note on teleparallel Killing vector fields in Bianchi type VIII and IX space—Times in teleparallel theory of gravitation. Chin. Phys. B 2011, 20. [Google Scholar] [CrossRef]
- Sharif, M.; Amir, M.J. Teleparallel Killing Vectors of the Einstein Universe. Mod. Phys. Lett. 2008, 23, 963–969. [Google Scholar] [CrossRef]
- Taub, A.H. General Relativity; Synge, J.L., Synge, J.L., O’Raifeartaigh, L., Eds.; Clarendon Press: Oxford, UK, 1972; p. 133. [Google Scholar]
- Godfrey, B.B. Horizons in weyl metrics exhibiting extra symmetries. Gen. Relativ. Gravit. 1972, 3, 3–16. [Google Scholar] [CrossRef]
- Shabbir, G.; Khan, S. A note on self-similar vector fields in static spherically symmetric spce-times. Univ. Buchar. Sci. Bull. Ser. -Appl. Math. Phys. 2012, 74, 177. [Google Scholar]
- Sharif, M.; Aziz, S. Kinematic Self-Similar Cylindrically Symmetric Solutions. Int. J. Mod. Phys. D 2005, 14, 1527–1543. [Google Scholar] [CrossRef]
- Sharif, M.; Aziz, S. Kinematic self-similar plane symmetric solutions. Class. Quantum Gravity 2006, 24, 605–624. [Google Scholar] [CrossRef]
- Medina, V. A self-similar solution of a fluid with spherical distribution in general relativity. Indian J. Phys. 2022, 96, 317–328. [Google Scholar] [CrossRef]
- Gad, M.R.; Alofi, S.A. Homothetic Vector Field in Plane Symmetric Bianchi Type-I Cosmological Model in Lyra Geometry. Mod. Phys. Lett. A 2014, 29, 1450116. [Google Scholar] [CrossRef]
- Gad, R.M. Homothetic Motion in a Bianchi Type-I Model in Lyra Geometry. Int. J. Theor. Phys. 2015, 54, 2932–2941. [Google Scholar] [CrossRef]
- Alofi, A.S.; Gad, R.M. Homothetic Vector Fields in a Specially Homogenous Bianchi Type-I Cosmological Model in Lyra Geometry. Can. J. Phys. 2015, 93, 1397–1401. [Google Scholar] [CrossRef]
- Gad, R.M.; Al Mazrooei, A.E. On Axially Symmetric Space-Times Admitting Homothetic Vector Fields in Lyra’s Geometry. Can. J. Phys. 2016, 94, 1148–1152. [Google Scholar] [CrossRef]
- Alkhateeb, R.M.G.S.A.; Alharbi, H.D. Self-Similar Solutions of the Kantowski-Sachs Model with a Perfect Fluid in General Relativity. J. Appl. Math. Physics 2021, 9, 3165–3176. [Google Scholar] [CrossRef]
- Eardley, D.; Isenberg, J.; Marsden, J.; Moncrief, V. Homothetic and conformal symmetries of solutions to Einstein’s equations. Commun. Math. Phys. 1986, 106, 137–158. [Google Scholar] [CrossRef]
- Yavuz, I.; Yilmaz, I. Some exact solutions of string cosmology with heat flux in Bianchi type III space-time. Astrophys. Space Sci. 1996, 245, 131–138. [Google Scholar] [CrossRef]
- Debney, G.C. Invariant Approach to a Space-Time Symmetry. J. Math. Phys. 1971, 12, 1088–1098. [Google Scholar] [CrossRef]
- Debney, G.C. On Vacuum Space-Times Admitting a Null Killing Bivector. J. Math. Phys. 1971, 12, 2372–2377. [Google Scholar] [CrossRef]
- McIntosh, C.B.G. Homothetic motions with null homothetic bivectors in general relativity. Gen. Relativ. Gravit. 1976, 7, 215–218. [Google Scholar] [CrossRef]
- McIntosh, C.B.G. Homothetic motions in general relativity. Gen. Relativ. Gravit. 1976, 7, 199–213. [Google Scholar] [CrossRef]
- Pantelis, S. Apostolopoulos and Michael Tsamparlis, Letter: Self-Similar Bianchi Type VIII and IX Models. Gen. Relativ. Gravit. 2003, 35, 2051–2056. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, R.M.; Al-Jedani, A. Self-Similar Solutions of a Bianchi Type-III Model with a Perfect Fluid and Cosmic String Cloud in Riemannian Geometry. Symmetry 2023, 15, 1703. https://doi.org/10.3390/sym15091703
Gad RM, Al-Jedani A. Self-Similar Solutions of a Bianchi Type-III Model with a Perfect Fluid and Cosmic String Cloud in Riemannian Geometry. Symmetry. 2023; 15(9):1703. https://doi.org/10.3390/sym15091703
Chicago/Turabian StyleGad, Ragab Mohamed, and Awatif Al-Jedani. 2023. "Self-Similar Solutions of a Bianchi Type-III Model with a Perfect Fluid and Cosmic String Cloud in Riemannian Geometry" Symmetry 15, no. 9: 1703. https://doi.org/10.3390/sym15091703
APA StyleGad, R. M., & Al-Jedani, A. (2023). Self-Similar Solutions of a Bianchi Type-III Model with a Perfect Fluid and Cosmic String Cloud in Riemannian Geometry. Symmetry, 15(9), 1703. https://doi.org/10.3390/sym15091703

