On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE6SSM
Abstract
:1. Introduction
2. The SESSM
3. Dark Matter Nucleon Scattering Cross-section
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, S.F.; Moretti, S.; Nevzorov, R. Theory and phenomenology of an exceptional supersymmetric standard model. Phys. Rev. D 2006, 73, 035009. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Exceptional supersymmetric standard model. Phys. Lett. B 2006, 634, 278. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. A Review of the Exceptional Supersymmetric Standard Model. Symmetry 2020, 12, 557. [Google Scholar] [CrossRef] [Green Version]
- Hambye, T.; Ma, E.; Raidal, M.; Sarkar, U. Allowable low-energy E(6) subgroups from leptogenesis. Phys. Lett. B 2001, 512, 373. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models. Phys. Lett. B 2018, 779, 223. [Google Scholar]
- Nevzorov, R. E6 inspired supersymmetric models with exact custodial symmetry. Phys. Rev. D 2013, 87, 015029. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Mühlleitner, M.; Nevzorov, R.; Williams, A.G. Non-Standard Higgs Decays in U(1) Extensions of the MSSM. J. High Energy Phys. 2015, 1501, 153. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y. et al. [PandaX-4T Collaboration] Dark Matter Search Results from the PandaX-4T Commissioning Run. Phys. Rev. Lett. 2021, 127, 261802. [Google Scholar] [CrossRef] [PubMed]
- Aalbers, J.; Akerib, D.S.; Akerlof, C.W.; Musalhi, A.K.A.; Alder, F.; Alqahtani, A.; Alsum, S.K.; Amarasinghe, C.S.; Ames, A.; Anderson, T.J.; et al. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. arXiv 2022, arXiv:2207.03764. [Google Scholar]
- Howl, R.; King, S.F. Planck Scale Unification in a Supersymmetric Standard Model. Phys. Lett. B 2007, 652, 331. [Google Scholar] [CrossRef] [Green Version]
- Howl, R.; King, S.F. Minimal E6 Supersymmetric Standard Model. J. High Energy Phys. 2008, 0801, 030. [Google Scholar] [CrossRef]
- Howl, R.; King, S.F. Exceptional Supersymmetric Standard Models with non-Abelian Discrete Family Symmetry. J. High Energy Phys. 2008, 0805, 008. [Google Scholar] [CrossRef]
- Howl, R.; King, S.F. Solving the Flavour Problem in Supersymmetric Standard Models with Three Higgs Families. Phys. Lett. B 2010, 687, 355. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Hall, J.P.; Howl, R.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Aspects of the Exceptional Supersymmetric Standard Model. Nucl. Phys. Proc. Suppl. 2010, 200–202, 120. [Google Scholar] [CrossRef]
- Hall, J.P.; King, S.F. Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos. J. High Energy Phys. 2011, 1106, 006. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, J.C.; King, S.F. E6 Models from F-theory. J. High Energy Phys. 2013, 1304, 034. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, J.C.; King, S.F.; Leontaris, G.K. Gauge coupling unification in E6 F-theory GUTs with matter and bulk exotics from flux breaking. J. High Energy Phys. 2013, 1312, 037. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.; Moretti, S.; Rojas-Ciofalo, D.; Waltari, H. Multicomponent dark matter in a simplified E6SSM. Phys. Rev. D 2020, 102, 075039. [Google Scholar] [CrossRef]
- Suematsu, D. Neutralino decay in the mu problem solvable extra U(1) models. Phys. Rev. D 1998, 57, 1738. [Google Scholar] [CrossRef] [Green Version]
- Keith, E.; Ma, E. Generic consequences of a supersymmetric U(1) gauge factor at the TeV scale. Phys. Rev. D 1997, 56, 7155. [Google Scholar] [CrossRef] [Green Version]
- Keith, E.; Ma, E. Efficacious Extra U(1) Factor for the Supersymmetric Standard Model. Phys. Rev. D 1996, 54, 3587. [Google Scholar] [CrossRef]
- Suematsu, D.; Yamagishi, Y. Radiative symmetry breaking in a supersymmetric model with an extra U(1). Int. J. Mod. Phys. A 1995, 10, 4521. [Google Scholar] [CrossRef]
- Daikoku, Y.; Suematsu, D. Mass bound of the lightest neutral Higgs scalar in the extra U(1) models. Phys. Rev. D 2000, 62, 095006. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Gauge coupling unification in the exceptional supersymmetric standard model. Phys. Lett. B 2007, 650, 57. [Google Scholar] [CrossRef] [Green Version]
