Chiral Aziridine Phosphines as Highly Effective Promoters of Asymmetric Rauhut–Currier Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Chiral Aziridine-Phosphines 1–8
2.2. Asymmetric Intramolecular Rauhut–Currier Reaction in the Presence of Aziridines 1–8
2.3. Organocatalytic Asymmetric Rauhut–Currier Reaction in the Presence of the Phosphine 6–Scope of the Substrates
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Substrates
- 2-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)-4-nitrophenyl acrylate 14Yellow solid, mp 112.4–113.9 °C; 1 H NMR (600 MHz, CDCl3) δ = 1.30 (s, 9H), 1.35 (s, 9H), 6.16 (dd, J = 0.5, 10.5 Hz, 1H), 6.38 (dd, J = 10.5, 17.3 Hz, 1H), 6.70 (dd, J = 0.5, 17.3 Hz, 1H), 7.00 (s, 2H), 7.30 (d, J = 2.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 1H), 8.33 (dd, J = 2.7, 8.9 Hz, 1H), 8.42 (d, J = 2.6 Hz, 1H); 13 C NMR (150 MHz, CDCl3) δ = 29.4, 29.5, 35.6, 123.9, 124.9, 126.7, 127.0, 130.0, 132.1, 133.9, 134.7, 134.9, 145.3, 149.1, 153.5, 163.1, 186.4. Anal. calcd for C24H27NO5: C, 70.40, H, 6.60, N, 3.30; found C, 70.22, H, 6.44, N, 3.20.
3.2.2. Asymmetric Organocatalytic Rauhut–Currier Reaction–General Procedure
- (S)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methylenechroman-2-one 10
- 1H NMR (600 MHz, CDCl3) δ = 1.39 (s, 18H), 4.88 (s, 1H), 5.19 (s, 1H), 5.76 (s, 1H), 6.91 (s, 2H), 7-15-7.17 (m, 3H), 7.31-7.34 (m, 1H).
- (S)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-bromo-3-methylenechroman-2-one 16
- 1H NMR (600 MHz, CDCl3) δ = 1.41 (s, 18H), 4.84 (s, 1H), 5.22 (s, 1H), 5.75 (s, 1H), 6.44 (s, 1H), 6.89 (s, 1H), 7.04 (d, J = 8.6 Hz, 1H), 7.42 (dd, J = 2.3, 8.7 Hz, 1H).
- (S)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-methoxy-3-methylenechroman-2-one 17
- 1H NMR (600 MHz, CDCl3) δ = 1.40 (s, 1H), 3.84 (s, 3H), 4.82 (s, 1H), 5.18 (s, 1H), 5.73 (s, 1H), 6.41 (s, 1H), 6.69-6.71 (m, 2H), 6.91 (s, 2H), 7.04 (d, J = 9.1 Hz, 1H).
- (S)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-fluoro-3-methylenechroman-2-one 18
- 1H NMR (600 MHz, CDCl3) δ = 1.41 (s, 18H), 4.84 (s, 1H), 5.23 (s, 1H), 5.74 (s, 1H), 6.45 (s, 1H), 6.84 (dd, J = 3.0 Hz, 8.4 Hz, 1H), 6.91 (s, 2H), 7.01 (dt, J = 3.1 Hz, 8.3 Hz, 1H), 7.12 (dd, J = 4.6 Hz, 8.9 Hz, 1H).
