Next Article in Journal
An Angle-Compensating, Complex-Coefficient PI Controller Used for Decoupling Control of a Permanent-Magnet Synchronous Motor
Next Article in Special Issue
On Generalization of Different Integral Inequalities for Harmonically Convex Functions
Previous Article in Journal
Third-Order Differential Subordination Results for Analytic Functions Associated with a Certain Differential Operator
Previous Article in Special Issue
On Some New Simpson’s Formula Type Inequalities for Convex Functions in Post-Quantum Calculus
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Spatial Decay Bounds for the Brinkman Fluid Equations in Double-Diffusive Convection

School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2022, 14(1), 98; https://doi.org/10.3390/sym14010098
Submission received: 30 November 2021 / Revised: 4 January 2022 / Accepted: 5 January 2022 / Published: 7 January 2022
(This article belongs to the Special Issue Symmetry in the Mathematical Inequalities)

Abstract

:
In this paper, we consider the Brinkman equations pipe flow, which includes the salinity and the temperature. Assuming that the fluid satisfies nonlinear boundary conditions at the finite end of the cylinder, using the symmetry of differential inequalities and the energy analysis methods, we establish the exponential decay estimates for homogeneous Brinkman equations. That is to prove that the solutions of the equation decay exponentially with the distance from the finite end of the cylinder. To make the estimate of decay explicit, the bound for the total energy is also derived.

1. Introduction

The Brinkman equations are one of the most important models in fluid mechanics. This model are mainly used to describe flow in a porous medium. For more details, one can refer to Nield and Bejan [1] and Straughan [2]. In the present paper, we define the Brinkman flow depending on the salinity and the temperature in a semi-infinite cylindrical pipe and derive the spatial decay properties. When the homogeneous initial-boundary conditions are applied on the lateral surface of the cylinder, We prove that the solutions of Brinkman equations decays exponentially with spatial variable.
In fact, the Brinkman equations have been studied by many papers in the literature. For example, Straughan [2] considered the mathematical properties of Brinkman equations as well as Darcy and Forchheimer equations, and stated how these equations describe the flow of porous media. Ames and Payne [3] studied the structural stability for the solutions to the viscoelasticity in an ill-posed problem. Franchi and Straughan [4] proved the structural stability for the solutions to the Brinkman equations in porous media in a bounded region. More relevant results one can see [5,6,7,8,9,10]. Paper [11] studied the double diffusive convection in porous medium and obtained the structural stability for the solutions. The continuous dependence for a thermal convection model with temperature-dependent solubility can be found in [12]. For more recent work about continuous dependence, one may refer to [13,14,15,16,17,18,19].
In this paper, let R be a semi-infinite cylinder and R represents the boundary of R. D denotes the cross section of the cylinder with the smooth boundary D (see Figure 1).
In this paper, we also use the following notations
R z = { ( x 1 , x 2 , x 3 ) | ( x 1 , x 2 ) D , x 3 > z 0 } ,
D z = { ( x 1 , x 2 , x 3 ) | ( x 1 , x 2 ) D , x 3 = z 0 } ,
where z is a point along the x 3 axis. Clearly, R 0 = R and D 0 = D . Letting u i , T, C and p denote the fluid velocity, temperature, salt concentration and pressure, respectively.
The Brinkman equations we study can be written as [20]
u i t = ν Δ u i k 1 u i p , i + g i T + h i C , i n R × { t 0 } ,
T t + u i T x i = k 2 Δ T , i n R × { t 0 } ,
C t + u i C x i = k 3 Δ C + σ Δ T , i n R × { t 0 } ,
u i , i = 0 , i n R × { t 0 } ,
where ν , σ > 0 denote the Brinkman coefficient, and the Soret coefficient, respectively. k 1 , k 2 , k 3 > 0 . Without losing generality, we take them equal to 1. Δ is the Laplacian operator. g i ( x ) and h i ( x ) are gravity field, which are given functions. We suppose that (1)–(4) have the following initial-boundary conditions
u i = 0 , T = C = 0 , o n D × { t 0 } ,
u i = 0 , T = C = 0 , o n R × { t = 0 } .
u i = f i ( x 1 , x 2 , t ) , T = F ( x 1 , x 2 , t ) , C = G ( x 1 , x 2 , t ) , o n D 0 × { t 0 } ,
u i , u i , j , u i , t , T , T , i , C , C , i , p = o ( x 3 1 ) u n i f o r m l y i n x 1 , x 2 , t , a s x 3 .
In (1)–(8) and in the following, the usual summation convention is employed with repeated Latin subscripts summed from 1 to 3 and repeat Greek subscript summed from 1 to 2. The comma is used to indicate partial differentiation, i.e., u i , j u i , j = i , j = 1 3 u i x j 2 , φ α , β φ α , β = α , β = 1 2 φ α x β 2 .
The purpose of this paper is to consider the spatial decay properties of the Equations (1)–(8) in a semi-infinite cylindrical pipe by using the symmetry of differential inequalities, that is, to prove that the solutions of the equations decay exponentially with the distance from the finite end of the cylindrical pipe.
In Section 2, some auxiliary inequalities are presented. We establish some useful lemmas in Section 3. The spatial exponential decay estimate for the solution is established in Section 4. Finally, in Section 5 we derive the bounds for the total energies.

2. Auxiliary Results

In this paper, we will use some inequalities in the following sections. Thus, we firstly list them as follows.
Lemma 1.
Let D be a plane domain D with the smooth boundary D . If w = 0 on D , then
D w , α w , α d A λ 1 R z w 2 d x ,
where λ 1 is the smallest eigenvalue of the problem
Δ ϕ + λ ϕ = 0 i n D ,
ϕ = 0 o n D .
Many papers have studied this inequality, e.g., one may see [21,22].
A representation theorem will be also used in next sections. We write this theorem as
Lemma 2.
Let D be a plane Lipschitz bound region and w be a differential function in D which satisfies D w d A = 0 , then there exists a vector function φ α ( x 1 , x 2 ) such that
φ α , α = w i n D ,
φ α = 0 o n D ,
and a positive constant Λ depending only on the geometry of D such that
D φ α , β φ α , β d A Λ D φ α , α 2 d A .
The Lemma 2 was proofed by Babuška and Aziz [23] and Horgan and Wheeler [24] have used the Lemma 1 to viscous flow problems. The explicit upper bound of Λ can be found in Horgan and Payne [25]. In this paper, this Lemma 2 is used to eliminate the pressure function difference terms p, since we can prove that u 3 satisfy the hypothesis of this Lemma 2 later.
If w C 0 1 ( D ) and w C 0 1 ( R ) , the following Sobolev inequalities hold
D w 4 d A 1 2 D w 2 d A D w , α w , α d A ,
R z w 6 d x Ω R z w , i w , i d x 3 .
For (11), we assume that w 0 as x 3 . Payne [26] has given the derivation of (12). For a special case of the results one can see [27,28]. They have obtained the optimal value of Ω
Ω = 1 27 3 4 4 .
In the following, we also use the following lemma.
Lemma 3.
If w C 1 ( R z ) , w i | D = 0 and w i 0 as x 3 , then
D z ( w i w i ) 2 d A 4 Ω R z w i , j w i , j d x 2 .
We will also use the following lemmas which were derived in [29].
Lemma 4.
Let that the function φ is the solution of the problem
Δ φ = 0 i n R z , φ n = 0 o n D z , φ n = g i n D z ,
where D z g d A = 0 . Then
D z φ , α φ , α d A = D z g 2 d A ,
R z φ , i φ , i d A = 1 μ D z g 2 d A ,