- Sperling, M.; Stöckinger, D.; Voigt, A. Renormalization of vacuum expectation values in spontaneously broken gauge theories. J. High Energy Phys. 2013, 1307, 132. [Google Scholar] [CrossRef] [Green Version]
- Sperling, M.; Stöckinger, D.; Voigt, A. Renormalization of vacuum expectation values in spontaneously broken gauge theories: Two-loop results. J. High Energy Phys. 2014, 1401, 068. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Neutrino masses in an extended gauge model with E(6) particle content. Phys. Lett. B 1996, 380, 286. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.P.; King, S.F. Neutralino Dark Matter with Inert Higgsinos and Singlinos. J. High Energy Phys. 2009, 0908, 088. [Google Scholar] [CrossRef]
- Athron, P.; Thomas, A.W.; Underwood, S.J.; White, M.J. Dark matter candidates in the constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2017, 95, 035023. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Quasifixed point scenarios and the Higgs mass in the E6 inspired supersymmetric models. Phys. Rev. D 2014, 89, 055010. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Trusov, M.A. Infrared quasifixed solutions in the NMSSM. Phys. Atom. Nucl. 2001, 64, 1299. [Google Scholar] [CrossRef]
- Nevzorov, R.; Trusov, M.A. Quasifixed point scenario in the modified NMSSM. Phys. Atom. Nucl. 2002, 65, 335. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. The Constrained E6SSM. arXiv 2008, arXiv:0810.0617. [Google Scholar]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV. Phys. Rev. D 2012, 86, 095003. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. E6 Inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs. Phys. Lett. B 2016, 760, 19. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. Dark matter in a constrained E6 inspired SUSY model. J. High Energy Phys. 2016, 1612, 128. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Binjonaid, M.; King, S.F. Fine Tuning in the Constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2013, 87, 115023. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Williams, A.G. Z′ mass limits and the naturalness of supersymmetry. Phys. Rev. D 2015, 91, 115024. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Stöckinger, D.; Voigt, A. Threshold Corrections in the Exceptional Supersymmetric Standard Model. Phys. Rev. D 2012, 86, 095012. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Spectrum of Higgs particles in the ESSM. arXiv 2006, arXiv:hep-ph/0601269. [Google Scholar]
- King, S.F.; Moretti, S.; Nevzorov, R. E6SSM. AIP Conf. Proc. 2007, 881, 138. [Google Scholar]
- Belyaev, A.; Hall, J.P.; King, S.F.; Svantesson, P. Novel gluino cascade decays in E6 inspired models. Phys. Rev. D 2012, 86, 031702. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, A.; Hall, J.P.; King, S.F.; Svantesson, P. Discovering E6 supersymmetric models in gluino cascade decays at the LHC. Phys. Rev. D 2013, 87, 035019. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Pakvasa, S. Exotic Higgs decays in the E6 inspired SUSY models. Phys. Lett. B 2014, 728, 210. [Google Scholar] [CrossRef]
- Hall, J.P.; King, S.F.; Nevzorov, R.; Pakvasa, S.; Sher, M. Novel Higgs Decays and Dark Matter in the E6SSM. Phys. Rev. D 2011, 83, 075013. [Google Scholar] [CrossRef] [Green Version]
- Hesselbach, S.; Miller, D.J.; Moortgat-Pick, G.; Nevzorov, R.; Trusov, M. Theoretical upper bound on the mass of the LSP in the MNSSM. Phys. Lett. B 2008, 662, 199. [Google Scholar] [CrossRef] [Green Version]
- Frere, J.M.; Nevzorov, R.B.; Vysotsky, M.I. Stimulated neutrino conversion and bounds on neutrino magnetic moments. Phys. Lett. B 1997, 394, 127. [Google Scholar] [CrossRef] [Green Version]
- Kolda, C.F.; Martin, S.P. Low-energy supersymmetry with D term contributions to scalar masses. Phys. Rev. D 1996, 53, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giudice, G.F.; Rattazzi, R. Theories with gauge mediated supersymmetry breaking. Phys. Rept. 1999, 322, 419. [Google Scholar] [CrossRef] [Green Version]