- (S)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methylene-6-nitrochroman-2-one 19
- White solid, mp 171.3–172.2 °C; [α]d = 38.0 (c 0.5, CHCl3); 1H NMR (600 MHz, CDCl3) δ = 1.41 (s, 18H), 4.97 (s, 1H), 5.27 (s, 1H), 5.82 (s, 1H), 6.54 (s, 1H), 6.91 (s, 2H), 8.08 (d, J = 2.6 Hz, 1H), 8.22 (dd, J = 2.6, 9.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ = 30.1, 34.5, 48.1, 118.2, 124.1, 124.5, 124.6, 127.1, 129.7, 130.8, 135.4, 136.9, 144.4, 153.6, 161.7. Anal. calcd for C24H27NO5: C, 70.40, H, 6.60, N, 3.30; found C, 70.20, H, 6.44, N, 3.11.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, S.-H.; Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 2020, 11, 3786. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; He, X.-H.; Liu, Y.-Q.; He, G.; Peng, C.; Li, J.-L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry. Chem. Soc. Rev. 2021, 50, 1522–1586. [Google Scholar] [CrossRef] [PubMed]
- France, S.; Guerin, D.J.; Miller, S.J.; Lectka, T. Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis. Chem. Rev. 2003, 103, 2985–3012. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Bifunctional Amine-Squaramides: Powerful Hydrogen-Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Adv. Synth. Catal. 2015, 357, 253–281. [Google Scholar] [CrossRef]
- Woldegiorgis, A.G.; Lin, X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J. Org. Chem. 2021, 17, 2729–2764. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, H.; Jin, Z.; Chi, Y.-R. N-Heterocyclic Carbene Organocatalysis: Activation Modes and Typical Reactive Intermediates. Chin. J. Chem. 2020, 38, 1167–1202. [Google Scholar] [CrossRef]
- Maruoka, K. Design of high-performance chiral phase-transfer catalysts with privileged structures. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Shao, B.-X.; Lu, Y.-J.; Cao, Q.-Q.; Xia, C.-N.; Chen, F.-E. Recent Advances in Asymmetric Organomulticatalysis. Adv. Synth. Catal. 2021, 363, 352–387. [Google Scholar] [CrossRef]
- Mondal, S.; Dumur, F.; Gigmes, D.; Sibi, M.P.; Bertrand, M.P.; Nechab, M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem. Rev. 2022, 122, 5842–5976. [Google Scholar] [CrossRef]
- Lei, C.-W.; Mu, B.-S.; Zhou, F.; Yu, J.-S.; Zhou, Y.; Zhou, J. Organocatalytic enantioselective reactions involving prochiral carbocationic intermediates. Chem. Commun. 2021, 57, 9178–9191. [Google Scholar] [CrossRef]
- Atodiresei, I.; Vila, C.; Rueping, M. Asymmetric Organocatalysis in Continuous Flow: Opportunities for Impacting Industrial Catalysis. ACS Catal. 2015, 5, 1972–1985. [Google Scholar] [CrossRef]
- Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Recent advances in asymmetric synthesis with CO2. Sci. China Chem. 2020, 63, 1336–1351. [Google Scholar] [CrossRef]
- Aroyan, C.E.; Dermenci, A.; Miller, S.J. The Rauhut-Currier reaction: A history and its synthetic application. Tetrahedron 2009, 65, 4069–4084. [Google Scholar] [CrossRef]
- Morgan Ross, T.; Burke, S.J.; Malachowski, W.P. Enantioselective synthesis of decalin structures with all-carbon quaternary centers via one-pot sequential Cope/Rauhut-Currier reaction. Tetrahedron Lett. 2014, 55, 4616–4618. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Dou, X.; Wen, S.; Wu, J.; Vittal, J.J.; Lu, Y. Enantioselective desymmetrization of cyclohexadienones via an intramolecular Rauhut-Currier reaction of allenoates. Nat. Commun. 2016, 7, 13024. [Google Scholar] [CrossRef]
- Zhou, X.; Nie, H.; Liu, X.; Long, X.; Jiang, R.; Chen, W. Ferrocene-based bifunctional organocatalyst for highly enantioselective intramolecular Rauhut-Currier reaction. Catal. Commun. 2019, 121, 78–83. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, W.; Zhang, J. Phosphine-Catalyzed Asymmetric Intermolecular Cross Rauhut-Currier Reaction of β-Perfluoroalkyl-Substituted Enones and Vinyl Ketones. Adv. Synth. Catal. 2017, 359, 3347–3353. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Man, Y.; Gao, X.; Yang, L.; Ren, Y.; Li, N.; Tang, B.; Zhao, G. Asymmetric Intermolecular Rauhut-Currier Reaction for the Construction of 3,3-Disubstituted Oxindoles with Quaternary Stereogenic Centers. Adv. Synth. Catal. 2017, 359, 3934–3939. [Google Scholar] [CrossRef]