3. Some Useful Lemmas

In this section, we derive some useful lemmas which will be used in next section. First, we define a weighted energy expression
E ( z , t ) = k 0 t R z ( ξ z ) u i , η u i , η d x d η + ν 0 t R z ( ξ z ) u i , j u i , j d x d η + ρ 1 0 t R z ( ξ z ) T , j T , j d x d η + ρ 2 0 t R z ( ξ z ) C , j C , j d x d η = E 1 ( z , t ) + E 2 ( z , t ) + E 3 ( z , t ) + E 4 ( z , t ) ,
where k , ρ 1 , ρ 2 are positive parameters and ξ > z > 0 .
By using the divergence theorem and Equations (1) and (4), we obtain
E 1 ( z , t ) = k 0 t R z ( ξ z ) u i , η [ ν Δ u i u i p , i + g i T + h i C ] d x d η = k ν 0 t R z u i , η u i , 3 d x d η + k 0 t R z u 3 , η p d x d η + k 0 t R z ( ξ z ) u i , η g i T d x d η + k 0 t R z ( ξ z ) u i , η h i C d x d η k ν R z ( ξ z ) u i , j u i , j d x | η = t k R z ( ξ z ) u i u i d x | η = t i = 1 4 A i 1 2 k ν R z ( ξ z ) u i , j u i , j d x | η = t 1 2 k R z ( ξ z ) u i u i d x | η = t .
Using the Schwarz inequality, the arithmetic geometric mean inequality and (9), we can obtain
A 1 k ν 0 t R z u i , η u i , η d x d η 0 t R z u i , 3 u i , 3 d x d η 1 2 k ν 2 k 0 t R z u i , η u i , η d x d η + ν 0 t R z u i , 3 u i , 3 d x d η ,
A 3 k λ 1 0 t R z ( ξ z ) u i , η u i , η d x d η 0 t R z ( ξ z ) T , α T , α d x d η 1 2 ε 1 2 k 0 t R z ( ξ z ) u i , η u i , η d x d η + k δ 1 2 2 λ 1 ε 1 0 t R z ( ξ z ) T , α T , α d x d η ,
and
A 4 ε 2 2 k 0 t R z ( ξ z ) u i , η u i , η d x d η + k δ 2 2 2 λ 1 ε 2 0 t R z ( ξ z ) C , α C , α d x d η ,
where ε 1 , ε 2 > 0 will be determined later and
δ 1 2 = max D ( g i g i ) , δ 2 2 = max D ( h i h i ) ,
We note that for any z * > 0 , using (4) and (5),
D z u 3 , η d A = D z * u 3 , η d A z z * D ξ u 3 , 3 η d A d ξ = D z * u 3 , η d A + z z * D ξ u α , α η d A d ξ = D z * u 3 , η d A .
Since
D 0 f 3 , η d A = 0 , t 0 ,
then,
D z u 3 , η d A = 0 .
Under this assumption, using Lemma 2, there exist vector functions ( φ 1 , φ 2 ) such that
φ α , α = u 3 , η i n D , φ α = 0 o n D .
Hence we have
A 2 = k 0 t R z φ α , α p d x d η = k 0 t R z φ α p , α d x d η = k 0 t R z φ α [ u α , η ν Δ u α + u α g α T h α C ] d x d η = k 0 t R z φ α u α , η d x d η + k ν 0 t R z φ α , β u α , β d x d η + k ν 0 t D z φ α u α , 3 d x d η + k 0 t R z φ α u α d x d η k 0 t R z φ α g α T d x d η k 0 t R z φ α h α C d x d η = A 21 + A 22 + A 23 + A 24 + A 25 + A 26 .
Using the Schwarz, Poincaré and the AG mean inequalities, (9) and (10), we can obtain
A 21 0 t R z φ α φ α d x d η 1 2 0 t R z u α , η u α , η d x d η 1 2 1 λ 1 0 t R z φ α , β φ α , β d x d η 1 2 0 t R z u α , η u α , η d x d η 1 2 Λ 1 2 λ 1 0 t R z u 3 2 d η 1 2 0 t R z u α , η u α , η d x d η 1 2 k Λ 1 2 2 λ 1 0 t R z u i , η u i , η d x d η ,
A 22 k ν 0 t R z φ α , β φ α , β d x d η 1 2 0 t R z u α , β u α , β d x d η 1 2 k ν Λ 1 2 0 t R z u 3 , η 2 d x d η 1 2 0 t R z u α , β u α , β d x d η 1 2 k ν Λ 1 2 2 0 t R z u 3 , η 2 d x d η + k ν Λ 1 2 2 0 t R z u α , β u α , β d x d η ,
A 23 k ν 0 t D z φ α φ α d x d η 1 2 0 t D z u α , 3 u α , 3 d x d η 1 2 k ν Λ 1 2 λ 1 0 t D z u 3 , η 2 d x d η 1 2 0 t D z u α , 3 u α , 3 d x d η 1 2 k ν Λ 1 2 2 λ 1 0 t D z u 3 , η 2 d x d η + k ν Λ 1 2 2 λ 1 0 t D z u α , 3 u α , 3 d x d η ,
A 24 k 0 t R z φ α φ α d x d η 1 2 0 t R z u α u α d x d η 1 2 k Λ 1 2 λ 1 0 t R z u 3 , η 2 d x d η 1 2 0 t R z u α , β u α , β d x d η 1 2 k Λ 1 2 2 λ 1 0 t R z u 3 , η 2 d x d η + k Λ 1 2 2 λ 1 0 t R z u α , β u α , β d x d η ,
A 25 k 0 t R z φ α φ α d x d η 1 2 0 t R z g α g α T 2 d x d η 1 2 k δ 1 Λ 1 2 λ 1 0 t R z u 3 , η 2 d x d η 1 2 0 t R z T , i T , i d x d η 1 2 k δ 1 Λ 1 2 2 λ 1 0 t R z u 3 , η 2 d x d η + k δ 1 Λ 1 2 2 λ 1 0 t R z T , i T , i d x d η ,
A 26 k δ 2 Λ 1 2 2 λ 1 0 t R z u 3 , η 2 d x d η + k δ 2 Λ 1 2 2 λ 1 0 t R z C , i C , i d x d η .
Inserting (26)–(31) into (25), then (19)–(21) and (25) into (18), and choosing ε 1 = ε 2 = 1 2 , we obtain the following lemma.