- Dubovsky, S.L.; Gorbunov, D.S.; Troitsky, S.V. Gauge mechanism of mediation of supersymmetry breaking. Phys. Usp. 1999, 42, 623. [Google Scholar]
- Gherghetta, T.; Pomarol, A. Bulk fields and supersymmetry in a slice of AdS. Nucl. Phys. B 2000, 586, 141. [Google Scholar] [CrossRef] [Green Version]
- Gherghetta, T.; Pomarol, A. A Warped supersymmetric standard model. Nucl. Phys. B 2001, 602, 3. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Khlopov, M.; Wu, L.; Yang, J.M.; Zhu, B. Light gravitino dark matter: LHC searches and the Hubble tension. Phys. Rev. D 2020, 102, 115005. [Google Scholar] [CrossRef]
- Kovalenko, P.A.; Nevzorov, R.B.; Ter-Martirosian, K.A. Masses of Higgs bosons in supersymmetric theories. Phys. Atom. Nucl. 1998, 61, 812. [Google Scholar]
- Nevzorov, R.B.; Trusov, M.A. Particle spectrum in the modified NMSSM in the strong Yukawa coupling limit. J. Exp. Theor. Phys. 2000, 91, 1079. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.B.; Ter-Martirosyan, K.A.; Trusov, M.A. Higgs bosons in the simplest SUSY models. Phys. Atom. Nucl. 2002, 65, 285. [Google Scholar] [CrossRef]
- Nevzorov, R.; Miller, D.J. Approximate solutions for the Higgs masses and couplings in the NMSSM. arXiv 2004, arXiv:hep-ph/0411275. [Google Scholar]
- Arkani-Hamed, N.; Delgado, A.; Giudice, G.F. The Well-tempered neutralino. Nucl. Phys. B 2006, 741, 108. [Google Scholar] [CrossRef] [Green Version]
- Chalons, G.; Dolan, M.J.; McCabe, C. Neutralino dark matter and the Fermi gamma-ray lines. J. Cosmol. Astropart. Phys. 2013, 02, 016. [Google Scholar] [CrossRef] [Green Version]
- The Planck collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.L.; Su, S.; Takayama, F. Supergravity with a gravitino LSP. Phys. Rev. D 2004, 70, 075019. [Google Scholar] [CrossRef] [Green Version]
- Bolz, M.; Brandenburg, A.; Buchmuller, W. Thermal production of gravitinos. Nucl. Phys. B 2001, 606, 518. [Google Scholar] [CrossRef] [Green Version]
- Eberl, H.; Gialamas, I.D.; Spanos, V.C. Gravitino thermal production revisited. Phys. Rev. D 2021, 103, 075025. [Google Scholar] [CrossRef]
- Hook, A.; McGehee, R.; Murayama, H. Cosmologically Viable Low-energy Supersymmetry Breaking. Phys. Rev. D 2018, 98, 115036. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.R.; Olive, K.A.; Savage, C. Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter. Phys. Rev. D 2008, 77, 065026. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, J.; King, S.F.; Roberts, J.P. Neutralino Dark Matter in the USSM. J. High Energy Phys. 2009, 2009, 066. [Google Scholar] [CrossRef]
- Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs3: A program for calculating dark matter observables. Comput. Phys. Commun. 2014, 185, 960. [Google Scholar] [CrossRef]
- Alarcon, J.M.; Martin Camalich, J.; Oller, J.A. The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D 2012, 85, 051503. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.W.; Shanahan, P.E.; Young, R.D. Strangeness in the nucleon: What have we learned? Nuovo Cim. C 2012, 035N04, 3. [Google Scholar]
- Cheng, H.Y.; Chiang, C.W. Revisiting Scalar and Pseudoscalar Couplings with Nucleons. J. High Energy Phys. 2012, 1207, 009. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, J.M.; Geng, L.S.; Martin Camalich, J.; Oller, J.A. The strangeness content of the nucleon from effective field theory and phenomenology. Phys. Lett. B 2014, 730, 342. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M. et al. [CMS Collaboration] Search for resonant and nonresonant new phenomena in high-mass dilepton final states at s = 13 TeV. J. High Energy Phys. 2021, 7, 208. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration] Search for high-mass dilepton resonances using 139 fb-1 of pp collision data collected at =13 TeV with the ATLAS detector. Phys. Lett. B 2019, 796, 68. [Google Scholar] [CrossRef]
- Amole, C. et al. [PICO Collaboration] Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef] [Green Version]
