Recent Developments of the Lauricella String Scattering Amplitudes and Their Exact SL(K + 3,C) Symmetry
Abstract
1. Introduction
2. The Exact LSSAs and Their Symmetry
2.1. The Exact LSSAs
2.2. String BCJ Relation as a By-Product
2.3. Two Simple Examples of the LSSA
2.3.1. Example One
2.3.2. Example Two
2.4. The Symmetry
2.5. The General SL(,C) Symmetry
2.6. Discussion
3. Solving LSSA through Recurrence Relations
3.1. Recurrence Relations of the LSSA
3.2. Solving all the LSSAs
3.3. Examples of Solving LSSA
3.4. SL(,C) Symmetry and Recurrence Relations
3.4.1. Symmetry
3.4.2. Symmetry
3.5. Lauricella Zero Norm States and Ward Identities
3.5.1. The Lauricella Zero Norm States
3.5.2. The Lauricella Ward Identities
3.6. Summary
4. Relations among LSSAs in Various Scattering Limits
4.1. Hard Scattering Limit—Proving the Gross Conjecture from LSSAs
4.2. Regge Scattering Limit
4.3. Nonrelativistic Scattering Limit and Extended Recurrence Relations
4.3.1. Nonrelavistic LSSA
4.3.2. Nonrelativistic String BCJ Relations
4.3.3. Extended Recurrence Relations in the Nonrelativistic Scattering Limit
Leading Trajectory String States
General String States
4.4. Summary
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed COnsent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Lauricella String Scattering Amplitudes
References
- Gross, D.J.; Mende, P.F. The high-energy behavior of string scattering amplitudes. Phys. Lett. B 1987, 197, 129–134. [Google Scholar] [CrossRef]
- Gross, D.J.; Mende, P.F. String theory beyond the Planck scale. Nucl. Phys. B 1988, 303, 407–454. [Google Scholar] [CrossRef]
- Gross, D.J. High-Energy Symmetries of String Theory. Phys. Rev. Lett. 1988, 60, 1229. [Google Scholar] [CrossRef]
- Gross, D.J. Strings at superPlanckian energies: In search of the string symmetry. Philos. Trans. R. Soc. Lond. A 1989, 329, 401–413. [Google Scholar]
- Gross, D.J.; Mende, P.F. The high energy behavior of open string scattering. Nucl. Phys. B 1989, 326, 73–107. [Google Scholar] [CrossRef]
- Lee, J.-C. New symmetries of higher spin states in string theory. Phys. Lett. B 1990, 241, 336–342. [Google Scholar] [CrossRef]
- Lee, J.-C. Decoupling of degenerate positive-norm states in string theory. Phys. Rev. Lett. 1990, 64, 1636. [Google Scholar] [CrossRef]
- Lee, J.-C.; Ovrut, B.A. Zero-norm states and enlarged gauge symmetries of the closed bosonic string with massive background fields. Nucl. Phys. B 1990, 336, 222–244. [Google Scholar] [CrossRef]
- Chung, T.-D.; Lee, J.-C. Discrete gauge states and w∞ charges in c=1 2D gravity. Phys. Lett. B 1995, 350, 22–27. [Google Scholar] [CrossRef]
- Lee, J.-C. Stringy symmetries and their high-energy limit. arXiv 2003, arXiv:hep-th/0303012. [Google Scholar]
- Chan, C.-T.; Lee, J.-C. Stringy symmetries and their high-energy limits. Phys. Lett. B 2005, 611, 193–198. [Google Scholar] [CrossRef]
- Chan, C.-T.; Lee, J.-C. Zero-norm states and high-energy symmetries of string theory. Nucl. Phys. B 2004, 690, 3–20. [Google Scholar] [CrossRef]
- Chan, C.-T.; Ho, P.-M.; Lee, J.-C. Ward identities and high energy scattering amplitudes in string theory. Nucl. Phys. B 2005, 708, 99–114. [Google Scholar] [CrossRef][Green Version]
- Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Yang, Y. High-energy zero-norm states and symmetries of string theory. Phys. Rev. Lett. 2006, 96, 171601. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Teraguchi, S.; Yang, Y. Solving all 4-point correlation functions for bosonic open string theory in the high-energy limit. Nucl. Phys. B 2005, 72, 352–382. [Google Scholar] [CrossRef]
- Chan, C.-T.; Lee, J.-C.; Yang, Y. High energy scattering amplitudes of superstring theory. Nucl. Phys. B 2006, 738, 93–123. [Google Scholar] [CrossRef][Green Version]
- Lee, J.-C.; Yang, Y. Review on high energy string scattering amplitudes and symmetries of string theory. arXiv 2015, arXiv:1510.03297. [Google Scholar]