Lemma 5.
Let u , T , C , p be solutions of Equations (1)–(8) with g , h L ( R × { t > 0 } ) and D f 3 d A = 0 . Then
E 1 ( z , t ) + k ν R z ( ξ z ) u i , j u i , j d x | η = t + k R z ( ξ z ) u i u i d x | η = t a 1 k 0 t R z u i , η u i , η d x d η + a 2 ν 0 t R z u i , j u i , j d x d η + k δ 1 Λ 1 2 λ 1 0 t R z T , i T , i d x d η + k δ 2 Λ 1 2 λ 1 0 t R z C , i C , i d x d η + k ν Λ 1 2 2 λ 1 0 t D z u 3 , η 2 d x d η + k ν Λ 1 2 2 λ 1 0 t D z u α , 3 u α , 3 d x d η + 2 k δ 1 2 λ 1 0 t R z ( ξ z ) T , α T , α d x d η + 2 k δ 2 2 λ 1 0 t R z ( ξ z ) C , α C , α d x d η ,
where
a 1 = k ν + Λ 1 2 λ 1 + ν Λ 1 2 + Λ 1 2 λ 1 + 2 δ 1 Λ 1 2 λ 1 + 2 δ 2 Λ 1 2 λ 1 , a 2 = k ν 2 + k Λ 1 2 2 + k Λ 1 2 2 ν λ 1 .
Similar to Lemma 5, for E 2 ( z , t ) we can obtain the following lemma.
Lemma 6.
Let u , T , C , p be solutions of Equations (1)–(8) with g , h L ( R × { t > 0 } ) and D f 3 d A = 0 . Then
E 2 ( z , t ) + 1 2 0 t R z ( ξ z ) u i u i d x d η + 1 2 R z ( ξ z ) u i u i d x | η = t a 3 0 t R z u i , j u i , j d x d η + ν 2 0 t R z u i u i d x d η + Λ 1 2 2 λ 1 0 t R z u i , η u i , η d x d η + δ 1 Λ 1 2 2 λ 1 0 t R z T , α T , α d x d η + δ 2 Λ 1 2 2 λ 1 0 t R z C , α C , α d x d η + δ 1 2 2 λ 1 ε 3 0 t R z ( ξ z ) T , α T , α d x d η + δ 2 2 2 λ 1 ε 2 0 t R z ( ξ z ) C , α C , α d x d η ,
where
a 3 = ν 2 + Λ 1 2 2 λ 1 + ν Λ 1 2 2 λ 1 + ν Λ 1 2 2 λ 1 + k Λ 1 2 2 λ 1 + δ 1 Λ 1 2 2 λ 1 + δ 2 Λ 1 2 2 λ 1 .
Proof. 
By the divergence theorem and Equations (1)–(8), we have
E 2 ( z , t ) = 0 t R z ( ξ z ) u i u i d x d η 1 2 R z ( ξ z ) u i u i d x | η = t ν 0 t R z u i u i , 3 d x d η + 0 t R z ( ξ z ) u i g i T d x d η + 0 t R z ( ξ z ) u i h i C d x d η + 0 t R z u 3 p d x d η 0 t R z ( ξ z ) u i u i d x d η 1 2 R z ( ξ z ) u i u i d x | η = t + i = 1 4 B i .
Using the Schwarz inequality, the Poincaré inequality and the AG mean inequality, we can obtain
B 1 ν 0 t R z u i , 3 u i , 3 d x d η 0 t R z u i u i d x d η 1 2 ν 2 0 t R z u i , 3 u i , 3 d x d η + 0 t R z u i u i d x d η .
Similar to (20) and (21), we have for B 2 and B 3
B 2 ε 3 2 0 t R z ( ξ z ) u i u i d x d η + δ 1 2 2 λ 1 ε 3 0 t R z ( ξ z ) T , α T , α d x d η ,
and
B 3 ε 4 2 0 t R z ( ξ z ) u i u i d x d η + δ 2 2 2 λ 1 ε 2 0 t R z ( ξ z ) C , α C , α d x d η ,
where ε 3 , ε 4 are positive constants.
To bound B 4 in (32), we also require that
D f 3 d A = 0 .
Then using to the Lemma 2 in Section 2, there exist vector functions ( φ ^ 1 , φ ^ 2 ) such that
φ ^ α , α = u 3 , i n D , φ ^ α = 0 , o n D .
Therefore, we have
B 4 = 0 t R z φ ^ α , α p d x d η = 0 t R z φ ^ α p , α d x d η = 0 t R z φ ^ α [ u α , η ν Δ u α + u α g α T h α C ] d x d η = 0 t R z φ ^ α u α , η d x d η + ν 0 t R z φ ^ α , β u α , β d x d η + ν 0 t D z φ ^ α u α , 3 d A d η + 0 t R z φ ^ α u α d x d η 0 t R z g α T φ ^ α d x d η 0 t R z h α C φ ^ α d x d η i = 1 6 B 4 i .
As the derivation of (26)–(32), we conclude that
B 41 0 t R z φ ^ α φ ^ α d x d η 1 2 0 t R z u α , η u α , η d x d η 1 2 1 λ 1 0 t R z φ ^ α , β φ ^ α , β d x d η 1 2 0 t R z u α , η u α , η d x d η 1 2 Λ 1 2 λ 1 0 t R z u 3 2 x d η 1 2 0 t R z u α , η u α , η d x d η 1 2 Λ 1 2 2 λ 1 0 t R z u 3 , α u 3 , α x d η + 0 t R z u i , η u i , η d x d η ,
B 42 ν 0 t R z φ ^ α , β φ ^ α , β d x d η 1 2 0 t R z u α , β u α , β d x d η 1 2 ν Λ 1 2 0 t R z u 3 2 d x d η 1 2 0 t R z u α , β u α , β d x d η 1 2 ν Λ 1 2 2 λ 1 0 t R z u i , j u i , j d x d η ,
B 43 ν 0 t D z φ ^ α φ ^ α d x d η 1 2 0 t D z u α , 3 u α , 3 d x d η 1 2 ν Λ 1 2 λ 1 0 t D z u 3 2 d x d η 1 2 0 t D z u α , 3 u α , 3 d x d η 1 2 ν Λ 1 2 2 λ 1 0 t D z u i , j u i , j d x d η ,
B 44 0 t R z φ ^ α φ ^ α d x d η 1 2 0 t R z u α u α d x d η 1 2 Λ 1 2 λ 1 0 t R z u i u i d x d η k Λ 1 2 2 λ 1 0 t R z u i , α u i , α d x d η ,