- Hisano, J.; Ishiwata, K.; Nagata, N.; Takesako, T. Direct Detection of Electroweak-Interacting Dark Matter. J. High Energy Phys. 2011, 7, 005. [Google Scholar] [CrossRef] [Green Version]
- Hisano, J.; Ishiwata, K.; Nagata, N. Direct Search of Dark Matter in High-Scale Supersymmetry. Phys. Rev. D 2013, 87, 035020. [Google Scholar] [CrossRef] [Green Version]
- Nagata, N.; Shirai, S. Higgsino Dark Matter in High-Scale Supersymmetry. J. High Energy Phys. 2015, 1, 029. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Projected WIMP sensitivity of the XENONnT dark matter experiment. J. Cosmol. Astropart. Phys. 2020, 11, 031. [Google Scholar]
- Akerib, D.S. et al. [LUX-ZEPLIN Collaboration] Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D 2020, 101, 052002. [Google Scholar] [CrossRef] [Green Version]
- Aalseth C.E. et al. [DarkSide-20k Collaboration] DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 2018, 133, 131. [Google Scholar] [CrossRef]
- Aalbers J. et al. [DARWIN Collaboration] DARWIN: Towards the ultimate dark matter detector. J. Cosmol. Astropart. Phys. 2016, 11, 017. [Google Scholar]
- Baer, H.; Barger, V.; Huang, P.; Mustafayev, A.; Tata, X. Radiative natural SUSY with a 125 GeV Higgs boson. Phys. Rev. Lett. 2012, 109, 161802. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Huang, P.; Tata, X. Natural Supersymmetry: LHC, dark matter and ILC searches. J. High Energy Phys. 2012, 5, 109. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Tata, X. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D 2013, 87, 115028. [Google Scholar] [CrossRef] [Green Version]
- Aad, G. et al. [ATLAS Collaboration] Searches for electroweak production of supersymmetric particles with compressed mass spectra in = 13 TeV pp collisions with the ATLAS detector. Phys. Rev. D 2020, 101, 052005. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M. et al. [CMS Collaboration] Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2019, 8, 150. [Google Scholar]
- Aaboud, M. et al. [ATLAS Collaboration] Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb-1 of proton-proton collision data at =13 TeV. Phys. Rev. D 2019, 99, 092007. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, M.; Fornengo, N.; Strumia, A. Minimal dark matter. Nucl. Phys. B 2006, 753, 178. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barklow, T.; Fujii, K.; Gao, Y.; Hoang, A.; Kanemura, S.; List, J.; Logan, H.E.; Nomerotski, A.; Perelstein, M.; et al. The International Linear Collider Technical Design Report—Volume 2: Physics. arXiv 2013, arXiv:1306.6352. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration] Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in = 13 TeV pp collisions with the ATLAS detector. J. High Energy Phys. 2020, 10, 112. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration] Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2021, 06, 179. [Google Scholar]
- Sirunyan, A.M. et al. [CMS Collaboration] Searches for physics beyond the standard model with the MT2 variable in hadronic final states with and without disappearing tracks in proton-proton collisions at s= 13 TeV. Eur. Phys. J. C 2020, 80, 3. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Langacker, P.; Nelson, B.D. Theory and Phenomenology of Exotic Isosinglet Quarks and Squarks. Phys. Rev. D 2008, 77, 035003. [Google Scholar] [CrossRef]
1 | 0 | 0 | ||||||||||
1 | 1 | 2 | 2 | 1 | 5 |
− | − | + | + | |
− | + | + | − | |
+ | − | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevzorov, R. On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE6SSM. Symmetry 2022, 14, 2090. https://doi.org/10.3390/sym14102090
Nevzorov R. On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE6SSM. Symmetry. 2022; 14(10):2090. https://doi.org/10.3390/sym14102090
Chicago/Turabian StyleNevzorov, Roman. 2022. "On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE6SSM" Symmetry 14, no. 10: 2090. https://doi.org/10.3390/sym14102090
APA StyleNevzorov, R. (2022). On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE6SSM. Symmetry, 14(10), 2090. https://doi.org/10.3390/sym14102090