- Lee, J.-C.; Yang, Y. Overview of high energy string scattering amplitudes and symmetries of string theory. Symmetry 2019, 11, 1045. [Google Scholar] [CrossRef]
- Bagchi, A.; Banerjee, A.; Chakrabortty, S. Rindler Physics on the String Worldsheet. Phys. Rev. Lett. 2021, 126, 031601. [Google Scholar] [CrossRef]
- Lorenz, E. Partition functions of the tensionless string. arXiv 2020, arXiv:2008.07533. [Google Scholar]
- Bagchi, A.; Banerjee, A.; Chakrabortty, S.; Dutta, S.; Parekh, P. A tale of three—Tensionless strings and vacuum structure. J. High Energy Phys. 2020, 4, 1–53. [Google Scholar]
- Lee, S.-J.; Lerche, W.; Weigand, T. Tensionless strings and the weak gravity conjecture. J. High Energy Phys. 2018, 2018, 1–83. [Google Scholar] [CrossRef]
- Bagchi, A.; Banerjee, A.; Chakrabortty, S.; Parekh, P. Inhomogeneous tensionless superstrings. J. High Energy Phys. 2018, 2, 1–33. [Google Scholar] [CrossRef]
- Ming, Y.; Zhang, C.; Zhang, Y.-Z. One loop amplitude from null string. J. High Energy Phys. 2017, 6, 1–18. [Google Scholar]
- Hohm, O.; Naseer, U.; Zwiebach, B. On the curious spectrum of duality invariant higher-derivative gravity. J. High Energy Phys. 2016, 2016, 1–31. [Google Scholar] [CrossRef]
- Bagchi, A.; Chakrabortty, S.; Parekh, P. Tensionless superstrings: View from the worldsheet. J. High Energy Phys. 2016, 10, 1–24. [Google Scholar] [CrossRef]
- Bagchi, A.; Chakrabortty, S.; Parekh, P. Tensionless strings from worldsheet symmetries. J. High Energy Phys. 2016, 1, 158. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Gopakumar, R. Higher spins & strings. J. High Energy Phys. 2014, 11, 44. [Google Scholar]
- Sagnotti, A.; Tsulaia, M. On higher spins and the tensionless limit of string theory. Nuclear Phys. B 2004, 682, 83–116. [Google Scholar] [CrossRef]
- Huang, Y.T.; Schlotterer, O.; Wen, C. Universality in string interactions. J. High Energy Phys. 2016, 9, 1–13. [Google Scholar] [CrossRef]
- Srisangyingcharoen, P.; Mansfield, P. Plahte Diagrams for String Scattering Amplitudes. arXiv 2020, arXiv:2005.01712. [Google Scholar]
- Skvortsov, E.; Tran, T.; Tsulaia, M. More on quantum chiral higher spin gravity. Phys. Rev. D 2020, 101, 106001. [Google Scholar] [CrossRef]
- Sorokin, D.; Tsulaia, M. Supersymmetric reducible higher-spin multiplets in various dimensions. Nuclear Phys. B 2018, 929, 216–242. [Google Scholar] [CrossRef]
- Bianchi, M.; Firrotta, M. DDF operators, open string coherent states and their scattering amplitudes. Nuclear Phys. B 2020, 952, 114943. [Google Scholar] [CrossRef]
- Aldi, A.; Firrotta, M. String coherent vertex operators of Neveu-Schwarz and Ramond states. Nuclear Phys. B 2020, 955, 115050. [Google Scholar] [CrossRef]
- Chan, C.-T.; Lee, J.-C.; Yang, Y. Notes on high-energy limit of bosonic closed string scattering amplitudes. Nucl. Phys. B 2006, 749, 280–290. [Google Scholar] [CrossRef]
- Lai, S.-H.; Lee, J.-C.; Yang, Y. The String BCJ Relations Revisited and Extended Recurrence relations of Nonrelativistic String Scattering Amplitudes. J. High Energy Phys. 2016, 2016, 1–19. [Google Scholar] [CrossRef]
- Bjerrum-Bohr, N.E.J.; Damgaard, P.H.; Vanhove, P. Minimal basis for gauge theory amplitudes. Phys. Rev. Lett. 2009, 103, 161602. [Google Scholar] [CrossRef]
- Stieberger, S. Open & closed vs. pure open string disk amplitudes. arXiv 2009, arXiv:0907.2211. [Google Scholar]
- Ko, S.-L.; Lee, J.-C.; Yang, Y. Patterns of high energy massive string scatterings in the regge regime. J. High Energy Phys. 2009, 2009, 28. [Google Scholar] [CrossRef]
- Lee, J.-C.; Mitsuka, Y. Recurrence relations of Kummer functions and Regge string scattering amplitudes. J. High Energy Phys. 2013, 2013, 1–23. [Google Scholar] [CrossRef]
- Lee, J.-C.; Yang, Y. The Appell function F1 and Regge string scattering amplitudes. Phys. Lett. B 2014, 739, 370–374. [Google Scholar] [CrossRef]
