String Theory Bounds on the Cosmological Constant, the Higgs Mass, and the Quark and Lepton Masses †
Abstract
:1. Introduction
2. The Cosmological Constant
2.1. The Problem
2.1.1. Quantum Field Theory
2.1.2. String Theory
2.2. Resolving the Problem
2.2.1. Phase Space
2.2.2. Holography
- The relation (27) naturally gives when , and l is the IR length-scale.
- The relation (30) is radiatively stable since there is no UV dependence.
- Thus, essentially, the cosmological constant is small because the universe is filled with a large number of degrees of freedom: .
- In turn, N is large because fluctuations scale as and are small, indicating the stability of the universe.
- This estimates (where i is ) as , which is not so unreasonable in comparison with Avogadro’s number, , for matter degrees of freedom.
- First, is not a cut-off, since and can be arbitrary, albeit related by .
- Second, is effectively eliminated in favor of N, which is the new quantum number, and the size of spacetime, , the cosmological horizon, i.e., the size of the observed classical spacetime.
- N is determined by the Bekenstein bound, (26) and is thereby related to l and (the ultimate IR and UV scales, respectively), which is where gravity enters, via .
2.3. The Cosmological Constant in QFT and Phase Space
2.4. Realization in String Theory
- the concept of dual spacetime,
- the fundamental non-commutativity between spacetime and dual spacetime,
- the Heisenberg algebras: , , , .
3. The Cosmological Constant and the Higgs Mass
3.1. Cosmological Scale
3.2. Higgs Mass
3.3. Summary
4. On the Masses and Mixing of Quarks and Leptons
4.1. General Comments
4.1.1. Criticality
4.1.2. Seesaw Structure
4.2. Masses
4.2.1. The Bjorken–Zeldovich Scale
4.2.2. Quarks
4.2.3. Charged Leptons
4.2.4. Neutrinos
4.3. Fermion Mixing
4.3.1. The CKM Matrix
4.3.2. The PMNS Matrix
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. [Google Scholar] [CrossRef]
- Polchinski, J. The Cosmological Constant and the String Landscape. In Proceedings of the 23rd Solvay Conference in Physics: The Quantum Structure of Space and Time, Brussels, Belgium, 1–3 December 2006; Volume 3. [Google Scholar]
- Weinberg, S. Models of Lepton and Quark Masses. Phys. Rev. D 2020, 101, 035020. [Google Scholar] [CrossRef]
- Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. The Vacuum Energy Density and Gravitational Entropy. arXiv 2023, submitted. arXiv:2212.00901. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minic, D. On de Sitter Spacetime and String Theory. arXiv 2023, in press. arXiv:2212.06086. [Google Scholar] [CrossRef]
- Minic, D. The Vacuum Energy Problem in Quantum Gravity and the Masses of Elementary Particles. arXiv 2023, submitted. arXiv:2305.12593. [Google Scholar]
- Freidel, L.; Leigh, R.G.; Minic, D. Born Reciprocity in String Theory and the Nature of Spacetime. Phys. Lett. 2014, B730, 302–306. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minic, D. Mirror Symmetry, Born Geometry and String Theory. In Proceedings of the Nankai Symposium on Mathematical Dialogues: In Celebration of S.-S.Chern’s 110th Anniversary, Singapore, 1–6 September 2022; He, Y.-H., Ge, M.-L., Bai, C.-M., Bao, J., Hirst, E., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Bekenstein, J.D. A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems. Phys. Rev. D 1981, 23, 287. [Google Scholar] [CrossRef]
- ’t Hooft, G. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284–296. [Google Scholar]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Fischler, W.; Susskind, L. Holography and cosmology. arXiv 2023, submitted. arXiv:hep-th/9806039. [Google Scholar]
- Polchinski, J. String Theory. An Introduction to the Bosonic String; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007; Volume 1. [Google Scholar] [CrossRef]
- Polchinski, J. String Theory. An Introduction to the Bosonic String; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007; Volume 2. [Google Scholar] [CrossRef]
- Abel, S.; Dienes, K.R. Calculating the Higgs mass in string theory. Phys. Rev. D 2021, 104, 126032. [Google Scholar] [CrossRef]
- Bjorken, J. Darkness: What comprises empty space? Ann. Phys. 2013, 525, A67–A79. [Google Scholar] [CrossRef]
- Bjorken, J.D. Masses and Mixings of Quarks and Leptons Slides, Last Checked: November 2022. Available online: https://nebula.wsimg.com/44afe7e009f4c9854e6dc1b8887bdbc8?AccessKeyId=D5AC63041E00FF1ED0E8&disposition=0&alloworigin=1 (accessed on 15 August 2023).