B 45 0 t R z φ ^ α φ ^ α d x d η 1 2 0 t R z g α g α T 2 d x d η 1 2 δ 1 Λ 1 2 λ 1 0 t R z u 3 , α u 3 , α d x d η 1 2 0 t R z T , α T , α d x d η 1 2 δ 1 Λ 1 2 2 λ 1 0 t R z u 3 , α u 3 , α d x d η + 0 t R z T , α T , α d x d η ,
B 46 δ 2 Λ 1 2 2 λ 1 0 t R z u 3 , α u 3 , α d x d η + 0 t R z C , α C , α d x d η .
Inserting (38)–(43) into (37), we obtain
B 4 [ Λ 1 2 2 λ 1 + ν Λ 1 2 2 λ 1 + ν Λ 1 2 2 λ 1 + k Λ 1 2 2 λ 1 + δ 1 Λ 1 2 2 λ 1 + δ 2 Λ 1 2 2 λ 1 ] 0 t R z u i , j u i , j d x d η + Λ 1 2 2 λ 1 0 t R z u i , η u i , η d x d η + δ 1 Λ 1 2 2 λ 1 0 t R z T , α T , α d x d η + δ 2 Λ 1 2 2 λ 1 0 t R z C , α C , α d x d η .
Inserting (33), (34), (35) and (44) into (32) and choosing ε 3 = ε 4 = 1 2 , we can obtain Lemma 5.
Next we may bound E 3 ( z , t ) . First we let T M denotes that the maximum of T by using the maximum principle in R, i.e.,
T M = max D × { t > 0 } F ( x 1 , x 2 , t ) .
Integrating by parts, using (3), (5), (6), (7) together with (9) and the AG mean inequality, we have
E 3 ( z , t ) = ρ 1 0 t R z T T , 3 d x d η ρ 1 0 t R z T ( T , η + u i T , i ) d x d η = ρ 1 2 R z ( ξ z ) T 2 d x | η = t + ρ 1 2 0 t D z T 2 d A d η + ρ 1 2 0 t R z u 3 T 2 d x d η ρ 1 2 R z ( ξ z ) T 2 d x | η = t + ρ 1 2 λ 1 0 t D z T , α T , α d A d η + ρ 1 T M 2 0 t R z u 3 2 d x d η 1 2 0 t R z T 2 d x d η 1 2 ρ 1 2 R z ( ξ z ) T 2 d x | η = t + ρ 1 2 λ 1 0 t D z T , α T , α d A d η + ρ 1 T M 4 λ 1 0 t R z u 3 , α u 3 , α d x d η + 0 t R z T , i T , i d x d η .
Using Equations (3)–(7) and integrating by parts, we obtain
E 4 ( z , t ) = ρ 2 0 t R z C C , 3 d x d η ρ 2 0 t R z ( ξ z ) C C , η + u i C , i σ Δ T d x d η ρ 2 2 0 t D z C 2 d A d η ρ 2 2 R z ( ξ z ) C 2 d x | η = t + ρ 2 2 0 t R z u 3 C 2 d x d η σ ρ 2 0 t R z C T , 3 d x d η σ ρ 2 0 t R z ( ξ z ) C , i T , i d x d η .
By the Schwarz and the AG mean inequalities, it follows that from (47)
E 4 ( z , t ) + ρ 2 2 R z ( ξ z ) C 2 d x | η = t ρ 2 2 λ 1 0 t D z C 2 d A d η + σ ρ 2 2 λ 1 0 t R z C , i C , i d x d η + σ ρ 2 2 λ 1 0 t R z T , 3 T , 3 d x d η + σ ρ 2 ε 5 2 0 t R z ( ξ z ) C , i C , i d x d η + σ ρ 2 2 ε 5 0 t R z ( ξ z ) T , i T , i d x d η + ρ 2 2 0 t R z u 3 C 2 d x d η ,
for an arbitrary constant ε 5 > 0 .
In order to bound the last term on the right of (48), using the Equations (9), (11) and (13), the Schwarz inequality and the AG mean inequality to obtain
ρ 2 2 0 t R z u 3 C 2 d x d η ρ 2 2 0 t R z ( u 3 C ) 2 d x 1 2 R z C 2 d x 1 2 d η ρ 2 2 max t R z C 2 d x 1 2 0 t z D ξ u 3 4 d A 1 4 D ξ C 4 d A 1 4 d ξ d η ρ 2 Ω 1 8 2 3 4 λ 1 1 4 max t R z C 2 d x 1 2 0 t R z u i , j u i , j d x d η 1 2 0 t R z C , i C , i d x d η 1 2 ρ 2 Ω 1 8 2 7 4 λ 1 1 4 max t R z C 2 d x 1 2 0 t R z u i , j u i , j d x d η + 0 t R z C , i C , i d x d η ,
where the bound for max t ( R z C 2 d x ) 1 2 will be derived later.
Inserting (49) back into (48), we have
E 4 ( z , t ) + ρ 2 2 R z ( ξ z ) C 2 d x | η = t ρ 2 2 λ 1 0 t D z C , α C , α d A d η + σ ρ 2 2 λ 1 0 t R z C , i C , i d x d η + σ ρ 2 2 λ 1 0 t R z T , 3 T , 3 d x d η + σ ρ 2 ε 6 2 0 t R z ( ξ z ) C , i C , i d x d η + σ ρ 2 2 ε 6 0 t R z ( ξ z ) T , i T , i d x d η + ρ 2 Ω 1 8 2 7 4 λ 1 1 4 max t R z C 2 d x 1 2 0 t R z u i , j u i , j d x d η + 0 t R z C , i C , i d x d η .
Combining (46) and (50), we obtain the following Lemma.
Lemma 7.
Let u , T , C , p be solutions of Equations (1)–(8) with g , h L ( R × { t > 0 } ) and D f 3 d A = 0 . Then
E 3 ( z , t ) + E 4 ( z , t ) 1 2 R z ( ξ z ) ρ 1 T 2 + ρ 2 C 2 d x | η = t ρ 1 2 λ 1 0 t D z T , α T , α d A d η + ρ 2 2 λ 1 0 t D z C , α C , α d A d η + σ ρ 2 2 λ 1 + ρ 2 Ω 1 8 2 7 4 λ 1 1 4 max t R z C 2 d x 1 2 0 t R z C , i C , i d x d η + σ ρ 2 2 λ 1 + ρ 1 T M 4 λ 1 0 t R z T , i T , i d x d η + σ ρ 2 ε 6 2 0 t R z ( ξ z ) C , i C , i d x d η + σ ρ 2 2 ε 6 0 t R z ( ξ z ) T , i T , i d x d η + ρ 1 T M 4 λ 1 + ρ 2 Ω 1 8 2 7 4 λ 1 1 4 max t R z C 2 d x 1 2 0 t R z u i , j u i , j d x d η ,
where ε 6 is a positive constant. Next, we use Lemmas 5–7 to prove our main result.