- Lai, S.-H.; Lee, J.-C.; Yang, Y. The lauricella functions and exact string scattering amplitudes. J. High Energy Phys. 2016, 2016, 62. [Google Scholar] [CrossRef]
- de Fériet, J.A. Fonctions hypergéométriques et hypersphériques; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Miller, W., Jr. Symmetry and Separation of Variables; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Miller, W., Jr. Lie theory and generalizations of the hypergeometric functions. SIAM J. Appl. Math. 1973, 25, 226–235. [Google Scholar] [CrossRef]
- Lai, S.-H.; Lee, J.-C.; Lee, T.; Yang, Y. Solving lauricella string scattering amplitudes through recurrence relations. J. High Energy Phys. 2017, 2017, 130. [Google Scholar] [CrossRef]
- Bern, Z.; Carrasco, J.J.M.; Johansson, H. New relations for gauge-theory amplitudes. Phys. Rev. D 2008, 78, 085011. [Google Scholar] [CrossRef]
- Kawai, H.; Lewellen, D.C.; Tye, S.-H.H. A relation between tree amplitudes of closed and open strings. Nucl. Phys. B 1986, 269, 1–23. [Google Scholar] [CrossRef]
- Lee, J.-C.; Yan, C.H.; Yang, Y. High-energy string scattering amplitudes and signless Stirling number identity. SIGMA Symmetry Integr. Geom. Methods Appl. 2012, 8, 45. [Google Scholar] [CrossRef][Green Version]
- Neveu, A.; Scherk, J. Connection between Yang-Mills fields and dual models. Nucl. Phys. B 1972, 36, 155. [Google Scholar] [CrossRef]
- Neveu, A.; Gervais, J.L. Feynman rules for massive gauge fields with dual diagram topology. Nucl. Phys. B 1972, 46, 381. [Google Scholar]
- Scherk, J. Zero-slope limit of the dual resonance model. Nucl. Phys. B 1971, 31, 222. [Google Scholar] [CrossRef]
- Nakanishi, N. Remarks on Scherk’s Paper Entitled “Zero-Slope Limit of the Dual Resonance Model”. Prog. Theor. Phys. 1972, 48, 355. [Google Scholar] [CrossRef]
- Frampton, P.H.; Wali, K.C. Regge-slope expansion in the dual resonance model. Phys. Rev. D 1973, 8, 1879. [Google Scholar] [CrossRef]
- Lai, S.-H.; Lee, J.C.; Yang, Y. Spin polarization independence of hard polarized fermion string scattering amplitudes. Phys. Lett. B 2019, 797, 134812. [Google Scholar] [CrossRef]
- Schlotterer, O. Scattering amplitudes in open superstring theory. Fortschr. Phys. 2012, 60, 373–691. [Google Scholar] [CrossRef]
- Koh, I.G.; Troost, W.; Van Proeyen, A. Covariant higher spin vertex operators in the Ramond sector. Nucl. Phys. B 1987, 292, 201. [Google Scholar] [CrossRef]
- Bianchi, M.; Lopez, L.; Richter, R. On stable higher spin states in Heterotic String Theories. J. High Energy Phys. 2011, 2011, 51. [Google Scholar] [CrossRef]
- Hanany, A.; Forcella, D.; Troost, J. The Covariant perturbative string spectrum. Nucl. Phys. B 2011, 846, 212. [Google Scholar]
- Feng, W.-Z.; Lust, D.; Schlotterer, O.; Stieberger, S.; Taylor, T.R. Direct production of lightest Regge resonances. Nucl. Phys. B 2011, 843, 570. [Google Scholar] [CrossRef]
- Vasiliev, M. Nonlinear equations for symmetric massless higher spin fields in (A)dS(d). Phys. Lett. B 2003, 567, 139. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.-H.; Lee, J.-C.; Yang, Y. Recent Developments of the Lauricella String Scattering Amplitudes and Their Exact SL(K + 3,C) Symmetry. Symmetry 2021, 13, 454. https://doi.org/10.3390/sym13030454
Lai S-H, Lee J-C, Yang Y. Recent Developments of the Lauricella String Scattering Amplitudes and Their Exact SL(K + 3,C) Symmetry. Symmetry. 2021; 13(3):454. https://doi.org/10.3390/sym13030454
Chicago/Turabian StyleLai, Sheng-Hong, Jen-Chi Lee, and Yi Yang. 2021. "Recent Developments of the Lauricella String Scattering Amplitudes and Their Exact SL(K + 3,C) Symmetry" Symmetry 13, no. 3: 454. https://doi.org/10.3390/sym13030454
APA StyleLai, S.-H., Lee, J.-C., & Yang, Y. (2021). Recent Developments of the Lauricella String Scattering Amplitudes and Their Exact SL(K + 3,C) Symmetry. Symmetry, 13(3), 454. https://doi.org/10.3390/sym13030454