- He, Q.; Yang, Z.-H.; Yang, J.; Du, W.; Chen, Y.-C. Enantioselective Formal Arylation of (7-Aza)isatylidene Malononitriles with α’-Alkylidene-2-cyclohexenones. Adv. Synth. Catal. 2020, 362, 4438–4443. [Google Scholar] [CrossRef]
- Hu, F.-L.; Wei, Y.; Shi, M. Phosphine-Catalyzed Asymmetric Formal [4 + 2] Tandem Cyclization of Activated Dienes with Isatylidenemalononitriles: Enantioselective Synthesis of Multistereogenic Spirocyclic Oxindoles. Adv. Synth. Catal. 2014, 356, 736–742. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, L.; Maiti, R.; Mou, C.; Pan, L.; Chi, Y.R. Sulfinate and Carbene Co-catalyzed Rauhut-Currier Reaction for Enantioselective Access to Azepino [1,2-α]indoles. Angew. Chem. Int. Ed. 2019, 58, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Bania, N.; Mondal, B.; Ghosh, S.; Pan, S.C. DMAP Catalyzed Domino Rauhut-Currier Cyclization Reaction between Alkylidene Pyrazolones and Nitro-olefins: Access to Tetrahydropyrano[2,3-c]pyrazoles. J. Org. Chem. 2021, 86, 4304–4312. [Google Scholar] [CrossRef]
- Bae, S.; Zhang, C.; Gillard, R.M.; Lupton, D.W. Enantioselective N-Heterocyclic Carbene Catalyzed Bis(enoate) Rauhut-Currier Reaction. Angew. Chem. Int. Ed. 2019, 58, 13370–13374. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jin, Z.; Chan, W.-L.; Lu, Y. Enantioselective Construction of Bicyclic Pyran and Hydrindane Scaffolds via Intramolecular Rauhut-Currier Reactions Catalyzed by Thiourea-Phosphines. ACS Catal. 2018, 8, 8810–8815. [Google Scholar] [CrossRef]
- Zhou, W.; Su, X.; Tao, M.; Zhu, C.; Zhao, Q.; Zhang, J. Chiral Sulfinamide Bisphosphine Catalysts: Design, Synthesis, and Application in Highly Enantioselective Intermolecular Cross-Rauhut-Currier Reactions. Angew. Chem. Int. Ed. 2015, 54, 14853–14857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Z.; Gan, K.-J.; Liu, X.-X.; Deng, Y.-H.; Wang, F.-X.; Yu, K.-Y.; Zhang, J.; Fan, C.-A. Enantioselective Synthesis of Functionalized 4-Aryl Hydrocoumarins and 4-Aryl Hydroquinolin-2-ones via intramolecular Vinylogous Rauhut-Currier Reaction of para-Quinone Methides. Org. Lett. 2017, 19, 3207–3210. [Google Scholar] [CrossRef]
- Qin, C.; Liu, Y.; Yu, Y.; Fu, Y.; Li, H.; Wang, W. α-Functionalization of 2-Vinylpyridines via a Chiral Phosphine Catalyzed Enantioselective Cross Rauhut-Currier Reaction. Org. Lett. 2018, 20, 1304–1307. [Google Scholar] [CrossRef]
- Shi, C.; Xiao, B.; Du, W.; Chen, Y. Phosphine-Catalyzed Formal [6 + 2] Cycloadditions of α’-Methylene 2-Cyclopentenones. Chin. J. Org. Chem. 2019, 39, 2218–2225. [Google Scholar] [CrossRef]
- Liang, S.-Y.; Jiang, B.; Xiao, B.-X.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Phosphine Catalyzed Enantioselective Cascade Reaction Initiated by Intermolecular Cross Rauhut-Currier Reaction of Electron-Deficient ortho-Formyl Styrenes. ChemCatChem 2020, 12, 5374–5377. [Google Scholar] [CrossRef]
- Xiao, B.-X.; Jiang, B.; Song, X.; Du, W.; Chen, Y.-C. Phosphine-catalysed asymmetric dearomative formal [4 + 2] cycloadditions of 3-benzofuranyl vinyl ketones. Chem. Commun. 2019, 55, 3097–3100. [Google Scholar] [CrossRef]
- Eröksüz, S.; Dogan, Ö.; Garner, P.P. A new chiral phosphine oxide ligand for enantioselective 1,3-dipolar cycloaddition reactions of azomethine ylides. Tetrahedron Asymmetry 2010, 21, 2535–2541. [Google Scholar] [CrossRef]
- Dogan, Ö.; Bulut, A.; Ali Tecimer, M. Chiral phosphine oxide aziridinyl phosphonate as a Lewis base catalyst for enantioselective allylsilane addition to aldehydes. Tetrahedron Asymmetry 2015, 26, 966–969. [Google Scholar] [CrossRef]
- Dogan, Ö.; Isci, M.; Aygun, M. New phosphine oxide aziridinyl phosphonates as chiral Lewis bases for the Abramov-type phosphonylation of aldehydes. Tetrahedron Asymmetry 2013, 24, 562–567. [Google Scholar] [CrossRef]