- Donoghue, J.F. Cosmological constant and the use of cutoffs. Phys. Rev. D 2021, 104, 045005. [Google Scholar] [CrossRef]
- Polchinski, J. Evaluation of the One Loop String Path Integral. Commun. Math. Phys. 1986, 104, 37. [Google Scholar] [CrossRef]
- Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. On the Inevitable Lightness of Vacuum. arXiv 2023, submitted. arXiv:2303.17495. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Metastring Theory and Modular Space-time. J. High Energy Phys. 2015, 6, 006. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Modular spacetime. Int. J. Mod. Phys. 2015, D24, 1544028. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Quantum Spaces are Modular. Phys. Rev. 2016, D94, 104052. [Google Scholar] [CrossRef]
- Weinberg, S. Problems in Gauge Field Theories. In Proceedings of the 17th International Conference on High-Energy Physics, London, UK, 1–10 July 1974; Volume III, pp. 59–65. [Google Scholar]
- Weinberg, S. Phenomenological Lagrangians. Phys. A 1979, 96, 327–340. [Google Scholar] [CrossRef]
- Cohen, A.G.; Kaplan, D.B.; Nelson, A.E. Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 4971–4974. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields—Foundations; Cambridge University Press: Cambridge, MA, USA, 1995; Volume 1. [Google Scholar]
- Zee, A. Quantum Field Theory in a Nutshell, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Coleman, S.R.; Weinberg, E.J. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D 1973, 7, 1888–1910. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minic, D. String theory, the dark sector and the hierarchy problem. LHEP 2021, 2021, 186. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Quantum Gravity, Dynamical Phase Space and String Theory. Int. J. Mod. Phys. 2014, D23, 1442006. [Google Scholar] [CrossRef]
- Berglund, P.; Freidel, L.; Hübsch, T.; Kowalski-Glikman, J.; Leigh, R.G.; Mattingly, D.; Minic, D. Infrared Properties of Quantum Gravity: UV/IR Mixing, Gravitizing the Quantum—Theory and Observation. In Proceedings of the 2021 US Community Study on the Future of Particle Physics (Snowmass 2021), Seattle, WA, USA, 17–26 July 2022. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Mattingly, D.; Minic, D. Gravitizing the Quantum. Int. J. Mod. Phys. D 2022, 31, 2242024. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Intrinsic non-commutativity of closed string theory. J. High Energy Phys. 2017, 09, 060. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Noncommutativity of closed string zero modes. Phys. Rev. 2017, D96, 066003. [Google Scholar] [CrossRef]
- Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. Theory of metaparticles. Phys. Rev. D 2019, 99, 066011. [Google Scholar] [CrossRef]
- Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. Quantum Gravity Phenomenology in the Infrared. arXiv 2023, in press. arXiv:2104.00802. [Google Scholar] [CrossRef]
- Aharonov, Y.; Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed; Wiley-VCH: Hoboken, NJ, USA, 2005. [Google Scholar]
- Barnes, E.; Heremans, J.J.; Minic, D. Non–Fermi Liquids, Strange Metals and Quasi-metaparticles. arXiv 2023, in press. arXiv:2111.10479. [Google Scholar]
- Berglund, P.; Hübsch, T.; Minic, D. Stringy Bubbles Solve de Sitter Troubles. Universe 2021, 7, 363. [Google Scholar] [CrossRef]
- Berglund, P.; Geraci, A.; Hübsch, T.; Mattingly, D.; Minic, D. Triple Interference, Non-linear Talbot Effect and Gravitization of the Quantum. arXiv 2023, accepted. arXiv:2303.15645. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minic, D. Exponential hierarchy from spacetime variable string vacua. J. High Energy Phys. 2000, 9, 015. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Minic, D. On Stringy de Sitter Spacetimes. J. High Energy Phys. 2019, 2019, 166. [Google Scholar] [CrossRef]
- Froggatt, C.D.; Nielsen, H.B. Standard model criticality prediction: Top mass 173 +−5-GeV and Higgs mass 135 +−9-GeV. Phys. Lett. B 1996, 368, 96–102. [Google Scholar] [CrossRef]