4. Main Result

First, we introduce a new function
ψ ( z , t ) = k 0 t R z ( ξ z ) u i , η u i , η d x d η + ν 0 t R z ( ξ z ) u i , j u i , j d x d η + ρ 1 0 t R z ( ξ z ) T , i T , i d x d η + ρ 2 0 t R z ( ξ z ) C , i C , i d x d η + k ν R z ( ξ z ) u i , j u i , j d x | η = t + ( k + 1 2 ) R z ( ξ z ) u i u i d x | η = t + 1 2 0 t R z ( ξ z ) u i u i d x d η + 1 2 R z ( ξ z ) ρ 1 T 2 + ρ 2 C 2 d x | η = t .
Using Lemmas 4–6 and in view of (51), we have
ψ ( z , t ) a 4 0 t R z u i , η u i , η d x d η + a 5 0 t R z u i , j u i , j d x d η + a 6 0 t R z T , i T , i d x d η + ν 2 0 t R z u i u i d x d η + a 7 0 t R z C , i C , i d x d η + k ν Λ 1 2 2 λ 1 0 t D z u 3 , η 2 d A d η + k ν Λ 1 2 2 λ 1 0 t D z u α , 3 u α , 3 d A d η + ρ 1 2 λ 1 0 t D z T , α T , α d A d η + ρ 2 2 λ 1 0 t D z C , α C , α d A d η + 2 k δ 1 2 λ 1 0 t R z ( ξ z ) T , α T , α d x d η + 2 k δ 2 2 λ 1 0 t R z ( ξ z ) C , α C , α d x d η + δ 1 2 2 λ 1 ε 3 0 t R z ( ξ z ) T , α T , α d x d η + δ 2 2 2 λ 1 ε 2 0 t R z ( ξ z ) C , α C , α d x d η + σ ρ 2 ε 6 2 0 t R z ( ξ z ) C , i C , i d x d η + σ ρ 2 2 ε 6 0 t R z ( ξ z ) T , i T , i d x d η ,
where
a 4 = a 1 k + Λ 1 2 2 λ 1 , a 5 = a 2 ν + a 3 + ρ 1 T M 4 λ 1 + ρ 2 Ω 1 8 2 7 4 λ 1 1 4 max t R z C 2 d x 1 2 , a 6 = k δ 1 Λ 1 2 λ 1 + δ 1 Λ 1 2 2 λ 1 , a 7 = k δ 2 Λ 1 2 λ 1 + δ 2 Λ 1 2 2 λ 1 + σ ρ 2 2 λ 1 + ρ 2 Ω 1 8 2 7 4 λ 1 1 4 max t R z C 2 d x 1 2 .
Choosing ε 6 = 1 2 σ , ρ 2 = 8 k δ 2 2 λ 1 + 2 δ 2 2 λ 1 ε 2 , ρ 1 = 4 k δ 1 2 λ 1 + δ 1 2 λ 1 ε 3 + σ ρ 2 ε 6 and define
Ψ ( z , t ) = k 0 t R z ( ξ z ) u i , η u i , η d x d η + ν 0 t R z ( ξ z ) u i , j u i , j d x d η + 1 2 ρ 1 0 t R z ( ξ z ) T , i T , i d x d η + 1 2 ρ 2 0 t R z ( ξ z ) C , i C , i d x d η + k ν R z ( ξ z ) u i , j u i , j d x | η = t + ( k + 1 2 ) R z ( ξ z ) u i u i d x | η = t + 1 2 0 t R z ( ξ z ) u i u i d x d η + 1 2 R z ( ξ z ) ρ 1 T 2 + ρ 2 C 2 d x | η = t ,
we can have from (52)
Ψ ( z , t ) a 4 0 t R z u i , η u i , η d x d η + a 5 0 t R z u i , j u i , j d x d η + a 6 0 t R z T , i T , i d x d η + ν 2 0 t R z u i u i d x d η + a 7 0 t R z C , i C , i d x d η + k ν Λ 1 2 2 λ 1 0 t D z u 3 , η 2 d A d η + k ν Λ 1 2 2 λ 1 0 t D z u α , 3 u α , 3 d A d η + ρ 1 2 λ 1 0 t D z T , α T , α d A d η + ρ 2 2 λ 1 0 t D z C , α C , α d A d η .
From (53), we have
Ψ ( z , t ) z = k 0 t R z u i , η u i , η d x d η + ν 0 t R z u i , j u i , j d x d η + 1 2 ρ 1 0 t R z T , i T , i d x d η + 1 2 ρ 2 0 t R z C , i C , i d x d η + k ν R z u i , j u i , j d x | η = t + ( k + 1 2 ) R z u i u i d x | η = t + 1 2 0 t R z u i u i d x d η + 1 2 R z ρ 1 T 2 + ρ 2 C 2 d x | η = t
and
2 Ψ ( z , t ) z 2 = k 0 t D z u i , η u i , η d A d η + ν 0 t D z u i , j u i , j d A d η + 1 2 ρ 1 0 t D z T , i T , i d A d η + 1 2 ρ 2 0 t D z C , i C , i d A d η + k ν D z u i , j u i , j d A | η = t + ( k + 1 2 ) D z u i u i d A | η = t + 1 2 0 t D z u i u i d A d η + 1 2 D z ρ 1 T 2 + ρ 2 C 2 d A | η = t .
Combining (54), (55) and (56), we have
Thus
Ψ ( z , t ) K 1 Ψ ( z , t ) z + K 2 2 Ψ ( z , t ) z 2 ,
where
K 1 = max { a 4 k , a 5 ν , ν , a 6 ρ 1 , a 7 ρ 2 } , K 2 = max { ν Λ 1 2 2 λ 1 , k Λ 1 2 2 λ 1 , 1 2 λ 1 } .
Inequality (57) can be rewritten as
z e 1 z Ψ z + 2 Ψ 0 ,
where
1 = K 1 2 K 2 + 1 2 K 1 2 K 2 2 + 4 K 2 , 2 = K 1 2 K 2 + 1 2 K 1 2 K 2 2 + 4 K 2 .
Integrating (58) from z to leads to
Ψ z + 2 Ψ 0 ,
and hence
Ψ ( z , t ) Ψ ( 0 , t ) e 2 z .
Combining (53) and (59), we can obtain the following theorem.
Theorem 1.
Let u , T , C , p be solutions of Equations (1)–(8) with g , h L ( R × { t > 0 } ) and D f 3 d A = 0 . Then
k 0 t R z ( ξ z ) u i , η u i , η d x d η + ν 0 t R z ( ξ z ) u i , j u i , j d x d η + 1 2 ρ 1 0 t R z ( ξ z ) T , i T , i d x d η + 1 2 ρ 2 0 t R z ( ξ z ) C , i C , i d x d η + k ν R z ( ξ z ) u i , j u i , j d x | η = t + ( k + 1 2 ) R z ( ξ z ) u i u i d x | η = t + 1 2 0 t R z ( ξ z ) u i u i d x d η + 1 2 R z ( ξ z ) ρ 1 T 2 + ρ 2 C 2 d x | η = t Ψ ( 0 , t ) e 2 z .
Remark 1.
The result of Theorem 1 belongs to the study of Saint-Venant principle, which shows that the fluid decays exponentially with spatial variables on the cylinder.
Remark 2.
Theorem 1 shows that the solutions of Equations (1)–(8) decays exponentially as z . To make the decay bound explicit, we have to derive the bounds for Ψ ( 0 , t ) and max t R C 2 d x in next section.