- Dogan, Ö.; Tan, D. Enantioselective direct aldol reactions promoted by phosphine oxide aziridinyl phosphonate organocatalysts. Tetrahedron Asymmetry 2015, 26, 1348–1353. [Google Scholar] [CrossRef]
- Doğan, Ö.; Çağli, E. PFAM catalyzed enantioselective diethylzinc addition to imines. Turk. J. Chem. 2015, 39, 290–296. [Google Scholar] [CrossRef]
- Leśniak, S.; Rachwalski, M.; Pieczonka, A.M. Optically Pure Aziridinyl Ligands as Useful Catalysts in the Stereocontrolled Synthesis. Curr. Org. Chem. 2014, 18, 3045–3065. [Google Scholar] [CrossRef]
- Pieczonka, A.M.; Leśniak, S.; Rachwalski, M. Direct asymmetric aldol condensation catalyzed by aziridine semicarbazide zinc (II) complexes. Tetrahedron Lett. 2014, 55, 2373–2375. [Google Scholar] [CrossRef]
- Leśniak, S.; Rachwalski, M.; Jarzyński, S.; Obijalska, E. Lactic acid derived aziridinyl alcohols as highly effective catalysts for asymmetric additions of an organozinc species to aldehydes. Tetrahedron Asymmetry 2013, 24, 1336–1340. [Google Scholar] [CrossRef]
- Wujkowska, Z.; Jarzyński, S.; Pieczonka, A.M.; Leśniak, S.; Rachwalski, M. Highly enantioselective addition of arylzinc reagents to aldehydes promoted by chiral aziridine alcohols. Tetrahedron Asymmetry 2016, 27, 1238–1244. [Google Scholar] [CrossRef]
- Wujkowska, Z.; Zawisza, A.; Leśniak, S.; Rachwalski, M. Phosphinoyl-aziridines as a new class of chiral catalysts for enantioselective Michael addition. Tetrahedron 2019, 75, 230–235. [Google Scholar] [CrossRef]
- Buchcic, A.; Zawisza, A.; Leśniak, S.; Adamczyk, J.; Pieczonka, A.M.; Rachwalski, M. Enantioselective Mannich Reaction Promoted by Chiral Phosphinoyl-Aziridines. Catalysts 2019, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Buchcic, A.; Zawisza, A.; Leśniak, S.; Rachwalski, M. Asymmetric Friedel-Crafts Alkylation of Indoles Catalyzed by Chiral Aziridine-Phosphines. Catalysts 2020, 10, 971. [Google Scholar] [CrossRef]
- Buchcic-Szychowska, A.; Adamczyk, J.; Marciniak, L.; Pieczonka, A.M.; Zawisza, A.; Leśniak, S.; Rachwalski, M. Efficient Asymmetric Simmons-Smith Cyclopropanation and Diethylzinc Addition to Aldehydes Promoted by Enantiomeric Aziridine-Phosphines. Catalysts 2021, 11, 968. [Google Scholar] [CrossRef]
- Buchcic-Szychowska, A.; Zawisza, A.; Leśniak, S.; Rachwalski, M. Highly Efficient Asymmetric Morita-Baylis-Hillman Reaction Promoted by Chiral Aziridine-Phosphines. Catalysts 2022, 12, 394. [Google Scholar] [CrossRef]
- Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds. Angew. Chem. Int. Ed. 2016, 55, 12104–12108. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield (%) | ee (%) a | Abs. Conf. b |
---|---|---|---|---|
1 | 1 | 80 | 52 | (R) |
2 | 2 | 81 | 66 | (S) |
3 | 3 | 80 | 52 | (S) |
4 | 4 | 51 | 30 | (S) |
5 | 5 | 92 | 90 | (R) |
6 | 6 | 95 | >99 | (S) |
7 | 7 | 85 | 71 | (S) |
8 | 8 | 88 | 70 | (S) |
Entry | R | Product | Yield (%) | ee (%) a | Abs. Conf. b |
---|---|---|---|---|---|
1 | 6-Br | 16 | 93 | 92 | (S) |
2 | 6-OMe | 17 | 95 | 97 | (S) |
3 | 6-F | 18 | 82 | 80 | (S) |
4 | 6-NO2 | 19 | 90 | 84 | (S) |
5 | 7-NEt2 | 20 | 0 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchcic-Szychowska, A.; Leśniak, S.; Rachwalski, M. Chiral Aziridine Phosphines as Highly Effective Promoters of Asymmetric Rauhut–Currier Reaction. Symmetry 2022, 14, 1631. https://doi.org/10.3390/sym14081631
Buchcic-Szychowska A, Leśniak S, Rachwalski M. Chiral Aziridine Phosphines as Highly Effective Promoters of Asymmetric Rauhut–Currier Reaction. Symmetry. 2022; 14(8):1631. https://doi.org/10.3390/sym14081631
Chicago/Turabian StyleBuchcic-Szychowska, Aleksandra, Stanisław Leśniak, and Michał Rachwalski. 2022. "Chiral Aziridine Phosphines as Highly Effective Promoters of Asymmetric Rauhut–Currier Reaction" Symmetry 14, no. 8: 1631. https://doi.org/10.3390/sym14081631
APA StyleBuchcic-Szychowska, A., Leśniak, S., & Rachwalski, M. (2022). Chiral Aziridine Phosphines as Highly Effective Promoters of Asymmetric Rauhut–Currier Reaction. Symmetry, 14(8), 1631. https://doi.org/10.3390/sym14081631