- Faraggi, A.E. Hierarchical top–bottom mass relation in a superstring derived standard-like model. Phys. Lett. B 1992, 274, 47–52. [Google Scholar] [CrossRef]
- Freidel, L.; Leigh, R.G.; Minic, D. Modular Spacetime and Metastring Theory. J. Phys. Conf. Ser. 2017, 804, 012032. [Google Scholar] [CrossRef]
- Chan, H.; Tsou, S.; Tsou, S.T. The Framed Standard Model (II)—A First Test against Experiment. Int. J. Mod. Phys. A 2015, 30, 1530060. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Dutta, K.; Ross, A. Quark and lepton masses and mixing in the landscape. Phys. Rev. D 2006, 73, 113002. [Google Scholar] [CrossRef]
- Khoury, J.; Wong, S.S.C. Bayesian Reasoning in Eternal Inflation: A Solution to the Measure Problem. arXiv 2023, in press. arXiv:2205.11524. [Google Scholar] [CrossRef]
- Workman, R.L.; Khoury, J.; Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Weinberg, S. Baryon and Lepton Nonconserving Processes. Phys. Rev. Lett. 1979, 43, 1566–1570. [Google Scholar] [CrossRef]
- Aydemir, U. A scale at 10 MeV, gravitational topological vacuum, and large extra dimensions. Universe 2018, 4, 80. [Google Scholar] [CrossRef]
- Argyriadis, J.-A.; He, Y.-H.; Jejjala, V.; Minic, D. Dynamics of genetic code evolution: The emergence of universality. arXiv 2023, in press. arXiv:1909.10405. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 2020, 178. [Google Scholar] [CrossRef]
- Günaydin, M.; Gürsey, F. Quark Statistics and Octonions. Phys. Rev. D 1974, 9, 3387. [Google Scholar] [CrossRef]
- Günaydin, M.; Gursey, F. Quark structure and octonions. J. Math. Phys. 1973, 14, 1651–1667. [Google Scholar] [CrossRef]
- Casher, A.; Englert, F.; Nicolai, H.; Taormina, A. Consistent Superstrings as Solutions of the D=26 Bosonic String Theory. Phys. Lett. B 1985, 162, 121–126. [Google Scholar] [CrossRef]
- Agmon, N.B.; Bedroya, A.; Kang, M.J.; Vafa, C. Lectures on the string landscape and the Swampland. arXiv 2023, in press. arXiv:2212.06187. [Google Scholar]
- Brandenberger, R.H.; Vafa, C. Superstrings in the Early Universe. Nucl. Phys. 1989, B316, 391–410. [Google Scholar] [CrossRef]
- Bekenstein, J.D.; Mukhanov, V.F. Spectroscopy of the quantum black hole. Phys. Lett. B 1995, 360, 7–12. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, N.; Afshordi, N. Echoes from Quantum Black Holes. Phys. Rev. D 2020, 101, 024031. [Google Scholar] [CrossRef]
- Cardoso, V.; Foit, V.F.; Kleban, M. Gravitational wave echoes from black hole area quantization. JCAP 2019, 08, 006. [Google Scholar] [CrossRef]
- Verlinde, E.P.; Zurek, K.M. Observational signatures of quantum gravity in interferometers. Phys. Lett. B 2021, 822, 136663. [Google Scholar] [CrossRef]
- Strominger, A. Third quantization. Phil. Trans. Roy. Soc. Lond. 1989, A329, 395. Available online: https://www.jstor.org/stable/38273 (accessed on 15 August 2023).
- Sorkin, R.D. Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 1994, 9, 3119–3128. [Google Scholar] [CrossRef]
- Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Rev. Rel. 2013, 16, 2. [Google Scholar] [CrossRef]
- Addazi, A.; Sorkin, R.D. Quantum Gravity Phenomenol. Daw. Multi-Messenger Era—A Review. Prog. Part. Nucl. Phys. 2022, 125, 103948. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berglund, P.; Hübsch, T.; Minic, D. String Theory Bounds on the Cosmological Constant, the Higgs Mass, and the Quark and Lepton Masses. Symmetry 2023, 15, 1660. https://doi.org/10.3390/sym15091660
Berglund P, Hübsch T, Minic D. String Theory Bounds on the Cosmological Constant, the Higgs Mass, and the Quark and Lepton Masses. Symmetry. 2023; 15(9):1660. https://doi.org/10.3390/sym15091660
Chicago/Turabian StyleBerglund, Per, Tristan Hübsch, and Djordje Minic. 2023. "String Theory Bounds on the Cosmological Constant, the Higgs Mass, and the Quark and Lepton Masses" Symmetry 15, no. 9: 1660. https://doi.org/10.3390/sym15091660