5. Bounds of Ψ ( 0 , t ) and max t R C 2 dx

From the previous section, we can see that a 3 involves the quantities max t R C 2 d x . To make our main result explicit, we have to derive bounds of Ψ ( 0 , t ) and max t R C 2 d x in term of the physical parameters σ , ν , g i , h i , the boundary data and so on. To do this, we begin with
0 t R T , i T , i d x d η = 0 t D F T , 3 d A d η 0 t R T Δ T d x d η .
Now we assume that S is a sufficiently smooth function satisfying the same initial and boundary conditions as T. Thus,
0 t R T , i T , i d x d η = 0 t D S T , 3 d A d η 0 t R T Δ T d x d η = 0 t R S , i T , i d x d η 0 t R ( T S ) Δ T d x d η = 0 t R S , i T , i d x d η 0 t R ( T S ) ( T , η + u i T , i ) d x d η = 0 t R S , i T , i d x d η R T 2 d x | η = t + R T S d x | η = t 0 t R S , η T d x d η 0 t R S , i T u i d x d η 1 2 0 t D f F 2 d A d η .
Using the Schwarz and the arithmetic-geometric mean inequalities, we can obtain
R T 2 d x | η = t + 0 t R T , i T , i d x d η 1 2 R S 2 d x | η = t 1 2 0 t D f F 2 d A d η + ϵ 1 2 0 t R T , i T , i d x d η + 1 2 ϵ 1 0 t R S , i S , i d x d η + ϵ 2 2 λ 1 0 t R T , i T , i d x d η + 1 2 ϵ 2 λ 1 0 t R S , η S , η d x d η + ϵ 3 T M 2 0 t R u i u i d x d η + T M 2 ϵ 3 0 t R S , i S , i d x d η ,
where ϵ 1 , ϵ 2 , ϵ 3 are positive constants. Choosing
ϵ 1 = 1 2 , ϵ 2 = λ 1 2 ,
we can obtain
R T 2 d x | η = t + 0 t R T , i T , i d x d η ϵ 3 T M 2 0 t R u i u i d x d η + d a t a .
Obviously, the data terms in (65) involve 1 2 R S 2 d x | η = t , 0 t R S , i S , i d x d η , 0 t R S , η S , η d x d η and 1 2 0 t D f F 2 d A d η . Similarly, we can bound 0 t R C , i C , i d x d η as well as max t R C 2 d x . Firstly, we introduce a function H:
H t + u i H , i = Δ H , i n R × { t > 0 } , H = 0 , i n R × { t = 0 } , H = 0 , o n D × { x 3 > 0 } × { t 0 } , H = G ( x 1 , x 2 , t ) , o n D × { t > 0 } ,
Then we have
( C H ) , t + u i ( C H ) , i = Δ ( C H ) + σ Δ T , i n R × { t > 0 } , C H = 0 i n R × { t = 0 } , C H = 0 o n D × { x 3 > 0 } × { t 0 } , C H = 0 o n D × { t > 0 } .
By the triangle inequality, we obtain that
0 t R C , i C , i d x d η 1 2 0 t R ( C H ) , i ( C H ) , i d x d η 1 2 + 0 t R H , i H , i d x d η 1 2 ,
and
max t R C 2 d x 1 2 max t R ( C H ) 2 d x 1 2 + max t R H 2 d x 1 2 .
Then,
1 2 R ( C H ) 2 d x | η = t + 0 t R ( C H ) , i ( C H ) , i d x d η = σ 0 t R ( C H ) , i T , i d x d η ,
which follows that
1 2 R ( C H ) 2 d x | η = t + 0 t R ( C H ) , i ( C H ) , i d x d η σ 2 0 t R T , i T , i d x d η ϵ 3 T M σ 2 2 0 t R u i u i d x d η + d a t a .
Just as in the computation for T, we have the following inequality
1 2 R H 2 d x | η = t + 0 t R H , i H , i d x d η ϵ 4 0 t R u i u i d x d η + d a t a .
Thus,
1 2 R C 2 d x | η = t + 0 t R C , i C , i d x d η ϵ 5 0 t R u i u i d x d η + d a t a ,
where ϵ 5 > 0 depends on ϵ 3 , ϵ 4 and σ . Next we have to derive a bound for 0 t R u i u i d x d η in term of data. To do this, we define a function
i = f i e ς 1 z ,
for some positive constant i . Then,
0 t R u i , j u i , j d x d η 1 2 0 t R ( u i i ) , j ( u i i ) , j d x d η 1 2 + 0 t R i , j i , j d x d η 1 2 .
Obviously, we find that the last term of (75) is a data term. Now
ν 0 t R ( u i i ) , j ( u i i ) , j d x d η = 0 t R ( u i i ) , j ( u i i ) + p , i g i T h i C + i ν Δ i d x d η
or
ν 2 0 t R ( u i i ) , j ( u i i ) , j d x d η 0 t R p i , i d x d η + δ 1 2 2 0 t R T 2 d x d η + δ 2 2 2 0 t R C 2 d x d η + d a t a .
Noting that
i , i = ( f α , α ς 1 f 3 ) e ς 1 z = 0 ,
in R for ς 1 = f α , α f 3 , we can rewrite (76) as
ν 2 0 t R ( u i i ) , j ( u i i ) , j d x d η δ 1 2 2 λ 1 0 t R T , i T , i d x d η + δ 2 2 2 λ 1 0 t R C , i C , i d x d η + d a t a .
Inserting (78) back into (75), we may have a bound of the form
0 t R u i , j u i , j d x d η C 1 0 t R T , i T , i d x d η + C 2 0 t R C , i C , i d x d η + d a t a ,
for computable C 1 and C 2 . Combining (65) and (73) and by inequality (17), we have
0 t R u i , j u i , j d x d η C 1 T M 2 λ 1 ϵ 3 0 t R u i , j u i , j d x d η + C 2 λ 1 ϵ 5 0 t R u i , j u i , j d x d η + d a t a .
It is clear to see that
0 t R u i , j u i , j d x d η d a t a ,
for ϵ 3 = λ 1 2 C 1 T M , ϵ 5 = λ 1 4 C 2 . From (65) and (73), we can obtain
max t R T 2 d x d a t a , max t R C 2 d x d a t a ,
and
0 t R T , i T , i d x d η d a t a , 0 t R C , i C , i d x d η d a t a .
Next we seek bound for the total energy Ψ ( 0 , t ) . From (54) we can obtain for Ψ ( 0 , t )
Ψ ( 0 , t ) a 4 0 t R u i , η u i , η d x d η + ν 2 0 t R u i u i d x d η + b 1 0 t D u α , 3 u α , 3 d A d η + d a t a .
We are left to derive bounds for 0 t R z u i , η u i , η d x d η and 0 t D u α , 3 u α , 3 d A d η . Multiplying (1) with u i , η and integrating in the region R × [ 0 , t ] , we have
0 t R u i , η u i , η d x d η = 0 t R u i , η [ ν Δ u i u i p , i + g i T + h i C ] d x d η ,
which follows that
0 t R u i , η u i , η d x d η 2 ν 0 t D u α , 3 u α , η d A d η + 2 0 t D u 3 , η p d A d η + δ 1 2 2 λ 1 0 t R T , i T , i d x d η + δ 1 2 2 λ 1 0 t R C , i C , i d x d η + d a t a 2 ν 0 t D u α , 3 f α , η d A d η + 2 0 t D f 3 , η p d A d η + d a t a ,
where we have used the fact u 3 , 3 = u α , α = f α , α on D 0 and (83), and ε 6 is a positive constants. For the first term of (86), using the Schwarz and the AG mean inequalities we have
2 ν 0 t D 0 f α , η u α , 3 d x d η 2 ν 0 t D 0 u α , 3 u α , 3 d A d η 1 2 0 t D 0 f α , η f α , η d A d η 1 2 0 t D 0 u α , 3 u α , 3 d A d η + d a t a .
To bound the second term on the right of (86), we define p ¯ to be the mean value of p over D 0 , i.e.,
p ¯ = 1 | D 0 | D 0 p d A ,
where | D 0 | is the measure of D 0 . Since
D 0 f 3 , η p ¯ d A = p ¯ D 0 f 3 , η d A = 0 ,
we obtain
D 0 f 3 , η p d A = D 0 f 3 , η ( p p ¯ ) d A .
It follows by using Schwarz inequality that
0 t D 0 f 3 , η p d x d η = 0 t D 0 f 3 , η ( p p ¯ ) d A d η d a t a + ϵ 6 0 t D 0 ( p p ¯ ) 2 d A d η ,
where ϵ 6 is a positive constant to be determined later.
To deal with the integral 0 t D 0 ( p p ¯ ) 2 d A d η , we let an auxiliary function χ satisfying:
Δ χ = 0 , χ n = 0 o n D 0 , χ n = p p ¯ , i n D 0 .
From the definition of p ¯ in (88), it is clear that D 0 ( p p ¯ ) d A = 0 . Thus, the necessary condition for the existence of a solution is satisfied and we compute
0 t D 0 ( p p ¯ ) 2 d A d η = 0 t R ( p p ¯ ) χ n d x d η = 0 t R ( p p ¯ ) , i χ , i d x d η = 0 t R χ , i [ u i , η + ν u i , j j u i + g i T + h i C ] d x d η .
Since
ν 0 t R χ , i u i , j j d x d η = ν 0 t D χ , i u i , 3 d x d η ν 0 t R χ , i j u i , j d x d η = ν 0 t D χ , 3 f α , α d x d η ν 0 t D χ , α u α , 3 d x d η + ν 0 t D χ , j u 3 , j d x d η + ν 0 t R χ , j u i , i j d x d η = ν 0 t D χ , α u α , 3 d x d η + ν 0 t D χ , α f 3 , α d x d η .
From (93), we can obtain
0 t D 0 ( p p ¯ ) 2 d A d η = 0 t R χ , i [ u i , η + ν u i , j j u i + g i T + h i C ] d x d η 0 t R χ , i χ , i d x d η 1 2 0 t R u i , η u i , η d x d η 1 2 + ν 0 t D χ , α χ , α d A d η 1 2 0 t D u 3 , α u 3 , α d A d η 1 2 + ν 0 t D χ , α χ , α d A d η 1 2 0 t D f 3 , α f 3 , α d A d η 1 2 + 1 λ 1 0 t R χ , i χ , i d x d η 1 2 0 t R u i , j u i , j d x d η 1 2 + δ 1 λ 1 0 t R χ , i χ , i d x d η 1 2 0 t R T , j T , j d x d η 1 2 + δ 2 λ 1 0 t R χ , i χ , i d x d η 1 2 0 t R C , j C , j d x d η 1 2 .
Making use of (15), (16), (81) and (83) with g = p p ¯ , we have
[ 0 t D 0 ( p p ¯ ) 2 d A d η ] 1 2 1 μ 0 t R u i , η u i , η d x d η 1 2 + ν 0 t D 0 u α , 3 u α , 3 d x d η 1 2 + ν 0 t D 0 f 3 , α f 3 , α d x d η 1 2 + 1 μ λ 1 0 t R u i , j u i , j d x d η 1 2 + δ 1 μ λ 1 0 t R T , j T , j d x d η 1 2 + δ 2 μ λ 1 0 t R C , j C , j d x d η 1 2 ,
which follows that
0 t D 0 ( p p ¯ ) 2 d A d η d a t a + c 3 0 t D 0 u α , 3 u α , 3 d x d η + c 4 0 t R u i , η u i , η d x d η .
Obviously, from (97) we must establish a bound for the term 0 t D 0 u α , 3 u α , 3 d x d η . To do this, we begin with the identity
0 t R u i , 3 ν u i , j j u i p , i u i , η + g i T + h i C d x d η = 0 .
Integrating (98) by parts, we can have
ν 0 t D 0 u i , 3 u i , 3 d x d η + ν 0 t R u i , j 3 u i , j d x d η + 0 t R u i , 3 u i d x d η + 0 t R u i , 3 p , i d x d η + 0 t R u i , 3 u i , η d x d η + 0 t R u i , 3 g i T d x d η + 0 t R u i , 3 h i C d x d η = 0 ,
which follows that
0 t D 0 u α , 3 u α , 3 d x d η d a t a + 0 t D 0 u α , 3 p d A d η + ϵ 7 0 t R u i , η u i , η d x d η .
where ϵ 7 is a positive constant.
As the derivation of (91), for the term 0 t D 0 u α , 3 p d A d η we can obtain
0 t D 0 u α , 3 p d A d η d a t a + ϵ 8 0 t D 0 ( p p ¯ ) 2 d A d η ,
where ϵ 8 is a positive constant.
Combining (97), (100) and (101), we have
1 ϵ 8 c 3 0 t D 0 ( p p ¯ ) 2 d x d η d a t a + c 3 ϵ 7 0 t R u i , η u i , η d x d η .
Combing (86), (87), (91) and (100), we obtain
( 1 ϵ 7 ) 0 t R u i , η u i , η d x d η d a t a + ( ϵ 6 + ϵ 7 ) 0 t D 0 ( p p ¯ ) 2 d x d η .
Choosing ε 7 and ϵ 8 small enough such that 1 ϵ 8 c 3 > 0 and 1 ϵ 7 > 0 , from (102) and (103) we can obtain
0 t R u i , η u i , η d x d η d a t a ,
and
0 t D 0 ( p p ¯ ) 2 d A d η d a t a .
Inserting (101) back into (100), we obtain
0 t D 0 u α , 3 u α , 3 d x d η d a t a + ϵ 8 0 t D 0 ( p p ¯ ) 2 d A d η + ϵ 7 0 t R u i , η u i , η d x d η .
In light of (104) and (105), we have
0 t D 0 u α , 3 u α , 3 d x d η d a t a .
Recalling (84) and using (104) and (107), we obtain
Ψ ( 0 , t ) d a t a ,
which is to say that we have bounded the total energy.

6. Conclusions

In this paper, we consider the spatial decay bounds for the Brinkman equations in double-diffusive convection in a semi-infinite pipe. Using the results of this paper, we can continue to study the continuous dependence of the solution on the parameters in the system of equations. In addition, Using the results of this paper, we can continue to study the continuous dependence of the solution on the parameters in the system of equations. This research can refer to the method of [30,31]. In addition, if Equation (1) is replaced by a nonlinear problem (e.g., Forchheimer equations), it will be a more interesting topic.

Author Contributions

Conceptualization, and validation, Y.L.; formal analysis and investigation, X.C. and D.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Key projects of universities in Guangdong Province (NATURAL SCIENCE) (2019KZDXM042) and the Research team project of Guangzhou Huashang College (2021HSKT01).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 1992. [Google Scholar]
  2. Straughan, B. Mathematical Aspects of Penetrative Convection; Pitman Research Notes in Mathematics Series; CRC Press: Boca Raton, FL, USA, 1993; p. 288. [Google Scholar]
  3. Ames, K.A.; Payne, L.E. Continuous dependence results for an ill-posed problem in nonlinear viscoelasticity. Z. Angew. Math. Phys. 1997, 48, 20–29. [Google Scholar] [CrossRef]
  4. Franchi, F.; Straughan, B. Structural stability for the Brinkman equations of porous media. Math. Meth. Appl. Sci. 1996, 19, 1335–1347. [Google Scholar] [CrossRef]
  5. Payne, L.E.; Straughan, B. Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media. J. Math. Pures Appl. 1996, 75, 225–271. [Google Scholar]
  6. Ames, K.A.; Payne, L.E. On stabilizing against modeling errors in a penetrative convection problem for a porous medium. Math. Models Meth. Appl. Sci. 1994, 4, 733–740. [Google Scholar] [CrossRef]
  7. Franchi, F. Stabilization estimates for penetrative motions in porous media. Math. Meth. Appl. Aci. 1994, 17, 11–20. [Google Scholar] [CrossRef]
  8. Morro, A.; Straughan, B. Continuous dependence on the source parameters for convective motion in porous media. Nonlinear Anal. Theory Methods Appl. 1992, 18, 307–315. [Google Scholar] [CrossRef]
  9. Qin, Y.; Kaloni, P.N. Steady convection in a porous convection based upon the Brinkman model. IMA J. Appl. Math. 1992, 35, 85–95. [Google Scholar] [CrossRef]
  10. Richardson, L.L.; Straughan, B. Convection with temperature dependent viscosity in a porous medium: Nonlinear stability and the Brinkman effect. Atti Acad. Naz. Lincei. (Ser. IX) 1993, 4, 223–230. [Google Scholar]
  11. Hameed, A.A.; Harfash, A.J. Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density. Basrah J. Sci. 2019, 37, 1–15. [Google Scholar]
  12. Liu, Y.; Xiao, S.Z.; Lin, Y.W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–82. [Google Scholar] [CrossRef]
  13. Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubitity. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar]
  14. Chen, W.H. Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two space dimensions. J. Math. Anal. Appl. 2020, 486, 123922. [Google Scholar] [CrossRef] [Green Version]
  15. Scott, N.L. Continuous dependence on boundary reaction terms in a porous mediu od Darcy type. J. Math. Anal. Appl. 2013, 399, 667–675. [Google Scholar] [CrossRef]
  16. Scott, N.L.; Straughan, B. Continuous dependence on the reaction terms in porous convection with surface reactions. Quart. Appl. Math. 2013, 71, 501–508. [Google Scholar] [CrossRef] [Green Version]
  17. Li, Y.F.; Xiao, S.Z.; Zeng, P. The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere. J. Math. Inequalit. 2021, 15, 293–304. [Google Scholar] [CrossRef]
  18. Li, Y.F.; Chen, X.J.; Shi, J.C. Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. Appl. Math. Opt. 2021, 84, 979–999. [Google Scholar] [CrossRef]
  19. Li, Y.; Zeng, P. Continuous Dependence on the Heat Source of 2D Large-Scale Primitive Equations in Oceanic Dynamics. Symmetry 2021, 13, 1961. [Google Scholar] [CrossRef]
  20. Liu, Y.; Du, Y.; Lin, C.H. Convergence and continuous dependence results for the Brinkman equations. Appl. Math. Comput. 2010, 215, 4443–4455. [Google Scholar] [CrossRef]
  21. Payne, L.E. Isopermetric inequalities and their applications. SIAM Rev. 1967, 9, 453–488. [Google Scholar] [CrossRef]
  22. Pólya, G.; Szegö, G. Isopermetric Inequalities in Mathematical Physics; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1951; Volume 27. [Google Scholar]
  23. Babuska, I.; Aziz, A.K. Survey lectures on the mathematical foundations of the finite element method. In The Mathematical Foundation of the Finite Element Method with Application to Partial Differential Equation; Academic Press: New York, NY, USA, 1972; pp. 3–359. [Google Scholar]
  24. Horgan, C.O.; Wheeler, L.T. Spatial decay estimates for the Navier–Stokes equations with application to the problem of entry flow. SIAM J. Appl. Math. 1978, 35, 97–116. [Google Scholar] [CrossRef]
  25. Horgan, C.O.; Payne, L.E. Inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Anal. 1983, 82, 165–179. [Google Scholar] [CrossRef]
  26. Payne, L.E. Uniqueness criteria for steady state solutions of the Navier-Stokes equation. In Proceedings of the Simposio Internazionale Sulle Applicazioni Dell’analisi alla Fisica Matematica, Roma, Italy, 28 September–4 October 1964; pp. 130–153. [Google Scholar]
  27. Levine, H.A. An estimate for the best constant in a sobolev inequality involving three integral norms. Ann. Mat. Pura Appl. 1980, 4, 181–197. [Google Scholar] [CrossRef]
  28. Talenti, G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 1976, 110, 353–372. [Google Scholar] [CrossRef] [Green Version]
  29. Ames, K.A.; Payne, L.E.; Schaefer, P.W. Spatial decay estimates in time-dependent stokes flow. SIAM J. Math. Anal. 1993, 24, 1395–1413. [Google Scholar] [CrossRef]
  30. Song, J.C. Phragmén-Lindelöf and continuous dependence type results in a Stokes flow. Appl. Math. Mech. 2010, 31, 875–882. [Google Scholar] [CrossRef]
  31. Li, Y.F.; Lin, C.H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe. Appl. Math. Comput. 2014, 244, 201–208. [Google Scholar] [CrossRef]
Figure 1. Cylindrical pipe.
Figure 1. Cylindrical pipe.
Symmetry 14 00098 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chen, X.; Li, Y.; Li, D. Spatial Decay Bounds for the Brinkman Fluid Equations in Double-Diffusive Convection. Symmetry 2022, 14, 98. https://doi.org/10.3390/sym14010098

AMA Style

Chen X, Li Y, Li D. Spatial Decay Bounds for the Brinkman Fluid Equations in Double-Diffusive Convection. Symmetry. 2022; 14(1):98. https://doi.org/10.3390/sym14010098

Chicago/Turabian Style

Chen, Xuejiao, Yuanfei Li, and Dandan Li. 2022. "Spatial Decay Bounds for the Brinkman Fluid Equations in Double-Diffusive Convection" Symmetry 14, no. 1: 98. https://doi.org/10.3390/sym14010098

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop