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Abstract: In this review, we propose a new perspective to demonstrate the Gross conjecture regarding
the high-energy symmetry of string theory. We review the construction of the exact string scattering
amplitudes (SSAs) of three tachyons and one arbitrary string state, or the Lauricella SSA (LSSA),
in the 26D open bosonic string theory. These LSSAs form an infinite dimensional representation of
the SL(K + 3,C) group. Moreover, we show that the SL(K + 3,C) group can be used to solve all
the LSSAs and express them in terms of one amplitude. As an application in the hard scattering
limit, the LSSA can be used to directly prove the Gross conjecture, which was previously corrected
and proved by the method of the decoupling of zero norm states (ZNS). Finally, the exact LSSA
can be used to rederive the recurrence relations of SSA in the Regge scattering limit with associated
SL(5,C) symmetry and the extended recurrence relations (including the mass and spin dependent
string BCJ relations) in the nonrelativistic scattering limit with the associated SL(4,C) symmetry
discovered recently.

Keywords: string scattering amplitudes; Lauricella function; symmetry

1. Introduction

In contrast to low-energy string theory, many issues regarding high-energy behavior
of string theory have not yet been well understood. Historically, it was first conjectured by
Gross [1–5] that there exist infinite linear relations among hard string scattering amplitudes
(HSSA) of different string states. Moreover, these linear relations are so powerful that they
can be used to solve all HSSAs and express them in terms of one amplitude. This conjecture
was later (slightly) corrected and proved by using the decoupling of zero norm states [6–9]
in [10–16]. For more details, see the recent review articles [17,18].

In this paper, we review another perspective to understand the high-energy behavior
of strings and demonstrate the Gross conjecture regarding the high-energy symmetry of
string theory. Since the theory of strings, as a quantum theory, consists of an infinite number
of particles with arbitrarily high spins and masses, one first crucial step to uncovering its
high-energy behavior is to exactly calculate a class of SSA that contains the whole spectrum
valid for all energies. Recently, the present authors constructed a class of such an exact SSA
that contains three tachyons and one arbitrary string state in the spectrum, or the Lauricella
SSA (LSSA), in the 26D open bosonic string theory.

There are many works based on the research of tensionless strings (α′ → ∞) [19–29]
that are related to our works on high-energy symmetry of string theory. However, as
presented in Section 4, in our high-energy calculation, we keep the mass level parameter
M of the string spectrum fixed as a finite constant at each mass level. In contrast, in the
calculation of tensionless strings in the literature, all string states are massless in the limit
α′ → ∞. We believe that by keeping M fixed as a finite constant, one can obtain more
information about the high-energy behavior of string theory.

More recently, other interesting approaches have been proposed in the literature which
deal with higher spin string states [30–35]. More works need to be done on higher spin
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string states, especially higher massive fermionic string states in the R-sector of superstrings,
before one can fully understand the high-energy behavior of superstring theory.

In Section 2 of this review, we calculate the LSSAs and express them in terms of D-type
Lauricella functions. As an application, we easily reproduce the string BCJ relation [36–39].
As an illustration of LSSA, we give two simple examples to demonstrate the complicated
notation. We then proceed to show that the LSSAs form an infinite dimensional representa-
tion of the SL(K + 3, C) group. For simplicity, and as an warm up exercise, we begin with
the case of K = 1 or the SL(4, C) group.

In Section 3, we first show that there exist K + 2 recurrence relations among the D-type
Lauricella functions. We then show that the corresponding K + 2 recurrence relations
among the LSSAs can be used to reproduce the Cartan subalgebra and simple root system
of the SL(K + 3,C) group with rank K + 2. As a result, the SL(K + 3,C) group can be
used to solve all the LSSAs and express them in terms of one amplitude. We stress that
these exact nonlinear relations among the exact LSSAs are generalizations of the linear
relations among HSSAs in the hard scattering limit conjectured by Gross. Finally, we show
that, for the first few mass levels, the Lauricella recurrence relations imply the validity of
Ward identities derived from the decoupling of Lauricella ZNS. However, these Lauricella
Ward identities are not good enough to solve all the LSSAs and express them in terms of
one amplitude.

In Section 4 of this review, we calculate symmetries or relations among the LSSAs
of different string states at various scattering limits. These include the linear relations
first conjectured by Gross [1–5] and later corrected and proved in [10,12–16] in the hard
scattering limit, the recurrence relations in the Regge scattering limit with associated
SL(5,C) symmetry [40–42] and the extended recurrence relations (including the mass and
spin dependent string BCJ relations) in the nonrelativistic scattering limit with associated
SL(4,C) symmetry [37] discovered recently.

In Section 5, we give a brief conclusion and suggest some future works. Finally, in the
Appendix A, we present detailed calculations of the LSSAs presented in Section 2 of the
text.

2. The Exact LSSAs and Their SL(K + 3, C) Symmetry
2.1. The Exact LSSAs

One important observation of calculating LSSAs is to first note that the SSAs of three
tachyons and one arbitrary string state with polarizations orthogonal to the scattering
plane vanish. This observation greatly simplifies the calculation of the LSSA. In the CM
frame, we define the kinematics as

k1 =

(√
M2

1 + |~k1|2,−|~k1|, 0
)

, (1)

k2 =

(√
M2 + |~k1|2,+|~k1|, 0

)
, (2)

k3 =

(
−
√

M2
3 + |~k3|2,−|~k3| cos φ,−|~k3| sin φ

)
, (3)

k4 =

(
−
√

M2
4 + |~k3|2,+|~k3| cos φ,+|~k3| sin φ

)
(4)

with M2
1 = M2

3 = M2
4 = −2 and φ is the scattering angle. The Mandelstam variables are

s = −(k1 + k2)
2, t = −(k2 + k3)

2 and u = −(k1 + k3)
2. There are three polarizations on

the scattering plane, and they are defined to be [10,12]
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eT = (0, 0, 1), (5)

eL =
1

M2

(
|~k1|,

√
M2 + |~k1|2, 0

)
, (6)

eP =
1

M2

(√
M2 + |~k1|2, |~k1|, 0

)
(7)

where eP = 1
M2

(E2, k2, 0) = k2
M2

is the momentum polarization, eL = 1
M2

(k2, E2, 0) is the
longitudinal polarization and eT = (0, 0, 1) is the transverse polarization. For later use, we
also define

kX
i ≡ eX · ki for X = (T, P, L). (8)

We now proceed to calculate the LSSAs of three tachyons and one arbitrary string
state in the 26D open bosonic string theory. The general states at mass level M2

2 = 2(N −
1), N = ∑n,m,l>0

(
nrT

n + mrP
m + lrL

l
)

with polarizations on the scattering plane are of the
following form: ∣∣∣rT

n , rP
m, rL

l

〉
= ∏

n>0

(
αT
−n

)rT
n

∏
m>0

(
αP
−m

)rP
m

∏
l>0

(
αL
−l

)rL
l |0, k〉. (9)

The (s, t) channel of the LSSA can be calculated to be [43]

A
(rT

n ,rP
m ,rL

l )
st = ∏

n=1

[
−(n− 1)!kT

3

]rT
n · ∏

m=1

[
−(m− 1)!kP

3

]rP
m

∏
l=1

[
−(l − 1)!kL

3

]rL
l

· B
(
− t

2
− 1,− s

2
− 1
)

F(K)
D

(
− t

2
− 1; RT

n , RP
m, RL

l ;
u
2
+ 2− N; Z̃T

n , Z̃P
m, Z̃L

l

)
(10)

where we have defined

RX
k ≡

{
−rX

1

}1
, · · · ,

{
−rX

k

}k
with {a}n = a, a, · · · , a︸ ︷︷ ︸

n

. (11)

and
ZX

k ≡
[
zX

1

]
, · · · ,

[
zX

k

]
with

[
zX

k

]
= zX

k0, · · · , zX
k(k−1). (12)

In Equation (12), we have defined

zX
k =

∣∣∣∣∣∣
(
−

kX
1

kX
3

) 1
k
∣∣∣∣∣∣, zX

kk′ = zX
k e

2πik′
k , z̃X

kk′ ≡ 1− zX
kk′ for k′ = 0, · · · , k− 1 (13)

or
[
zX

k

]
= zX

k , zX
k ωk, ..., zX

k ωk−1
k , ωk = e

2πi
k . (14)

The integer K in Equation (10) is defined to be

K = ∑ j
{for all rT

j 6=0}
+ ∑ j
{for all rP

j 6=0}
+ ∑ j
{for all rL

j 6=0}
. (15)

The D-type Lauricella function F(K)
D in Equation (10) is one of the four extensions of

the Gauss hypergeometric function to K variables and is defined to be

F(K)
D (α; β1, ..., βK; γ; x1, ..., xK)

=
∞

∑
n1,··· ,nK=0

(α)n1+···+nK

(γ)n1+···+nK

(β1)n1
· · · (βK)nK

n1! · · · nK !
xn1

1 · · · x
nK
K (16)
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where (α)n = α · (α + 1) · · · (α + n− 1) is the Pochhammer symbol. An integral repre-
sentation of the Lauricella function F(K)

D was discovered by Appell and Kampe de Feriet
(1926) [44],

F(K)
D (α; β1, ..., βK; γ; x1, ..., xK)

=
Γ(γ)

Γ(α)Γ(γ− α)

∫ 1

0
dt tα−1(1− t)γ−α−1 · (1− x1t)−β1(1− x2t)−β2 ...(1− xKt)−βK , (17)

which was used to calculate Equation (10).

2.2. String BCJ Relation as a By-Product

Alternatively, by using the identity of the Lauricella function for bi ∈ Z−,

F(K)
D (a; b1, ..., bK; c; x1, ..., xK) =

Γ(c)Γ(c− a−∑ bi)

Γ(c− a)Γ(c−∑ bi)

·F(K)
D
(
a; b1, ..., bK; 1 + a + ∑ bi − c; 1− x1, ..., 1− xK

)
, (18)

one can rederive the string BCJ relations [36–39]:

A
(rT

n ,rP
m ,rL

l )
st

A
(rT

n ,rP
m ,rL

l )
tu

=
(−)NΓ

(
− s

2 − 1
)
Γ
( s

2 + 2
)

Γ
( u

2 + 2− N
)
Γ
(
− u

2 − 1 + N
)

=
sin
(

πu
2
)

sin
(

πs
2
) =

sin(πk2 · k4)

sin(πk1 · k2)
. (19)

This gives another form of the (s, t) channel amplitude:

A
(rT

n ,rP
m ,rL

l )
st

= B
(
− t

2
− 1,− s

2
− 1 + N

)
∏
n=1

[
−(n− 1)!kT

3

]rT
n

· ∏
m=1

[
−(m− 1)!kP

3

]rP
m

∏
l=1

[
−(l − 1)!kL

3

]rL
l

· F(K)
D

(
− t

2
− 1; RT

n , RP
m, RL

l ;
s
2
+ 2− N; ZT

n , ZP
m, ZL

l

)
. (20)

Similarly, the (t, u) channel amplitude can be calculated to be

A
(rT

n ,rP
m ,rL

l )
tu

= B
(
− t

2
− 1,−u

2
− 1
)

∏
n=1

[
−(n− 1)!kT

3

]rT
n

· ∏
m=1

[
−(m− 1)!kP

3

]rP
m

∏
l=1

[
−(l − 1)!kL

3

]rL
l

· F(K)
D

(
− t

2
− 1; RT

n , RP
m, RL

l ;
s
2
+ 2− N; ZT

n , ZP
m, ZL

l

)
. (21)

The detailed calculation of all the above results can be found in the appendix. To
illustrate the complicated notations used in Equation (10), we give two explicit examples
of the LSSA in the following subsection.
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2.3. Two Simple Examples of the LSSA
2.3.1. Example One

We take the tensor state of the second vertex to be

|state〉 =
(

αT
−1

)rT
1
(

αP
−1

)rP
1
(

αL
−1

)rL
1 |0, k〉. (22)

The LSSA in Equation (10) can then be calculated to be

A
(rT

1 ,rP
1 ,rL

l )
st =

(
−kT

3

)rT
1
(
−kP

3

)rP
1
(
−kL

3

)rL
1 B
(
− t

2
− 1,− s

2
− 1
)

· F(3)
D

(
− t

2
− 1;−rT

1 ,−rP
1 ,−rL

1 ;
u
2
+ 2− N; z̃T

10, z̃P
10, z̃L

10

)
(23)

where the arguments in F(3)
D are calculated to be

RT
n =

{
−rT

1

}1
, · · · ,

{
−rT

n

}k
=
{
−rT

1

}1
= −rT

1 ,

RP
m =

{
−rP

1

}1
, · · · ,

{
−rP

m

}k
=
{
−rP

1

}1
= −rP

1 ,

RL
l =

{
−rL

1

}1
, · · · ,

{
−rL

l

}k
=
{
−rL

1

}1
= −rL

1 , (24)

Z̃T
n =

[
z̃T

1

]
, · · · ,

[
z̃T

n

]
=
[
z̃T

1

]
= z̃T

10 = 1− zT
10 = 1− zT

k e
2πi0

1 = 1−
∣∣∣∣∣− kT

1
kT

3

∣∣∣∣∣,
Z̃P

n =
[
z̃P

1

]
, · · · ,

[
z̃P

n

]
=
[
z̃P

1

]
= z̃P

10 = 1−
∣∣∣∣∣− kP

1
kP

3

∣∣∣∣∣,
Z̃L

n =
[
z̃L

1

]
, · · · ,

[
z̃L

n

]
=
[
z̃L

1

]
= z̃L

10 = 1−
∣∣∣∣∣− kL

1
kL

3

∣∣∣∣∣ (25)

and the order K in Equation (15) is

K = ∑ j
{for all rT

j 6=0}
+ ∑ j
{for all rP

j 6=0}
+ ∑ j
{for all rL

j 6=0}

= 1 + 1 + 1 = 3. (26)

2.3.2. Example Two

We take the tensor state to be

|state〉 =
(

αT
−1

)rT
1
(

αT
−2

)rT
2
(

αT
−5

)rT
5
(

αT
−6

)rT
6 |0, k〉. (27)

The LSSA in Equation (10) can be calculated to be

A
(rT

1 ,rP
1 ,rL

l )
st =

(
−kT

3

)rT
1
(
−kT

3

)rT
2
(
−4!kT

3

)rT
5
(
−5!kT

3

)rT
6 B
(
− t

2
− 1,− s

2
− 1
)

· F(14)
D


− t

2 − 1;−rT
1 ,−rT

2 ,−rT
2︸ ︷︷ ︸

2

,−rT
5 ,−rT

5 ,−rT
5 ,−rT

5 ,−rT
5︸ ︷︷ ︸

5

,−rT
6 ,−rT

6 ,−rT
6 ,−rT

6 ,−rT
6 ,−rT

6︸ ︷︷ ︸
6

;

u
2 + 2− N; z̃T

10, z̃T
20, z̃T

21︸ ︷︷ ︸
2

, z̃T
50, z̃T

51, z̃T
52, z̃T

53, z̃T
54︸ ︷︷ ︸

5

, z̃T
60, z̃T

61, z̃T
62, z̃T

63, z̃T
64, z̃T

65︸ ︷︷ ︸
6

 (28)

where the arguments in F(14)
D are calculated to be
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RT
n =

{
−rT

1

}1
, · · · ,

{
−rT

n

}k
=
{
−rT

1

}1
,
{
−rT

2

}2
,
{
−rT

5

}5
,
{
−rT

6

}6

= −rT
1 ,−rT

2 ,−rT
2︸ ︷︷ ︸

2

,−rT
5 ,−rT

5 ,−rT
5 ,−rT

5 ,−rT
5︸ ︷︷ ︸

5

,−rT
6 ,−rT

6 ,−rT
6 ,−rT

6 ,−rT
6 ,−rT

6︸ ︷︷ ︸
6

(29)

Z̃T
n =

[
z̃T

1

]
, · · · ,

[
z̃T

n

]
=
[
z̃T

1

]
,
[
z̃T

2

]
,
[
z̃T

5

]
,
[
z̃T

6

]
= z̃T

10, z̃T
20, z̃T

21︸ ︷︷ ︸
2

, z̃T
50, z̃T

51, z̃T
52, z̃T

53, z̃T
54︸ ︷︷ ︸

5

, z̃T
60, z̃T

61, z̃T
62, z̃T

63, z̃T
64, z̃T

65︸ ︷︷ ︸
6

(30)

and

K = ∑ j
{for all rT

j 6=0}
+ ∑ j
{for all rP

j 6=0}
+ ∑ j
{for all rL

j 6=0}

= (1 + 2 + 5 + 6) + 0 + 0 = 14. (31)

In the following subsections, we discuss the exact SL(K + 3, C) symmetry of the LSSA.
For simplicity, we begin with the simple SL(4, C) symmetry with K = 1.

2.4. The SL(4, C) Symmetry

In this section, for illustration, we first consider the simplest K = 1 case with SL(4, C)
symmetry. For a given K, there can be LSSAs with different mass levels N. As an example,
for the case of K = 1, there are three types of LSSA:

(αT
−1)

p1 , F(1)
D

(
− t

2
− 1,−p1,

u
2
+ 2− p1, 1

)
, N = p1,

(αP
−1)

q1 , F(1)
D

(
− t

2
− 1,−q1,

u
2
+ 2− q1,

[
z̃P

1

])
, N = q1,

(αL
−1)

r1 , F(1)
D

(
− t

2
− 1,−r1,

u
2
+ 2− r1,

[
z̃L

1

])
, N = r1. (32)

To calculate the group representation of the LSSA for K = 1, we define [45]

f b
ac(α; β; γ; x) = B(γ− α, α)F(1)

D (α; β; γ; x)aαbβcγ. (33)

We see that the LSSA in Equation (10) for the case of K = 1 corresponds to the case
a = 1 = c, and can be written as

ARX

st = f−kX
3

11

(
− t

2
− 1; RX ;

u
2
+ 2− N; Z̃X

)
. (34)
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We can now introduce the (K + 3)2 − 1 = (1 + 3)2 − 1 = 15 generators of SL(4, C)
group [45,46]

Eα = a(x∂x + a∂a),

E−α =
1
a
[x(1− x)∂x + c∂c − a∂a − xb∂b],

Eβ = b(x∂x + b∂b),

E−β =
1
b
[x(1− x)∂x + c∂c − b∂b − xa∂a],

Eγ = c[(1− x)∂x + c∂c − a∂a − b∂b],

E−γ = −1
c
(x∂x + c∂c − 1),

Eβγ = bc[(x− 1)∂x + b∂b],

E−β,−γ =
1
bc
[x(x− 1)∂x + xa∂a − c∂c + 1],

Eαγ = ac[(1− x)∂x − a∂a],

E−α,−γ =
1
ac
[x(1− x)∂x − xb∂b + c∂c − 1],

Eαβγ = abc∂x,

E−α,−β,−γ =
1

abc
[x(x− 1)∂x − c∂c + xb∂b + xa∂a − x + 1],

Jα = a∂a,

Jβ = b∂b,

Jγ = c∂c, (35)

and calculate their operations on the basis of functions [45,46]

Eα f b
ac(α; β; γ; x) = (γ− α− 1) f b

ac(α + 1; β; γ; x),

Eβ f b
ac(α; β; γ; x) = β f b

ac(α; β + 1; γ; x),

Eγ f b
ac(α; β; γ; x) = (γ− β) f b

ac(α; β; γ + 1; x),

Eβγ f b
ac(α; β; γ; x) = β f b

ac(α; β + 1; γ + 1; x),

Eαγ f b
ac(α; β; γ; x) = (β− γ) f b

ac(α + 1; β; γ + 1; x),

Eαβγ f b
ac(α; β; γ; x) = β f b

ac(α + 1; β + 1; γ + 1; x),

E−α f b
ac(α; β; γ; x) = (α− 1) f b

ac(α− 1; β; γ; x),

E−β f b
ac(α; β; γ; x) = (γ− β) f b

ac(α; β− 1; γ; x),

E−γ f b
ac(α; β; γ; x) = (α + 1− γ) f b

ac(α; β; γ− 1; x),

E−β,−γ f b
ac(α; β; γ; x) = (α− γ + 1) f b

ac(α; β− 1; γ− 1; x),

E−α,−γ f b
ac(α; β; γ; x) = (α− 1) f b

ac(α− 1; β; γ− 1; x),

E−α,−β,−γ f b
ac(α; β; γ; x) = (−α + 1) f b

ac(α− 1; β− 1; γ− 1; x),

Jα f b
ac(α; β; γ; x) = α f b

ac(α; β; γ; x),

Jβ f b
ac(α; β; γ; x) = β f b

ac(α; β; γ; x),

Jγ f b
ac(α; β; γ; x) = γ f b

ac(α; β; γ; x). (36)

It is important to note, for example, that since β is a nonpositive integer, the operation
by E−β will not be terminated as in the case of the finite dimensional representation of a
compact Lie group. Here the representation is infinite-dimensional. On the other hand, a
simple calculation gives
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[Eα, E−α] = 2Jα − Jγ,[
Eβ, E−β

]
= 2Jβ − Jγ,

[Eγ, E−γ] = 2Jγ −
(

Jα + Jβ + 1
)
,

which suggests the Cartan subalgebra[
Jα, Jβ

]
= 0,

[
Jβ, Jγ

]
= 0, [Jα, Jγ] = 0. (37)

Indeed, if we redefine

J′α = Jα −
1
2

Jγ,

J′β = Jβ −
1
2

Jγ,

J′γ = Jγ −
1
2
(

Jα + Jβ + 1
)
,

we discover that each of the following six triplets [45,46]{
J+, J−, J0

}
≡
{

Eα, E−α, J′α
}

,
{

Eβ, E−β, J′β
}

,{
Eγ, E−γ, J′γ

}
,
{

Eα,β,γ, E−α,−β,−γ, J′α + J′β + J′γ
}

,{
Eαγ, E−α,−γ, J′α + J′γ

}
,
{

Eαβ, E−α,−β, J′α + J′β
}

constitutes the well-known commutation relations[
J0, J±

]
= ±J±,

[
J+, J−

]
= 2J0. (38)

2.5. The General SL(K + 3,C) Symmetry

We are now ready to generalize the calculation of the previous section and calculate
the group representation of the LSSA for general K. We first define [45]

f b1···bK
ac (α; β1, · · · , βK; γ; x1, · · · , xK)

= B(γ− α, α)F(K)
D (α; β1, · · · , βK; γ; x1, · · · , xK)aαbβ1

1 · · · b
βK
K cγ. (39)

Note that the LSSA in Equation (10) corresponds to the case a = 1 = c and can be
written as

A
(rT

n ,rP
m ,rL

l )
st = f−(n−1)!kT

3 ,−(m−1)!kP
3 ,−(l−1)!kL

3
11

(
− t

2
− 1; RT

n , RP
m, RL

l ;
u
2
+ 2− N; Z̃T

n , Z̃P
m, Z̃L

l

)
. (40)

It is possible to extend the calculation of the SL(4,C) symmetry group for the K = 1
case discussed in the previous section to the general SL(K + 3,C) group. We first introduce
the (K + 3)2 − 1 generators of the SL(K + 3, C) group (k = 1, 2, ...K) [45,46]
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Eα = a

(
∑

j
xj∂j + a∂a

)
,

Eβk = bk
(
xk∂k + bk∂bk

)
,

Eγ = c

(
∑

j

(
1− xj

)
∂xj + c∂c − a∂a −∑

j
bj∂bj

)
,

Eαγ = ac

(
∑

j

(
1− xj

)
∂xj − a∂a

)
,

Eβkγ = bkc
[
(xk − 1)∂xk + bk∂bk

]
,

Eαβkγ = abkc∂xk ,

Eα =
1
a

[
∑

j
xj
(
1− xj

)
∂xj + c∂c − a∂a −∑

j
xjbj∂bj

]
,

Eβk =
1
bk

[
xk(1− xk)∂xk + xk ∑

j 6=k

(
1− xj

)
xj∂xj + c∂c − xka∂a −∑

j
bj∂uj

]
,

Eγ = −1
c

(
∑

j
xj∂xj + c∂c − 1

)
,

Eαγ =
1
ac

[
∑

j
xj
(
1− xj

)
∂xj −∑

j
xjbj∂bj

+ c∂c − 1

]
,

Eβkγ =
1

bkc

[
xk(xk − 1)∂xk + ∑

j 6=k

(
xj − 1

)
xj∂xj + xka∂a − c∂c + 1

]
,

Eαβkγ =
1

abkc

[
∑

j
xj
(

xj − 1
)
∂xj − c∂c + xka∂a + ∑

j
xjbj∂bj

− xk + 1

]
,

Eβk
βp

=
bk
bp

[(
xk − xp

)
∂zk + bk∂bk

]
, (k 6= p),

Jα = a∂a,

Jβk = bk∂bk
,

Jγ = c∂c. (41)

Note that we have used the upper indices to denote the “raising operators” and the
lower indices to denote the “lowering operators”. The number of generators can be counted
in the following way. There are 1 Eα, K Eβk , 1 Eγ,1 Eαγ,K Eβkγ and K Eαβkγ which sum up to
3K + 3 raising generators. There are also 3K + 3 lowering operators. In addition, there are
K(K− 1) Eβk

βp
and K + 2 J, corresponding to the Cartan subalgebra. In summary, the total

number of generators is 2(3K + 3) + K(K− 1) + K + 2 = (K + 3)2− 1. It is straightforward
to calculate the operation of these generators on the basis of functions (k = 1, 2, . . . , K) [45]



Symmetry 2021, 13, 454 10 of 37

Eα f b1···bK
ac (α) = (γ− α− 1) f b1···bK

ac (α + 1),

Eβk f b1···bK
ac (βk) = βk f b1···bK

ac (βk + 1),

Eγ f b1···bK
ac (γ) =

(
γ−∑

j
β j

)
f b1···bK
ac (γ + 1),

Eαγ f b1···bK
ac (α; γ) =

(
∑

j
β j − γ

)
f b1···bK
ac (α + 1; γ + 1),

Eβkγ f b1···bK
ac (βk; γ) = βk f b1···bK

ac (βk + 1; γ + 1),

Eαβkγ f b1···bK
ac (α; βk; γ) = βk f b1···bK

ac (α + 1; βk + 1; γ + 1),

Eα f b1···bK
ac (α) = (α− 1) f b1···bK

ac (α− 1),

Eβk f b1···bK
ac (βk) =

(
γ−∑

j
β j

)
f b1···bK
ac (βk − 1),

Eγ f b1···bK
ac (γ) = (α− γ + 1) f b1···bK

ac (γ− 1),

Eαγ f b1···bK
ac (α; γ) = (α− 1) f b1···bK

ac (α− 1; γ− 1),

Eβkγ f b1···bK
ac (βk; γ) = (α− γ + 1) f b1···bK

ac (βk − 1; γ− 1),

Eαβkγ f b1···bK
ac (α; βk; γ) = (1− α) f b1···bK

ac (α− 1; βk − 1; γ− 1),

Eβk
βp

f b1···bK
ac

(
βk; βp

)
= βk f b1···bK

ac
(

βk + 1; βp − 1
)
,

Jα f b1···bK
ac (α; βk; γ) = α f b1···bK

ac (α; βk; γ),

Jβk f b1···bK
ac (α; βk; γ) = βk f b1···bK

ac (α; βk; γ),

Jγ f b1···bK
ac (α; βk; γ) = γ f b1···bK

ac (α; βk; γ) (42)

where, for simplicity, we have omitted those arguments in f b1···bK
ac that remain the same after

the operation. The commutation relations of the SL(K + 3) Lie algebra can be calculated in
the following way. In addition to the Cartan subalgebra for the K+ 2 generators

{
Jα, Jβk , Jγ

}
,

we redefine

J′α = Jα −
1
2

Jγ,

J′βk
= Jβk −

1
2

Jγ + ∑
j 6=k

Jβ j ,

J′γ = Jγ −
1
2

(
Jα + ∑

j
Jβ j + 1

)
. (43)

We discover that each of the following seven triplets [45]{
J+, J−, J0

}
≡
{

Eα, Eα, J′α
}

,
{

Eβk , Eβk , J′βk

}
,{

Eγ, Eγ, J′γ
}

,
{

Eαβkγ, Eαβkγ, J′α + J′βk
+ J′γ

}
,{

Eαγ, Eαγ, J′α + J′γ
}

,
{

Eαβk , Eαβk , J′α + J′βk

}
,{

Eβl
βp

, E
βp
βl

, J′βl
− J′βp

}
(44)

satisfies the commutation relations in Equation (38).
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Finally, in addition to Equation (44), there is another compact way to write the Lie
algebra commutation relations of SL(K + 3, C). Indeed, one can check that the Lie algebra
commutation relations of SL(K + 3, C) can be written as [45][

Eij, Ekl
]
= δjkEil − δliEkj (45)

with the following identifications:

Eα = E12, Eα = E21, Eβk = Ek+3,3, Eβ = E3,k+3,

Eγ = E31, Eγ = E13, Eαγ = E32, Eαγ = E23,

Eβkγ = −Ek+3,1, Eβkγ = −E1,k+3, Eαβkγ = −Ek+3,2,

Eαβkγ = −E2,k+3, J′α =
1
2
(E11 − E22), J′βk

=
1
2
(Ek+3,k+3 − E33), J′γ =

1
2
(E33 − E11). (46)

2.6. Discussion

There are some special properties in the SL(K + 3,C) group representation of the LSSA
that make it different from the usual symmetry group representation of a physical system.
First, the set of LSSA does not fill up the whole representation space V. For example, states
f b1···bK
ac (α; β1, · · · , βK; γ; x1, · · · , xK) in V with a 6= 1 or c 6= 1 are not LSSAs.

Indeed, there are more states in V with K ≥ 2 that are not LSSAs either. We give one
example in the following. For K = 2, there are six types of LSSAs: (ω = −1)

(αT
−1)

p1(αP
−1)

q1 ,F(2)
D (a,−p1,−q1, c− p1 − q1, 1,

[
z̃P

1

]
),N = p1 + q1, (47)

(αT
−1)

p1(αL
−1)

r1 ,F(2)
D (a,−p1,−r1, c− p1 − r1, 1,

[
z̃L

1

]
),N = p1 + r1, (48)

(αP
−1)

q1(αL
−1)

r1 ,F(2)
D (a,−q1,−r1, c− q1 − r1,

[
z̃P

1

]
,
[
z̃L

1

]
),N = q1 + r1, (49)

(αT
−2)

p2 , F(2)
D (a,−p2,−p2, c− 2p2, 1, 1) , N = 2p2, (50)

(αP
−2)

q2 , F(2)
D (a,−q2,−q2, c− 2q2, 1− zP

2 , 1−ωzP
2 ), N = 2q2, (51)

(αL
−2)

r2 , F(2)
D (a,−r2,−r2, c− 2r2, 1− zL

2 , 1−ωzL
2 ), N = 2r2. (52)

One can show that those states obtained from the operation by Eβ in either states in
Equations (50)–(52) are not LSSAs. However, it is shown in Section 3 that all states in V,
including those “auxiliary states” which are not LSSAs as stated above, can be exactly
solved by recurrence relations or the SL(K + 3,C) group and expressed in terms of one
amplitude. These “auxiliary states” and states with a 6= 1 or c 6= 1 in V may represent
other SSAs—e.g., SSAs of two tachyons and two arbitrary string states, etc.—which will be
considered in the near future.

3. Solving LSSA through Recurrence Relations

In the previous section, the string scattering amplitudes of three tachyons and one
arbitrary string states in the 26D open bosonic string theory were obtained in terms of the
D-type Lauricella functions; i.e., the LSSA in Equation (10). The symmetry of the LSSA was
also discussed by constructing the SL(K + 3,C) group for the D-type Lauricella functions
F(K)

D (α; β1, ..., βK; γ; x1, ..., xK). It is natural to suspect that the LSSAs are dependent on each
other due to the symmetry between them. In fact, we are able to show that all the LSSAs
are related to a single LSSA by the recurrence relations of the D-type Lauricella functions.

To solve all the LSSAs, a key observation is that all arguments βm in the Lauricella
functions F(K)

D (α; β1, ..., βK; γ; x1, ..., xK) in the LSSA (10) are nonpositive integers. We show
that this plays a key role in proving the solvability of all the LSSAs below.

The generalization of the 2 + 2 recurrence relations of the Appell functions to the
K + 2 recurrence relations of the Lauricella functions was given in [47]. One can use these
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K + 2 recurrence relations to reduce all the Lauricella functions F(K)
D in the LSSA (10) to the

Gauss hypergeometry functions 2F1(α, β, γ). Then, all the LSSAs can be solved by deriving
a multiplication theorem for the Gauss hypergeometry functions.

In this section, we will review the steps presented in [47].

3.1. Recurrence Relations of the LSSA

For K = 2, the Lauricella functions D-type F(K)
D (α; β1, ..., βK; γ; x1, ..., xK) reduce to

the type-1Appell functions F1(α; b1, β2; γ, x, y). The four fundamental recurrence relations
which link the contiguous functions are

(α− β1 − β2)F1(α; β1, β2; γ, x, y)− αF1(α + 1; β1, β2; γ, x, y)
+β1F1(α; β1 + 1, β2; γ, x, y) + β2F1(α; β1, β2 + 1; γ, x, y) = 0, (53)

γF1(α; β1, β2; γ, x, y)− (γ− α)F1(α; β1, β2; γ + 1, x, y)
−αF1(α + 1; β1, β2; γ + 1, x, y) = 0, (54)

γF1(α; β1, β2; γ, x, y) + γ(x− 1)F1(α; β1 + 1, β2; γ, x, y)
−(γ− α)xF1(α; β1 + 1, β2; γ + 1, x, y) = 0, (55)

γF1(α; β1, β2; γ, x, y) + γ(y− 1)F1(α; β1, β2 + 1; γ, x, y)
−(γ− α)yF1(α; β1, β2 + 1; γ + 1, x, y) = 0. (56)

It is straightforward to generalize the above relations and prove the following K + 2
recurrence relations for the D-type Lauricella functions: [47](

α−∑
i

βi

)
F(K)

D (α; β1, ..., βK; γ; x1, ..., xK)− αF(K)
D (α + 1; β1, ..., βK; γ; x1, ..., xK)

+β1F(K)
D (α; β1 + 1, ..., βK; γ; x1, ..., xK) + ... + βKF(K)

D (α; β1, ..., βK + 1; γ; x1, ..., xK) = 0, (57)

γF(K)
D (α; β1, ..., βK; γ; x1, ..., xK)− (γ− α)F(K)

D (α; β1, ..., βK; γ + 1; x1, ..., xK)

−αF(K)
D (α + 1; β1, ..., βK; γ + 1; x1, ..., xK) = 0, (58)

γF(K)
D (α; β1, ..., βm, ..., βK; γ; x1, ..., xm, ..., xK)

+γ(xm − 1)F(K)
D (α; β1, ..., βm + 1, ..., βK; γ; x1, ..., xm, ..., xK)

+(α− γ)xmF(K)
D (α; β1, ..., βm + 1, ..., βK; γ + 1; x1, ..., xm, ..., xK) = 0, (59)

where m = 1, 2, ..., K. In the case of K = 2, Equation (59) reduces to the Appell recurrence
relations in Equations (55) and (56).

To simplify the notation, we omit those arguments of F(K)
D that remain the same in the

rest of the paper. Then, the above K + 2 recurrence relations can be expressed as(
α−∑

i
βi

)
F(K)

D − αF(K)
D (α + 1) + β1F(K)

D (β1 + 1) + ... + βKF(K)
D (βK + 1) = 0, (60)

γF(K)
D − (γ− α)F(K)

D (γ + 1)− αF(K)
D (α + 1; γ + 1) = 0, (61)

γF(K)
D + γ(xm − 1)F(K)

D (βm + 1) + (α− γ)xmF(K)
D (βm + 1, ; γ + 1) = 0. (62)

To proceed, we first consider the two recurrence relations from Equation (62) for m = i,
j with i 6= j,

cF(K)
D + γ(xi − 1)F(K)

D (βi + 1) + (α− γ)xiF
(K)
D (βi + 1; γ + 1) = 0, (63)

γF(K)
D + γ(xj − 1)F(K)

D
(

β j + 1
)
+ (α− γ)xjF

(K)
D
(

β j + 1; γ + 1
)
= 0, (64)
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By shifting βi,j to βi,j − 1 and combining the above two equations to eliminate the

F(K)
D (c + 1) term, we obtain the following key recurrence relation [47]:

xjF
(K)
D (βi − 1)− xiF

(K)
D
(

β j − 1
)
+
(

xi − xj
)

F(K)
D = 0. (65)

One can repeatedly apply Equation (65) to the Lauricella functions in the LSSA in
Equation (10) and end up with an expression that expresses F(K)

D (β1, β2, ...βK)

in terms of F(K−1)
D (β1, ...βi−1, βi+1...β′j, ...βK), β′j = β j, β j − 1, ..., β j − |βi| or

F(K−1)
D (β1, ...β′i, ...β j−1, β j+1, ...βK), β′i = βi, βi − 1, ..., βi −

∣∣β j
∣∣ (assume i < j). We can

repeat the above process to decrease the value of K and reduce all the Lauricella functions
F(K)

D in the LSSA to the Gauss hypergeometry functions F(1)
D = 2F1(α, β, γ, x) as shown in

Figure 1.

(a) (b)

Figure 1. (a) The three neighborhood points are related by a recurrence relation. (b) The Lauricella
fucntions can be reduced to the Gauss hypergeometry functions by decreasing their parameters bi to
0 using the recurence relations.

3.2. Solving all the LSSAs

In the last subsection, we expressed all the LSSAs in terms of the Gauss hyperge-
ometry functions F(1)

D = 2F1(α, β, γ, x). In this subsection, we further reduce the Gauss
hypergeometry functions by deriving a multiplication theorem for them and solve all the
LSSAs in terms of one single amplitude.

We begin with Taylor’s theorem:

f (x + y) =
∞

∑
n=0

yn

n!
dn

dxn f (x). (66)

By replacing y by (y− 1)x, we get the identity

f (xy) =
∞

∑
n=0

(y− 1)nxn

n!
dn

dxn f (x). (67)

One can then use the derivative relation of the Gauss hypergeometry function

dn

dxn 2F1(α, β, γ, x) =
(α)n(β)n

(γ)n
2F1(α + n, β + n, γ + n, x), (68)
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where (α)n = α · (α + 1) · · · (α + n− 1) is the Pochhammer symbol, to obtain the following
multiplication theorem:

2F1(α, β, γ, xy) =
|β|

∑
n=0

(y− 1)nxn

n!
(α)n(β)n

(γ)n
2F1(α + n, β + n, γ + n, x). (69)

It is important to note that the summation in the above equation is up to a finite integer
|β| given that β is a nonpositive integer for the cases of LSSA.

In particular, if we take x = 1 in Equation (69), we get the following relation:

2F1(α, β, γ, y) =
|β|

∑
n=0

(y− 1)n

n!
(α)n(β)n

(γ)n
2F1(α + n, β + n, γ + n, 1)

=
|β|

∑
n=0

(y− 1)n

n!
(α)n(β)n

(γ)n

(−)n(γ)n

(γ− α− β)n
2F1(α, β, γ, 1). (70)

By using the following example of the 15 Gauss contiguous relations

{γ− 2β + (β− α)x}2F1 + β(1− x)2F1(β + 1) + (β− γ)2F1(β− 1) = 0, (71)

and setting x = 1, which eliminates the second term of Equation (71), we can reduce the
argument β in 2F1(α, β, c, 1) to β = −1 or 0, which corresponds to vector or tachyon ampli-
tudes in the LSSA. This completes the proof that all the LSSAs calculated in Equation (10)
can be solved through various recurrence relations of Lauricella functions. Moreover, all
the LSSAs can be expressed in terms of one single four tachyon amplitude.

3.3. Examples of Solving LSSA

For illustration, in this subsection, we calculate the Lauricella functions which corre-
spond to the LSSA for levels K = 1, 2, 3.

For K = 1, there are three type of LSSA (α = − t
2 − 1, γ = u

2 + 2)

(αT
−1)

p1 , F(1)
D (α,−p1, γ− p1, 1), N = p1, (72)

(αP
−1)

q1 , F(1)
D (α,−q1, γ− q1,

[
z̃P

1

]
), N = q1, (73)

(αL
−1)

r1 , F(1)
D (α,−r1, γ− r1,

[
z̃L

1

]
), N = r1. (74)

For K = 2, there are six type of LSSA (ω = −1)

(αT
−1)

p1(αP
−1)

q1 , F(2)
D (α,−p1,−q1, γ− p1 − q1, 1,

[
z̃P

1

]
),N = p1 + q1, (75)

(αT
−1)

p1(αL
−1)

r1 , F(2)
D (α,−p1,−r1, γ− p1 − r1, 1,

[
z̃L

1

]
),N = p1 + r1, (76)

(αP
−1)

q1(αL
−1)

r1 , F(2)
D (α,−q1,−r1, γ− q1 − r1,

[
z̃P

1

]
,
[
z̃L

1

]
),N = q1 + r1, (77)

(αT
−2)

p2 , F(2)
D (α,−p2,−p2, γ− 2p2, 1, 1), N = 2p2, (78)

(αP
−2)

q2 , F(2)
D (α,−q2,−q2, γ− 2q2, 1− ZP

2 , 1−ωZP
2 ), N = 2q2, (79)

(αL
−2)

r2 , F(2)
D (α,−r2,−r2, γ− 2r2, 1− ZL

2 , 1−ωZL
2 ), N = 2r2. (80)

For K = 3, there are 10 types of LSSA (ω1 = −1, ω2 =
(−1+i

√
3)/2

2 )
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(αT
−1)

p1(αP
−1)

q1(αL
−1)

r1 , F(3)
D (α,−p1,−q1,−r1, γ− p1 − q1 − r1, 1,

[
z̃P

1

]
,
[
z̃L

1

]
), N = p1 + q1 + r1, (81)

(αT
−2)

p2(αP
−1)

q1 , F(3)
D (α,−p2,−p2,−q1, γ− 2p2 − q1, 1, 1,

[
z̃P

1

]
), N = 2p2 + q1, (82)

(αT
−2)

p2(αL
−1)

r1 , F(3)
D (α,−p2,−p2,−r1, γ− 2p2 − r1, 1, 1,

[
z̃L

1

]
), N = 2p2 + r1, (83)

(αT
−1)

p1(αP
−2)

q2 , F(3)
D (α,−p1,−q2,−q2, γ− 2q2 − p1, 1, 1− ZP

2 , 1−ω1ZP
2 ), N = 2q2 + p1, (84)

(αP
−2)

q2(αL
−1)

r1 , F(3)
D (α,−q2,−q2,−r1, γ− 2q2 − r1, 1− ZP

2 , 1−ω1ZP
2 ,
[
z̃L

1

]
), N = 2q2 + r1, (85)

(αT
−1)

p1(αL
−2)

r2 , F(3)
D (α, ,−p1,−r2,−r2, γ− 2r2 − p1, 1, 1− ZL

2 , 1−ω1ZL
2 ), N = 2r2 + p1. (86)

(αP
−1)

q1(αL
−2)

r2 , F(3)
D (α, ,−q1,−r2,−r2, γ− 2r2 − q1,

[
z̃P

1

]
, 1− ZL

2 , 1−ω1ZL
2 ), N = 2r2 + q1. (87)

(αT
−3)

p3 , F(3)
D (α,−p3,−p3,−p3, γ− 3p3, 1, 1, 1), N = 3p3, (88)

(αP
−3)

q3 , F(3)
D (α,−q3,−q3,−q3, γ− 3q3, 1− ZP

3 , 1−ω2ZP
3 , 1−ω2

2ZP
3 ), N = 3q3, (89)

(αL
−3)

r3 , F(3)
D (α,−r3,−r3,−r3, γ− 3r3, 1− ZL

3 , 1−ω2ZL
3 , 1−ω2

2ZL
3 ), N = 3r3. (90)

All the LSSAs for K = 2, 3 can be reduced through the recurrence relations in
Equation (65) and expressed in terms of those of K = 1. Furthermore, all resulting LSSAs
for K = 1 can be further reduced by applying Equations (70) and (71) and finally expressed
in terms of one single LSSA.

3.4. SL(K + 3,C) Symmetry and Recurrence Relations

In this subsection, we use the recurrence relations of the D-type
F(K)

D (α; β1, ..., βK; γ; x1, ..., xK) to reproduce the Cartan subalgebra and simple root system
of SL(K + 3,C) with rank K + 2. We first review the case of the SL(4,C) symmetry group,
and then extend it to the general case of SL(K + 3,C) Symmetry.

3.4.1. SL(4,C) Symmetry

We first relate the SL(4,C) group to the recurrence relations of F(1)
D (α; β; γ; x) or of the

LSSA in Equation (32). For our purpose, there are K + 2 = 1 + 2 = 3 recurrence relations
among F(1)

D (α; β; γ; x) or Gauss hypergeometry functions

(α− β)F(1)
D − αF(1)

D (α + 1) + βF(1)
D (β + 1) = 0, (91)

γF(1)
D − (γ− α)F(1)

D (γ + 1)− αF(1)
D (α + 1; γ + 1) = 0, (92)

γF(1)
D + γ(x− 1)F(1)

D (β + 1)− (γ− α)xF(1)
D (β + 1; γ + 1) = 0, (93)

which can be used to reproduce the Cartan subalgebra and simple root system of the
SL(4,C) group with rank 3.

With the identification in Equation (33), the first recurrence relation in Equation (91)
can be rewritten as

(α− β) f b
ac(α; β; γ; x)

B(γ− α, α)aαbβcγ
− α f b

ac(α + 1; β; γ; x)
B(γ− α− 1, α + 1)aα+1bβcγ

+
β f b

ac(α; β + 1; γ; x)
B(γ− α, α)aαbβ+1cγ

= 0. (94)

By using the identity

B(γ− α− 1, α + 1) =
Γ(γ− α− 1)Γ(α + 1)

Γ(γ)
=

α

γ− α− 1
Γ(γ− α)Γ(α)

Γ(γ)
, (95)
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the recurrence relation then becomes

(α− β) f b
ac(α; β; γ; x)− γ− α− 1

a
f b
ac(α + 1; β; γ; x) +

β

b
f b
ac(α; β + 1; γ; x) = 0, (96)

or (
α− β− Eα

a
+

Eβ

b

)
f b
ac(α; β; γ; x) = 0, (97)

which means
[α− β− (x∂x + a∂a) + (x∂x + b∂b)] f b

ac(α; β; γ; x) = 0, (98)

or [
(α− Jα)−

(
β− Jβ

)]
f b
ac(α; β; γ; x) = 0. (99)

Similarly, for the second recurrence relation in Equation (92), we obtain[
c(γ− β)− Eγ +

Eαγ

a

]
f b
ac(α; β; γ; x) = 0. (100)

which means
[(γ− c∂c)− (β− b∂b)] f b

ac(α; β; γ; x) = 0, (101)

or [
(γ− Jγ)−

(
β− Jβ

)]
f b
ac(α; β; γ; x) = 0. (102)

Finally, the third recurrence relation in Equation (93) can be rewritten as[
bβ + (x− 1)Eβ −

xEβγ

c

]
f b
ac(α; β; γ; x) = 0, (103)

which gives after some computation(
β− Jβ

)
f b
ac(α; β; γ; x) = 0. (104)

It is easy to see that Equations (99), (102) and (104) imply the last three equations of
Equation (36) or the Cartan subalgebra in Equation (37), as expected.

In addition to the Cartan subalgebra, we need to derive the operations of the {Eα, Eβ, Eγ}
from the recurrence relations. With the operations of Cartan subalgebra and {Eα, Eβ, Eγ},
one can reproduce the entirety of SL(4,C) algebra.

We first use the operation of Eα,β in Equation (36) to express Equation (91) in the
following two ways: (

α− β− Ea

a

)
f b
ac(α; β; γ; x) +

β

b
f b
ac(α; β + 1; γ; x) = 0, (105)(

α− β +
Eβ

b

)
f b
ac(α; β; γ; x)− (γ− α− 1)

a
f b
ac(α + 1; β; γ; x) = 0, (106)

which, by using the definition of Eα,β in Equation (35), become(
α− β− a(x∂x + a∂a)

a

)
f b
ac(α; β; γ; x) = − β f b

ac(α; β + 1; γ; x)
b

, (107)(
α− β +

b(x∂x + b∂b)

b

)
f b
ac(α; β; γ; x) =

(γ− α− 1) f b
ac(α + 1; β; γ; x)
a

, (108)

which in turn imply

[b(b∂b + x∂x)] f b
ac(α; β; γ; x) = Eβ f b

ac(α; β; γ; x) = β f b
ac(α; β + 1; γ; x), (109)

[a(a∂a + x∂x)] f b
ac(α; β; γ; x) = Eα f b

ac(α; β; γ; x) = (γ− α− 1) f b
ac(α + 1; β; γ; x), (110)
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The above Equations (109) and (110) are consistent with the operation of Eα,β in
Equation (36).

Finally, we check the operation of Eγ. Note that Equation (92) can be written as

γ f b
ac(α; β; γ; x)

B(γ− α, α)aαbβcγ
− (γ− α) f b

ac(α; β; γ + 1; x)
(γ−α)

γ B(γ− α, α)aαbβcγ+1
− α f b

ac(α + 1; β; γ + 1; x)
α
γ B(γ− α, α)aα+1bβcγ+1 = 0, (111)

which gives

f b
ac(α; β; γ; x)− 1

c
f b
ac(α; β; γ + 1; x)− 1

ac
f b
ac(α + 1; β; γ + 1; x) = 0. (112)

Using the definition and operation of Eαγ in Equation (35), we obtain

f b
ac(α; β; γ; x)− 1

c
f b
ac(α; β; γ + 1; x)−

Eαγ

ac(β− γ)
f b
ac(α; β; γ; x) = 0,

which gives

f b
ac(α; β; γ; x)− ac[(1− x)∂x − a∂a] f b

ac(α; β; γ; x)
ac(β− γ)

=
f b
ac(α; β; γ + 1; x)

c
. (113)

After some simple computation, we get

− c[b∂b − c∂c − (1− x)∂x + a∂a] f b
ac(α; β; γ; x) = Eγ f b

ac(α; β; γ; x) = (γ− β) f b
ac(α; β; γ + 1; x),

which is consistent with the operation of Eγ in Equation (36).
Thus, we have shown that the extended LSSAs f b

ac(α; β; γ; x) in Equation (33) with
arbitrary a and c form an infinite-dimensional representation of the SL(4,C) group. More-
over, the 3 recurrence relations among the LSSAs can be used to reproduce the Cartan
subalgebra and simple root system of the SL(4,C) group with rank 3. The recurrence
relations are thus equivalent to the representation of the SL(4,C) symmetry group.

3.4.2. SL(K + 3,C) Symmetry

The K + 2 fundamental recurrence relations among F(K)
D (α; β; γ; x) or the Lauricella

functions are listed in Equations (60)–(62). In the following, we show that the three types
of recurrence relations above imply the Cartan subalgebra of the SL(K + 3,C) group with
rank K + 2.

With the identification in Equation (39), the first type of recurrence relation in
Equation (60) can be rewritten as(

α−∑
j

β j

)
f b1···bK
ac − Eα f b1···bK

ac (α)

a
+ ∑

j

Eβ j f b1···bK
ac

(
β j
)

bj
= 0, (114)

which gives(
α−∑

j
β j

)
f b1···bK
ac −

(
∑

j
xj∂j + a∂a

)
f b1···bK
ac + ∑

j

(
xj∂j + bj∂bj

)
f b1···bK
ac = 0 (115)

or [
(α− a∂a) + ∑

j

(
β j − bj∂bj

)]
f b1···bK
ac = 0, (116)

which means [
(α− Jα) + ∑

j

(
β j − Jβ j

)]
f b1···bK
ac = 0. (117)
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The second type of recurrence relation in Equation (61) can be rewritten as

f b1···bK
ac − Eγ f b1···bK

ac (γ)

c

(
γ−∑

j
β j

) − Eαγ f b1···bK
ac (α; γ)

ac

(
∑

j
β j − γ

) = 0, (118)

which gives[
γ−∑

j
β j −

(
∑

j

(
1− xj

)
∂xj + c∂c − a∂a −∑

j
bj∂bj

)
+

(
∑

j

(
1− xj

)
∂xj − a∂a

)]
f b1···bK
ac = 0 (119)

or [
(γ− c∂c)−∑

j

(
β j − bj∂bj

)]
f b1···bK
ac = 0. (120)

Equation (120) can be written as[
(γ− Jγ)−∑

j

(
β j − Jβ j

)]
f b1···bK
ac = 0. (121)

The third type of recurrence relation in Equation (62) can be rewritten as (m = 1, 2, ...K)

f b1···bK
ac +

(xm − 1)Eβm f b1···bK
ac

bmβm
− xmEβmγ f b1···bK

ac
bmcβm

= 0, (122)

which gives

βm f b1···bK
ac + (xm − 1)(xm∂m + bm∂bm) f b1···bK

ac − xm[(xm − 1)∂xm + bm∂bm ] f b1···bK
ac = 0 (123)

or
(βm − bm∂bm) f b1···bK

ac = 0. (124)

In the above calculation, we have used the definition and operation of Eβmγ in
Equation (41) and Equation (42), respectively.

Equation (124) can be written as(
βm − Jβm

)
f b1···bK
ac = 0, m = 1, 2, ...K. (125)

It is important to see that Equations (117), (121) and (125) imply the last three equations
of Equation (42) or the Cartan subalgebra of SL(K + 3,C) as expected.

In addition to the Cartan subalgebra, we need to derive the operations of the
{Eα, Eβk , Eγ} from the recurrence relations. With the operations of Cartan subalgebra
and {Eα, Eβk , Eγ}, one can reproduce the whole SL(K + 3,C) algebra. The calculations
of Eα and Eγ are straightforward and are similar to the case of SL(4,C) in the previ-
ous section. Here, we present only the calculation of Eβk . The recurrence relation in
Equation (60) can be rewritten as(

α−∑
j

β j

)
f b1···bK
ac − Eα f b1···bK

ac (α)

a
+ ∑

j 6=k

Eβ j f b1···bK
ac

(
β j
)

bj
+

βk f b1···bK
ac (βk + 1)

bk
= 0. (126)

After the operation of Eβ j , we obtain(
α−∑

j
β j

)
f b1···bK
ac −

(
∑

j
xj∂j + a∂a

)
f b1···bK
ac + ∑

j 6=k

(
xj∂j + bj∂bj

)
f b1···bK
ac =

−βk f b1···bK
ac (βk + 1)

bk
,
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which gives the consistent result

bk
(
bk∂bk

+ xk∂k
)

f b1···bK
ac (βk) = Eβk f b1···bK

ac = βk f b1···bK
ac (βk + 1), k = 1, 2, ...K. (127)

In the above calculation, we have used the definitions and operations of Eβk and Eα in
Equation (41) and Equation (42), respectively.

The K + 2 equations in Equations (117), (121) and (125) together with K + 2 equations
for the operations {Eα, Eβk , Eγ} are equivalent to the Cartan subalgebra and the simple
root system of SL(K + 3,C) with rank K + 2. With the Cartan subalgebra and the simple
roots, one can easily write the whole Lie algebra of the SL(K + 3,C) group. Thus, one can
construct the Lie algebra from the recurrence relations and vice versa.

In the previous subsections, it was shown that [47] the K + 2 recurrence relations
among F(K)

D can be used to derive recurrence relations among LSSAs and reduce the
number of independent LSSAs from ∞ down to 1. We conclude that the SL(K + 3,C)
group can be used to derive an infinite number of recurrence relations among LSSAs, and
one can solve all the LSSA sand express them in terms of one amplitude.

3.5. Lauricella Zero Norm States and Ward Identities

In addition to the recurrence relations among LSSAs, there are on-shell stringy Ward
identities among LSSAs. These Ward identities can be derived from the decoupling of two
types of zero norm states (ZNS) in the old covariant first quantized string spectrum. How-
ever, we show below that these Lauricella zero norm states (LZNS) or the corresponding
Lauricella Ward identities are not good enough to solve all the LSSAs and express them in
terms of one amplitude.

On the other hand, in the last section, we have shown that by using (A) recurrence
relations of the LSSAs, (B) the multiplication theorem of the Gauss hypergeometry function
and (C) the explicit calculation of four tachyon amplitudes, one can explicitly solve and
calculate all LSSAs. This means that the solvability of LSSAs through the calculations of (A),
(B) and (C) implies the validity of Ward identities. Ward identities cannot be independent
of the recurrence relations used in the last section; otherwise, there will be a contradiction
with the solvability of LSSAs.

In this section, we study some examples of Ward identities of LSSAs from this point of
view. Incidentally, high-energy zero norm states (HZNS) [10,12–16] and the corresponding
stringy Ward identities at the fixed angle regime, Regge zero norm states (RZNS) [41,42]
and the corresponding Regge Ward identities at the Regge regime have been studied
previously. In particular, HZNS at the fixed angle regime can be used to solve all the high
energy SSAs [10,12–16].

3.5.1. The Lauricella Zero Norm States

We consider the set of Ward identities of the LSSA with three tachyons and one
arbitrary string state. Thus, we only need to consider polarizations of the tensor states on
the scattering plane since the amplitudes with polarizations orthogonal to the scattering
plane vanish.

There are two types of zero norm states (ZNS) in the old covariant first quantum
string spectrum:

Type I : L−1|x〉, where L1|x〉 = L2|x〉 = 0, L0|x〉 = 0; (128)

Type II :
(

L−2 +
3
2

L2
−1

)
|x̃〉, where L1|x̃〉 = L2|x̃〉 = 0, (L0 + 1)|x̃〉 = 0. (129)

While type I ZNS exists at any spacetime dimension, type II ZNS only exists at D = 26.
We begin with the case of mass level M2 = 2. There is a type II ZNS[

1
2

α−1 · α−1 +
5
2

k · α−2 +
3
2
(k · α−1)

2
]
|0, k〉, (130)
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and a type I ZNS

[θ · α−2 + (k · α−1)(θ · α−1)]|0, k〉, θ · k = 0. (131)

The three polarizations defined in Equations (5)–(7) of the second tensor state with
momentum k2 on the scattering plane satisfy the completeness relation

ηµν = ∑
α,β

eα
µeβ

ν ηαβ = diag(−1, 1, 1) (132)

where µ, ν = 0, 1, 2 and α, β = P, L, T. and αT
−1 = ∑µ eT

µ α
µ
−1, αT

−1αL
−2 = ∑µ,ν eT

µ eL
ν α

µ
−1αν

−2 etc.
The type II ZNS in Equation (130) gives the LZNS(√

2αP
−2 + αP

−1αP
−1 +

1
5

αL
−1αL

−1 +
1
5

αT
−1αT

−1

)
|0, k〉. (133)

The type I ZNS in Equation (131) gives two LZNSs:

(αT
−2 +

√
2αP
−1αT

−1)|0, k〉, (134)

(αL
−2 +

√
2αP
−1αL

−1)|0, k〉. (135)

where αT
−1 = ∑µ eT

µ α
µ
−1, αT

−1αL
−2 = ∑µ,ν eT

µ eL
ν α

µ
−1αν

−2 etc. The LZNSs in Equations (134) and
(135) correspond to choosing θµ = eT and θµ = eL, respectively. In conclusion, there are 3
LZNSs at the mass level M2 = 2.

At the second massive level M2 = 4, there is a type I scalar ZNS,[
17
4
(k · α−1)

3 +
9
2
(k · α−1)(α−1 · α−1) + 9(α−1 · α−2) + 21(k · α−1)(k · α−2) + 25(k · α−3)

]
|0, k〉, (136)

a symmetric type I spin two ZNS,

[2θµνα
(µ
−1α

ν)
−2 + kλθµνα

λµν
−1 ]|0, k〉, k · θ = ηµνθµν = 0, θµν = θνµ, (137)

where α
λµν
−1 ≡ αλ

−1α
µ
−1αν

−1, and two vector ZNSs,[(
5
2

kµkνθ′λ + ηµνθ′λ

)
α
(µνλ)
−1 + 9kµθ′να

(µν)
−1 + 6θ′µα

µ
−1

]
|0, k〉, θ · k = 0, (138)[(

1
2

kµkνθλ + 2ηµνθλ

)
α
(µνλ)
−1 + 9kµθνα

[µν]
−1 − 6θµα

µ
−1

]
|0, k〉, θ · k = 0. (139)

Note that Equations (138) and (139) are linear combinations of a type I and a type II
ZNS. This completes the four ZNSs at the second massive level M2 = 4.

The scalar ZNS in Equation (136) gives the LZNS[
25(αP

−1)
3 + 9αP

−1(α
L
−1)

2 + 9αP
−1(α

T
−1)

2 + 9αL
−2αL

−1 + 9αT
−2αT

−1 + 75αP
−2αP

−1 + 50αP
−3

]
|0, k〉. (140)

For the two type I spin ZNSs in Equation (137), we define

θµν = ∑
α,β

eα
µeβ

ν uαβ. (141)

The transverse and traceless conditions on θµν then imply

uPP = uPL = uPT = 0 and uPP − uLL − uTT = 0, (142)
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which gives two LZNSs:

(αL
−1αL

−2 + αP
−1αL

−1αL
−1 − αT

−1αT
−2 − αP

−1αT
−1αT

−1)|0, k〉, (143)

(α
(L
−1α

T)
−2 + αP

−1αL
−1αT

−1)|0, k〉. (144)

The vector ZNS in Equation (138) gives two LZNSs:

[6αT
−3 + 18α

(P
−1α

T)
−2 + 9αP

−1αP
−1αT

−1 + αL
−1αL

−1αT
−1 + αT

−1αT
−1αT

−1]|0, k〉, (145)

[6αL
−3 + 18α

(P
−1α

L)
−2 + 9αP

−1αP
−1αL

−1 + αL
−1αL

−1αL
−1 + αL

−1αT
−1αT

−1]|0, k〉. (146)

The vector ZNS in Equation (139) gives two LZNS:

[3αT
−3 − 9α

[P
−1α

T]
−2 − αL

−1αL
−1αT

−1 − αT
−1αT

−1αT
−1]|0, k〉, (147)

[3αL
−3 − 9α

[P
−1α

L]
−2 − αL

−1αL
−1αL

−1 − αL
−1αT

−1αT
−1]|0, k〉. (148)

In conclusion, there are seven LZNSs in total at the mass level M2 = 4.
It is important to note that there are nine LSSAs at mass level M2 = 2 with only three

LZNSs, and 22 LSSAs at mass level M2 = 4 with only seven LZNSs. Thus, in contrast to
the recurrence relations calculated in Equations (65) and (69), these Ward identities are not
enough to solve all the LSSAs and express them in terms of one amplitude.

3.5.2. The Lauricella Ward Identities

In this subsection, we explicitly verify some examples of Ward identities through
processes (A), (B) and (C). Process (C) is implicitly used through the kinematics. Ward
identities cannot be independent of the recurrence relations used in processes (A), (B) and
(C) in the last section.

For M2 = 2, we define the following kinematics variables:

α =
−t
2
− 1 = MkP

3 − N + 1 =
√

2kP
3 − 1, (149)

γ =
s
2
+ 2− N = −MkP

1 = −
√

2kP
1 , (150)

d =

(
−kL

1
kL

3

) 1
2

, 1−
(
−kP

1
kP

3

)
=

α− γ + 1
α + 1

, (151)

then u
2
+ 2− N = α− γ + 1− N = α− γ− 1. (152)

As examples, we calculate the Ward identities associated with the LZNSs in
Equations (134) and (135). The calculation is based on processes (A) and (B). By using
Equation (10), the Ward identities we want to prove are
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(
−kT

3

)
F(2)

D

α;−1,−1; α− γ− 1; 1−
(
−kT

1
kT

3

) 1
2

, 1 +

(
−kT

1
kT

3

) 1
2


+
√

2
(
−kP

3

)(
−kT

3

)
F(2)

D

(
α;−1,−1; α− γ− 1; 1−

(
−kP

1
kP

3

)
, 1−

(
−kT

1
kT

3

))
= 0, (153)

(
−kL

3

)
F(2)

D

α;−1,−1; α− γ− 1; 1−
(
−kL

1
kL

3

) 1
2

, 1 +

(
−kL

1
kL

3

) 1
2


+
√

2
(
−kP

3

)(
−kL

3

)
F(2)

D

(
α;−1,−1; α− γ− 1; 1−

(
−kP

1
kP

3

)
, 1−

(
−kL

1
kL

3

))
= 0 (154)

or, using the kinematics variables just defined,

F(2)
D (a;−1,−1; α− γ− 1; 1, 1)− (α + 1)F(2)

D

(
α;−1,−1; α− γ− 1;

α− γ + 1
α + 1

, 1
)
= 0, (155)

F(2)
D (α;−1,−1; α− γ− 1; 1− d, 1 + d)− (α + 1)F(2)

D

(
α;−1,−1; α− γ− 1;

α− γ + 1
α + 1

, 1− d2
)
= 0. (156)

Equations (155) and (156) can be explicitly proved as

F(2)
D (α;−1,−1; α− γ− 1; 1, 1)− (α + 1)F(2)

D

(
α;−1,−1; α− γ− 1;

α− γ + 1
α + 1

, 1
)

= F(1)
D (α;−2; α− γ− 1; 1)− (α + 1)

[
α−γ+1

α+1 F(1)
D (α;−2; α− γ− 1; 1)

+ γ
α+1 F(1)

D (α;−1; α− γ− 1; 1)

]
(157)

= (γ− α)F(1)
D (α;−2; α− γ− 1; 1)− γF(1)

D (α;−1; α− γ− 1; 1)

= 0, (158)

and

F(2)
D (α;−1,−1; α− γ− 1; 1− d, 1 + d)− (α + 1)F(2)

D

(
α;−1,−1; α− γ− 1;

α− γ + 1
α + 1

, 1− d2
)

=
1− d
1 + d

F(1)
D (α;−2; α− γ− 1; 1 + d)− 2d

1 + d
F(1)

D (α;−1; α− γ− 1, 1 + d)

− (α + 1)

 α−γ+1
(α+1)(1−d2)

F(1)
D
(
α;−2; α− γ− 1; 1− d2)

+
(

α−γ+1
(α+1)(1−d2)

− (1− d)
)

F(1)
D (α;−1; α− γ− 1; 1− d2)

 (159)

=
1− d
1 + d

(
1− 2αd

γ− 1
+

α(α + 1)2

(γ− 1)(γ− 2)

)
F(1)

D (α;−2; α− γ− 1; 1)

− 2d
1 + d

(
1− αd

γ

)
F(1)

D (α;−1; α− γ− 1; 1)

− (α + 1)

 α−γ+1
(α+1)(1−d2)

(
1 + 2αd2

γ−1 + α(α+1)d4

(γ−1)(γ−2)

)
F(1)

D (α;−2; α− γ− 1; 1)

+
(

α−γ+1
(α+1)(1−d2)

− (1− d)
)(

1 + αd2

γ

)
F(1)

D (α;−1; α− γ− 1; 1)

 (160)

= 0, (161)

where we used Equation (65) in process (A) to get Equations (157) and (159) and Equation
(70) in process (B) to get Equation (160). The last last lines of the above equations were
obtained by using Equation (71).

3.6. Summary

In this section, we have shown that there is an infinite number of recurrence relations
valid for all energies among the LSSA of three tachyons and one arbitrary string state.
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Moreover, this infinite number of recurrence relations can be used to solve all the LSSAs
and express them in terms of one single four tachyon amplitude. In addition, we find
that the K + 2 recurrence relations among the LSSA can be used to reproduce the Cartan
subalgebra and simple root system of the SL(K + 3,C) group with rank K + 2. Thus, the
recurrence relations are equivalent to the representation of SL(K + 3,C) group of the LSSA.
As a result, the SL(K + 3,C) group can be used to solve all LSSAs and express them in
terms of one amplitude [47].

We have also shown that, for the first few mass levels, the solvability of LSSAs through
the calculations of recurrence relations implies the validity of Ward identities derived from
the decoupling of LZNS. However, the Lauricella Ward identities are not good enough to
solve all the LSSAs and express them in terms of one amplitude.

4. Relations among LSSAs in Various Scattering Limits

In this section, we show that there exist relations or symmetries among SSAs of
different string states at various scattering limits. In the first subsection, we show that the
linear relations [1–5] conjectured by Gross among the hard SSAs (HSSAs) at each fixed
mass level in the hard scattering limit can be rederived from the LSSA. These relations
reduce the number of independent HSSAs from ∞ down to 1.

In the second subsection, we show that the Regge SSA (RSSA) in the Regge scattering
limit can be rederived from the LSSA. All the RSSAs can be expressed in terms of the
Appell functions with associated SL(5,C) symmetry [40–42]. Moreover, the recurrence
relations of the Appell functions can be used to reduce the number of independent RSSAs
from ∞ down to 1.

Finally, in the nonrelativistic scattering limit, we show that the nonrelativistic SSAs
(NSSAs) and various extended recurrence relations among them an be rederived from
the LSSA. In addition, we also derive the nonrelativistic level M2-dependent string BCJ
relations, which are the stringy generalization of the massless field theory BCJ relation [48]
to the higher spin stringy particles. These NSSAs can be expressed in terms of the Gauss
hypergeometry functions with associated SL(4,C) symmetry [40–42].

4.1. Hard Scattering Limit—Proving the Gross Conjecture from LSSAs

In this subsection, we show that the linear relations conjectured by Gross [1–5] in the
hard scattering limit can be rederived from the LSSA. First, we briefly review the results
discussed in [17,18] for the linear relations among HSSAs. It was first observed that for
each fixed mass level N with M2 = 2(N − 1), the following states are of a leading order in
energy at the hard scattering limit [14,15]

|N, 2m, q〉 ≡ (αT
−1)

N−2m−2q(αL
−1)

2m(αL
−2)

q|0, k〉. (162)

Note that in Equation (162), only even powers 2m in αL
−1 [10–12] survive, and the

naive energy order of the amplitudes will drop by an even number of energy powers in
general. The HSSAs with vertices corresponding to states with an odd power in (αL

−1)
2m+1

turn out to be of a subleading order in energy and can be ignored. By using the stringy
Ward identities or the decoupling of two types of zero norm states (ZNSs) in the hard
scattering limit, the linear relations among HSSAs of different string states at each fixed
mass level N were calculated to be [14,15]

A(N,2m,q)
st

A(N,0,0)
st

=

(
− 1

M

)2m+q(1
2

)m+q
(2m− 1)!!. (163)

Exactly the same result can be obtained by using two other techniques: the Virasoro
constraint calculation and the corrected saddle-point calculation [14,15]. The calculation of
of Equation (163) was first done for one high-energy vertex in Equation (162) and could then
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be easily generalized to four high-energy vertices. In the decoupling of ZNS calculations at
the mass level M2 = 4, for example, there are four leading order HSSAs [10,12]

ATTT : ALLT : A(LT) : A[LT] = 8 : 1 : −1 : −1 (164)

which are proportional to each other. However. the saddle point calculation of [5] gave
ATTT ∝ A[LT], and ALLT = 0, which are inconsistent with the decoupling of ZNS or
unitarity of the theory. Indeed, a sample calculation was done [10,12] to explicitly verify
the ratios in Equation (164).

One interesting application of Equation (163) was the derivation of the ratio between
A(N,2m,q)

st and A(N,2m,q)
tu in the hard scattering limit [36]

A(N,2m,q)
st ' (−)N sin(πk2 · k4)

sin(πk1 · k2)
A(N,2m,q)

tu (165)

where A(N,2m,q)
tu is the corresponding (t, u) channel HSSA.

Equation (165) was shown to be valid for scatterings of four arbitrary string states in
the hard scattering limit and was obtained in 2006. This result was obtained earlier than
the discovery of four-point field theory BCJ relations in [48] and “string BCJ relations” in
Equation (19) [37–39]. In contrast to the the calculation of string BCJ relations in [38,39],
which was motivated by the field theory BCJ relations in [48], the result of Equation (165)
was inspired by the calculation of hard closed SSAs [36] by using the KLT relation [49].
More detailed discussion can be found in [18,36].

Thus, we are ready to rederive Equations (162) and (163) from the LSSA in
Equation (10). The relevant kinematics are

kT
1 = 0, kT

3 ' −E sin φ, (166)

kL
1 ' −

2p2

M2
' −2E2

M2
, (167)

kL
3 '

2E2

M2
sin2 φ

2
. (168)

where E and φ are the CM frame energy and scattering angle, respectively. One can
calculate

z̃T
kk′ = 1, z̃L

kk′ = 1−
(
− s

t

)1/k
e

i2πk′
k ∼ O(1). (169)

The LSSA in Equation (10) reduces to

A
(rT

n ,rL
l )

st = B
(
− t

2
− 1,− s

2
− 1
)

·∏
n=1

[(n− 1)!E sin φ]r
T
n ∏

l=1

[
−(l − 1)!

2E2

M2
sin2 φ

2

]rL
l

· F(K)
D

(
− t

2
− 1; RT

n , RL
l ;

u
2
+ 2− N; (1)n, Z̃L

l

)
. (170)

As mentioned above, in the hard scattering limit, there was a difference between

the naive energy order and the real energy order corresponding to the
(
αL
−1
)rL

1 operator
in Equation (9). Thus, it is important to pay attention to the corresponding summation
and write
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A
(rT

n ,rL
l )

st = B
(
− t

2
− 1,− s

2
− 1
)

·∏
n=1

[(n− 1)!E sin φ]r
T
n ∏

l=1

[
−(l − 1)!

2E2

M2
sin2 φ

2

]rL
l

·∑
kr

(
− t

2 − 1
)

kr( u
2 + 2− N

)
kr

(
−rL

1
)

kr

kr!

(
1 +

s
t

)kr
· (· · · ) (171)

where (a)n+m = (a)n(a + n)m and (· · · ) are terms which are not relevant to the following
discussion. We then propose the following formula:

rL
1

∑
kr=0

(
− t

2 − 1
)

kr( u
2 + 2− N

)
kr

(
−rL

1
)

kr

kr!

(
1 +

s
t

)kr

=0 ·
(

tu
s

)0
+ 0 ·

(
tu
s

)−1
+ · · ·+ 0 ·

(
tu
s

)−[ rL
1 +1

2

]
−1

+ CrL
1

(
tu
s

)−[ rL
1 +1

2

]
+ O


(

tu
s

)−[ rL
1 +1

2

]
+1

. (172)

where [ ] stands for the Gauss symbol, CrL
1

is independent of energy E and depends on

rL
1 and possibly the scattering angle φ. When rL

1 = 2m is an even number, we further

propose that CrL
1
= (2m)!

m! and is φ independent. We have verified Equation (172) for

rL
1 = 0, 1, 2, · · · , 10.

Notice that Equation (172) reduces to the Stirling number identity by taking the Regge
limit (s→ ∞ with t fixed) and setting rL

1 = 2m,

2m

∑
kr=0

(
− t

2 − 1
)

kr(
− s

2
)

kr

(−2m)kr

kr!

( s
t

)kr
'

2m

∑
kr=0

(−2m)kr

(
− t

2
− 1
)

kr

(−2/t)kr

kr!

= 0 · (−t)0+ 0 · (−t)−1+ · · ·+ 0 · (−t)−m+1 +
(2m)!

m!
(−t)−m + O

{(
1
t

)m+1
}

, (173)

which was proposed in [40] and proved in [50].
It was demonstrated in [40] that the ratios in the hard scattering limit in

Equation (163) can be reproduced from a class of Regge string scattering amplitudes
presented in Equation (181). The key of the proof of this relationship between HSSA and
RSSA was the new Stirling number identity proposed in Equation (173) and mathematical
proved in [50]. On the other hand, the mathematical proof of Equation (172), which is
a generalization of the identity in Equation (173), is an open question and may be an
interesting one to study.

The zero terms in Equation (172) correspond to the naive leading energy orders in
the HSSA calculation. In the hard scattering limit, the true leading order SSA can then
be identified:
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A
(rT

n ,rL
l )

st ' B
(
− t

2
− 1,− s

2
− 1
)

·∏
n=1

[(n− 1)!E sin φ]r
T
n ∏

l=1

[
−(l − 1)!

2E2

M2
sin2 φ

2

]rL
l

· CrL
1
(E sin φ)

−2
[

rL
1 +1

2

]
· (· · · )

∼ E
N−∑n≥2 nrT

n−
(

2
[

rL
1 +1

2

]
−rL

1

)
−∑l≥3 lrL

l , (174)

which means that SSA reaches its highest energy when rT
n≥2 = rL

l≥3 = 0 and rL
1 =

2m—an even number. This result is consistent with the previous result presented in
Equation (162) [10–16].

Finally, the leading order SSA in the hard scattering limit, i.e., rT
1 = N − 2m − 2q,

rL
1 = 2m and rL

2 = q, can be calculated to be

A(N−2m−2q,2m,q)
st

' B
(
− t

2
− 1,− s

2
− 1
)
(E sin φ)N (2m)!

m!

(
− 1

2M2

)2m+q

= (2m− 1)!!
(
− 1

M2

)2m+q(1
2

)m+q
A(N,0,0)

st (175)

which reproduces the ratios in Equation (163), and is consistent with the previous
result [10–16].

4.2. Regge Scattering Limit

There is another important high-energy limit of SSA: the RSSA in the Regge scattering
limit. The relevant kinematics in the Regge limit are

kT
1 = 0, kT

3 ' −
√
−t, (176)

kP
1 ' −

s
2M2

, kP
3 ' −

t̃
2M2

= −
t−M2

2 −M2
3

2M2
, (177)

kL
1 ' −

s
2M2

, kL
3 ' −

t̃′

2M2
= −

t + M2
2 −M2

3
2M2

. (178)

One can easily calculate

z̃T
kk′ = 1, z̃P

kk′ = 1−
(
− s

t̃

)1/k
e

i2πk′
k ∼ s1/k (179)

and
z̃L

kk′ = 1−
(
− s

t̃′
)1/k

e
i2πk′

k ∼ s1/k. (180)

In the Regge limit, the SSA in Equation (20) reduces to

A
(rT

n ,rP
m ,rL

l )
st

'B
(
− t

2
− 1,− s

2
− 1
)

∏
n=1

[
(n− 1)!

√
−t
]rT

n

· ∏
m=1

[
(m− 1)!

t̃
2M2

]rP
m

∏
l=1

[
(l − 1)!

t̃′

2M2

]rL
l

·F1

(
− t

2
− 1;−q1,−r1;− s

2
;

s
t̃
,

s
t̃′

)
. (181)
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where F1 is the Appell function. Equation (181) agrees with the result obtained in [42]
previously.

The recurrence relations of the Appell functions can be used to reduce the number of
independent RSSAs from ∞ down to 1. One can also calculate the string BCJ relation in the
Regge scattering limit and study the extended recurrence relation in the Regge limit [37].

4.3. Nonrelativistic Scattering Limit and Extended Recurrence Relations

In this section, we discuss nonrelativistic string scattering amplitudes (NSSAs) and
the extended recurrence relations among them. In addition, we will also derive the nonrel-
ativistic level M2-dependent string BCJ relations which are the stringy generalization of
the massless field theory BCJ relation [48] to the higher spin stringy particles.

We employ the nonrelativistic string scattering limit or |~k2| << M2 limit to calculate
the mass level and spin dependent low-energy SSA. In contrast to the zero slope α′ limit
used in the literature to calculate the massless Yang–Mills couplings [51,52] for superstrings
and the three point ϕ3 scalar field coupling [53–55] for bosonic strings, we found it appro-
priate to take the nonrelativistic limit to calculate low-energy SSAs for string states with
both higher spins and finite mass gaps.

4.3.1. Nonrelavistic LSSA

In this subsection, we first calculate the NSSA from the LSSA. In the nonrelativistic
limit |~k1| � M2, we have

kT
1 = 0, kT

3 = −
[

ε

2
+

(M1 + M2)
2

4M1M2ε
|~k1|2

]
sin φ, (182)

kL
1 = −M1 + M2

M2
|~k1|+ O

(
|~k1|2

)
, (183)

kL
3 = − ε

2
cos φ +

M1 + M2

2M2
|~k1|+ O

(
|~k1|2

)
, (184)

kP
1 = −M1 + O

(
|~k1|2

)
, (185)

kP
3 =

M1 + M2

2
− ε

2M2
cos φ|~k1|+ O

(
|~k1|2

)
(186)

where ε =
√
(M1 + M2)2 − 4M2

3 and M1 = M3 = M4 = Mtachyon. One can easily calculate

zT
k = zL

k = 0, zP
k '

∣∣∣∣∣
(

2M1

M1 + M2

) 1
k
∣∣∣∣∣. (187)

The SSA in Equation (20) reduces to

A
(rT

n ,rP
m ,rL

l )
st

' ∏
n=1

[
(n− 1)!

ε

2
sin φ

]rT
n

∏
m=1

[
−(m− 1)!

M1 + M2

2

]rP
m

·∏
l=1

[
(l − 1)!

ε

2
cos φ

]rL
l B
(

M1M2

2
, 1−M1M2

)
· F(K)

D

(
M1M2

2
; RP

m; M1M2;
(

2M1

M1 + M2

)
m

)
(188)

where
K = ∑ m

{for all rP
m 6=0}

. (189)
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4.3.2. Nonrelativistic String BCJ Relations

Note that for string states with rP
k = 0 in Equation (20) for all k ≥ 2, one has K = 1,

and the Lauricella functions in the low-energy nonrelativistic SSA reduce to the Gauss
hypergeometric functions F(1)

D = 2F1 with the associated SL(4, C) symmetry. In particular,
for the case of the leading trajectory string state in the second vertex with mass level
N = N1 + N2 + N3 where rT

1 = N1, rP
1 = N3, rL

1 = N2, and rX
k = 0 for all k ≥ 2, the SSA

reduces to

A(N1,N2,N3)
st =

( ε

2
sin φ

)N1
( ε

2
cos φ

)N2

·
(
−M1 + M2

2

)N3

B
(

M1M2

2
, 1−M1M2

)
·2F1

(
M1M2

2
;−N3; M1M2;

2M1

M1 + M2

)
, (190)

which agrees with the result obtained in [37] previously. Similarly, one can calculate the
corresponding nonrelativistic t− u channel amplitude as

A(N1,N2,N3)
tu =(−1)N

( ε

2
sin φ

)N1
( ε

2
cos φ

)N2

·
(
−M1 + M2

2

)N3

B
(

M1M2

2
,

M1M2

2

)
· 2F1

(
M1M2

2
;−N3; M1M2;

2M1

M1 + M2

)
. (191)

Finally, the ratio of s− t and t− u channel amplitudes is [37]

A(N1,N2,N3)
st

A(N1,N2,N3)
tu

= (−1)N
B
(
−M1M2 + 1, M1 M2

2

)
B
(

M1 M2
2 , M1 M2

2

)
= (−1)N Γ(M1M2)Γ(−M1M2 + 1)

Γ
(

M1 M2
2

)
Γ
(
−M1 M2

2 + 1
) ' sin π(k2 · k4)

sin π(k1 · k2)
(192)

where, in the nonrelativistic limit, we have

k1 · k2 ' −M1M2, (193a)

k2 · k4 '
(M1 + M2)M2

2
. (193b)

We thus obtain consistent nonrelativistic level M2-dependent string BCJ relations.
Similar relations for t− u and s− u channel amplitudes can be calculated. We stress that
the above relation is the stringy generalization of the massless field theory BCJ relation [48]
to the higher spin stringy particles. Moreover, as shown in the next subsection, there are
much more relations among the NSSAs.

4.3.3. Extended Recurrence Relations in the Nonrelativistic Scattering Limit
Leading Trajectory String States

In this subsection, we derive two examples of extended recurrence relations among
NSSAs. We first note that there is a recurrence relation of the Gauss hypergeometry function,

2F1(a; b; c; z) =
c− 2b + 2 + (b− a− 1)z

(b− 1)(z− 1) 2F1(a; b− 1; c; z) +
b− c− 1

(b− 1)(z− 1) 2F1(a; b− 2; c; z), (194)

which can be used to derive the recurrence relation,
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(
−M1 + M2

2

)
A(p,r,q)

st =
M2(M1M2 + 2q + 2)
(q + 1)(M2 −M1)

( ε

2
sin φ

)p−p′( ε

2
cos φ

)p′−p+1
A(p′ ,p+r−p′−1,q+1)

st

+
2(M1M2 + q + 1)
(q + 1)(M2 −M1)

( ε

2
sin φ

)p−p′′( ε

2
cos φ

)p′′−p+2
A(p′′ ,p+r−p′′−2,q+2)

st (195)

where p′ and p′′ are the polarization parameters of the second and third amplitudes on
the right-hand side of Equation (195). For example, for a fixed mass level N = 4, one can
derive many recurrence relations for either s− t channel or t− u channel amplitudes with
q = 0, 1, 2. For example, for q = 2, (p, r) = (2, 0), (1, 1), (0, 2), we have p′ = 0, 1 and p′′ = 0.
We can thus derive—for example, for (p, r) = (2, 0) and p′ = 1—the recurrence relation
among amplitudes A(2,0,2)

st A(1,0,3)
st A(0,0,4)

st as follows:(
−M1 + M2

2

)
A(2,0,2)

st =
M2(M1M2 + 6)

3(M2 −M1)

( ε

2
sin φ

)
A(1,0,3)

st +
2(M1M2 + 4)
3(M2 −M1)

( ε

2
sin φ

)2
A(0,0,4)

st . (196)

Exactly the same relation can be obtained for t − u channel amplitudes since the
2F1(a; b; c; z) dependence in the s− t and t− u channel amplitudes calculated above are
the same. Moreover, we can, for example, replace the A(2,0,2)

st amplitude above by the

corresponding t− u channel amplitude A(2,0,2)
tu through Equation (192) and obtain

(−1)N

2 cos πM1 M2
2

(
−M1 + M2

2

)
A(2,0,2)

tu =
M2(M1M2 + 6)

3(M2 −M1)

( ε

2
sin φ

)
A(1,0,3)

st

+
2(M1M2 + 4)
3(M2 −M1)

( ε

2
sin φ

)2
A(0,0,4)

st , (197)

which relates higher spin nonrelativistic string amplitudes in both s− t and t− u channels.
Equation (197) is one example of the extended recurrence relations in the nonrelativistic
string scattering limit.

General String States

Equation (197) relates the NSSAs of different polarizations of a fixed leading trajectory
string state. In the next sample calculation, we calculate one example of an extended
recurrence relation that relates the NSS amplitudes of different higher spin particles for each
fixed mass level M2. In particular, the s− t channel of the NSS amplitudes of three tachyons
and one higher spin massive string state at mass level N = 3p1 + q1 + 3 corresponding to
the following three higher spin string states,

A1˜
(

i∂3XT
)p1
(

i∂XP
)1(

i∂XL
)q1+2

, (198)

A2˜
(

i∂2XT
)p1
(

i∂XP
)2(

i∂XL
)p1+q1+1

, (199)

A3˜
(

i∂XT
)p1
(

i∂XP
)3(

i∂XL
)2p1+q1

, (200)

can be calculated to be
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A1 =
[
2!

ε

2
sin φ

]p1
[
−(1− 1)!

M1 + M2

2

]1[
0!

ε

2
cos φ

]q1+2

× B
(

M1M2

2
, 1−M1M2

)
2F1

(
M1M2

2
,−1, M1M2,

−2M1

M1 + M2

)
, (201)

A2 =
[
1!

ε

2
sin φ

]p1
[
−(2− 1)!

M1 + M2

2

]2[
0!

ε

2
cos φ

]p1+q1+1

× B
(

M1M2

2
, 1−M1M2

)
2F1

(
M1M2

2
,−2, M1M2,

−2M1

M1 + M2

)
, (202)

A3 =
[
0!

ε

2
sin φ

]p1
[
−(3− 1)!

M1 + M2

2

]3[
0!

ε

2
cos φ

]2p1+q1

× B
(

M1M2

2
, 1−M1M2

)
2F1

(
M1M2

2
,−3, M1M2,

−2M1

M1 + M2

)
. (203)

To apply the recurrence relation in Equation (194) for Gauss hypergeometry functions,
we choose

a =
M1M2

2
, b = −1, c = M1M2, z =

−2M1

M1 + M2
. (204)

One can then calculate the extended recurrence relation

16
(

2M1

M1 + M2
+ 1
)(
−M1 + M2

2

)2( ε

2
cos φ

)2p1
A1

= 8 · 2P1

(
M1M2

2
+ 2
)(

2M1

M1 + M2
+ 2
)(
−M1 + M2

2

)( ε

2
cos φ

)p1+1
A2

− 2P1(M1M2 + 2)
( ε

2
cos φ

)2
A3 (205)

where p1 is an arbitrary integer. More extended recurrence relations can be similarly derived.
The existence of these low-energy stringy symmetries comes as a surprise in terms

of the perspective of Gross’s high-energy symmetries [1,3,5]. Finally, in contrast to the
Regge string spacetime symmetry, which was shown to be related to SL(5, C) of the Appell
function F1, we found that the low-energy stringy symmetry is related to SL(4, C) [46] of
the Gauss hypergeometry functions 2F1.

4.4. Summary

In this section, we rederive from the LSSAs the relations or symmetries among SSAs
of different string states at three different scattering limits. We first reproduce the linear
relations [14,15] of the HSSA from the LSSA in the hard scattering limit. We also obtain
Appell functions F1 and Gauss hypergeometric functions 2F1 with SL(5, C) and SL(4, C)
symmetry in the Regge and the nonrelativistic limits, respectively. In contrast to the linear
relations in the hard scattering limit, we obtain extended recurrence relations for the cases
of RSSAs and NSSAs. These two classes of recurrence relations are closely related to those
of the LSSAs with K = 2 and K = 1, respectively. In the end, we also show that with the
nonrelativistic string BCJ relations [37], the extended recurrence relations we obtained can
be used to connect SSAs with different spin states and different channels.

5. Conclusions and Future Works

In this review, we provide a different perspective to demonstrate the Gross conjecture
regarding the high-energy symmetry of string theory [1–5]. We review our recent construc-
tion of the exact SSAs of three tachyons and one arbitrary string state, or the LSSAs, in
the 26D open bosonic string theory. In addition, we discover that these LSSAs form an
infinite-dimensional representation of the SL(K + 3,C) group. Moreover, we show that
the SL(K + 3,C) group can be used to solve all the LSSAs and express them in terms of
one amplitude.
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As an important application in the hard scattering limit, the LSSAs can be used to
prove the Gross conjecture regarding the high-energy symmetry of string theory, which
was previously corrected and proved by the method of decoupling of zero norm states
(ZNSs) [6–16]. In this sense, the results of the LSSAs presented in this review extend
the Gross conjecture to all kinematic regimes. Finally, the exact LSSA can be used to
rederive the recurrence relations of SSAs in the Regge scattering limit with associated
SL(5,C) symmetry and the extended recurrence relations (including the mass and spin
dependent string BCJ relations) in the nonrelativistic scattering limit with associated
SL(4,C) symmetry. These results were first discovered without knowing the exact LSSA.

There are many important related issues that remain to be studied. To name some
examples, how can the LSSA be generalized to multitensor cases? Can one calculate
exactly five-point, six-point and even higher point functions for arbitrary higher spin string
states? Solving these issues would be important to uncover the whole spacetime symmetry
structure of string theory. Presumably, the SL(K + 3,C) symmetry of the LSSA is only a
small part of the whole spacetime symmetry of string theory.

Another important issue is the construction of massive fermion SSAs for the R-sector
of superstrings. Recently, the present authors calculated a class of polarized fermion string
scattering amplitudes (PFSSAs) at arbitrary mass levels [56]. They discovered that, in the
hard scattering limit, the functional forms of the non-vanishing PFSSAs at each fixed mass
level are independent of the choices of spin polarizations. This result agrees with the Gross
conjecture regarding the high-energy string scattering amplitudes extended to the R-sector.
In addition, this peculiar property of hard PFSSAs should be compared with the usual spin
polarization-dependence of the hard-polarized fermion field theory scatterings. However,
the construction of the PFSSA involved only the leading Regge trajectory fermion string
state of the R sector [57,58]. It is a nontrivial task to construct the general massive fermion
string vertex operators [59–62].

Many questions related to the construction of SSA involving the general massive
fermion string states need to be answered before we can better understand the high-energy
behavior of superstring theory.
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Appendix A. Lauricella String Scattering Amplitudes

In this appendix, we give a detailed calculation of the LSSA presented in the text. We
begin with a simple case of the four-point function with the three tachyons and the highest
spin state at mass level M2

2 = 2(N − 1), N = p + q + r with the following form:

|p, q, r〉 =
(

αT
−1

)p(
αP
−1

)q(
αL
−1

)r
|0, k〉. (A1)
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The (s, t) channel of this scattering amplitude can be calculated to be

A(p,q,r)
st =

sin(πk2 · k4)

sin(πk1 · k2)
A(p,q,r)

tu =
sin( u

2 + 2− N)π

sin( s
2 + 2− N)π

A(p,q,r)
tu

=
(−1)NΓ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)
A(p,q,r)

tu

=
(−1)NΓ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)

×
∫ ∞

1
dx xk1·k2(x− 1)k2·k3 ·

[
kT

1
x

+
kT

3
x− 1

]p

·
[

kP
1
x

+
kP

3
x− 1

]q

·
[

kL
1
x

+
kL

3
x− 1

]r

=
Γ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)

(
−kT

3

)p(
−kP

3

)q(
−kL

3

)r

×
∫ ∞

1
dx xk1·k2(x− 1)k2·k3 ·

(
1− (

−kT
1

kT
3

))
x− 1

x

)p

·
(

1− (
−kP

1
kP

3
)

x− 1
x

)q

·
(

1− (
−kL

1
kL

3
)

x− 1
x

)r

. (A2)

In the above calculation, we have used the string BCJ relation: [37–39]

A(p,q,r)
st =

sin(πk2 · k4)

sin(πk1 · k2)
A(p,q,r)

tu . (A3)

The next step is to perform a change of variable x−1
x = x′ to get

A(p,q,r)
st =

Γ( s
2 + 2− N)Γ(−s

2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)

(
−kT

3

)p(
−kP

3

)q(
−kL

3

)r

×
∫ 1

0
dx′ x′

−t
2 −2(1− x′)

−u
2 −2

(
1− (

−kT
1

kT
3

)x′
)p

·
(

1− (
−kP

1
kP

3
)x′
)q

·
(

1− (
−kL

1
kL

3
)x′
)r

=
Γ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)

·
(
−kT

3

)p(
−kP

3

)q(
−kL

3

)r Γ(−t
2 − 1)Γ(−u

2 − 1)
Γ( s

2 + 2− N)

× F(3)
D (
−t
2
− 1,−p,−q,−r,

s
2
+ 2− N;

−kT
1

kT
3

,
−kP

1
kP

3
,
−kL

1
kL

3
), (A4)

which can be written as

A(p,q,r)
st =

(
−kT

3

)p(
−kP

3

)q(
−kL

3

)r Γ(−s
2 − 1 + N)Γ(−t

2 − 1)
Γ( u

2 + 2)

× F(3)
D (
−t
2
− 1,−p,−q,−r,

s
2
+ 2− N;−CT ,−CP,−CL) (A5)
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if we define

kX
i = eX · ki,

kX
3

kX
1

= CX . (A6)

We are now ready to calculate the LSSA; namely, the string scattering amplitude with
three tachyons and one general higher spin state in Equation (9). The detailed calculation
is as follows:

A(pn ;qm ;rl)
st =

sin(πk2 · k4)

sin(πk1 · k2)
A(pn ;qm ;rl)

tu =
sin( u

2 + 2− N)π

sin( s
2 + 2− N)π

A(pn ;qm ;rl)
tu

=
(−1)NΓ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)

·
∫ ∞

1
dx xk1·k2(1− x)k2·k3 ·∏

n=1

[
(−1)n−1(n− 1)!kT

1
xn +

(−1)n−1(n− 1)!kT
3

(x− 1)n

]pn

· ∏
m=1

[
(−1)m−1(m− 1)!kP

1
xm +

(−1)m−1(m− 1)!kP
3

(x− 1)m

]qm

·∏
l=1

[
(−1)l−1(l − 1)!kL

1
xl +

(−1)l−1(l − 1)!kL
3

(x− 1)l

]rl

=
(−1)NΓ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)∫ ∞

1
dx xk1·k2(1− x)k2·k3−N ·∏

n=1

(
kT

3 (−1)n−1(n− 1)![1− (
−kT

1
kT

3
)(

x− 1
x

)n]

)pn

· ∏
m=1

(
kP

3 (−1)m−1(m− 1)![1− (
−kP

1
kP

3
)(

x− 1
x

)m]

)qm

·∏
l=1

(
kL

3 (−1)l−1(l − 1)![1− (
−kL

1
kL

3
)(

x− 1
x

)l ]

)rl

. (A7)

We can then perform a change of variable x−1
x = y to get

A(pn ;qm ;rl)
st =

(−1)NΓ( s
2 + 2− N)Γ(−s

2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)

∫ 1

0
dy yk2·k3−N(1− y)−k1·k2−k2·k3+N−2

·∏
n=1

(
kT

3 (−1)n−1(n− 1)![1− (
−kT

1
kT

3
)yn]

)pn

· ∏
m=1

(
kP

3 (−1)m−1(m− 1)![1− (
−kP

1
kP

3
)ym]

)qm

·∏
l=1

(
kL

3 (−1)l−1(l − 1)![1− (
−kL

1
kL

3
)yl ]

)rl

=
(−1)NΓ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)
·∏

n=1

[
(−1)n−1(n− 1)!kT

3

]pn

∏
m=1

[
(−1)m−1(m− 1)!kP

3

]qm

∏
l=1

[
(−1)l−1(l − 1)!kL

3

]rl

·
∫ 1

0
dy yk2·k3−N(1− y)−k1·k2−k2·k3+N−2

·
(

1− (zT
n y)n

)pn(
1− (zP

my)m
)qm(

1− (zL
l y)l

)rl
. (A8)
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Finally the LSSA can be written in the following form:

A(pn ;qm ;rl)
st =

Γ( s
2 + 2− N)Γ(−s

2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1) ∏
n=1

[
−(n− 1)!kT

3

]pn

· ∏
m=1

[
−(m− 1)!kP

3

]qm

∏
l=1

[
−(l − 1)!kL

3

]rl

·
∫ 1

0
dy y

−t
2 −2(1− y)

−u
2 −2[(1− zT

n y)(1− zT
n ωn

2y)...(1− zT
n ωn−1

n y)]pn

· [(1− zP
my)(1− zP

mωmy)...(1− zP
mωm−1

m y)]qm

· [(1− zL
l y)(1− zL

l ωly)...(1− wL
l ωl−1

l y)]pn , (A9)

which can then be written in terms of the D-type Lauricella function F(K)
D as follows:

A(pn ;qm ;rl)
st

=
Γ( s

2 + 2− N)Γ(−s
2 − 1 + N)

Γ( u
2 + 2)Γ(−u

2 − 1)
Γ(−t

2 − 1)Γ(−u
2 − 1)

Γ( s
2 + 2− N)

·∏
n=1

[
−(n− 1)!kT

3

]pn

∏
m=1

[
−(m− 1)!kP

3

]qm

∏
l=1

[
−(l − 1)!kL

3

]rl

· F(K)
D

(
− t

2 − 1; {−p1}1, ..., {−pn}n, {−q1}1, ..., {−qm}m, {−r1}1, ..., {−rl}l ; s
2 + 2− N;[

zT
1
]
, ...,

[
zT

n
]
,
[
zP

1
]
, ...,

[
zP

m
]
,
[
zL

1
]
, ...,

[
zL

l
]
,

)

=
Γ(−s

2 − 1 + N)Γ(−t
2 − 1)

Γ( u
2 + 2) ∏

n=1

[
−(n− 1)!kT

3

]pn

∏
m=1

[
−(m− 1)!kP

3

]qm

∏
l=1

[
−(l − 1)!kL

3

]rl

· F(K)
D

(
− t

2 − 1; {−p1}1, ..., {−pn}n, {−q1}1, ..., {−qm}m, {−r1}1, ..., {−rl}l ; s
2 + 2− N;[

zT
1
]
, ...,

[
zT

n
]
,
[
zP

1
]
, ...,

[
zP

m
]
,
[
zL

1
]
, ...,

[
zL

l
] )

. (A10)

In the above calculation, we have defined

kX
i ≡ eX · ki, ωk = e

2πi
k , zX

k = (
−kX

1
kX

3
)

1
k (A11)

and

{a}n = a, a, · · · , a︸ ︷︷ ︸
n

,
[
zX

k

]
= zX

k , zX
k e

2πi
k , · · · , zX

k e
2πi(k−1)

k or zX
k , zX

k ωk, ..., zX
k ωk−1

k . (A12)

The integer K in Equation (A10) is defined to be

K = ∑ j
{for all rT

j 6=0}
+ ∑ j
{for all rP

j 6=0}
+ ∑ j
{for all rL

j 6=0}
. (A13)

For a given K, there can be an LSSA with a different mass level N.
Alternatively, by using the identity of the Lauricella function for bi ∈ Z−

F(K)
D (a; b1, ..., bK; c; x1, ..., xK) =

Γ(c)Γ(c− a−∑ bi)

Γ(c− a)Γ(c−∑ bi)

·F(K)
D
(
a; b1, ..., bK; 1 + a + ∑ bi − c; 1− x1, ..., 1− xK

)
, (A14)
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we can rederive the string BCJ relation [37–39]

A
(rT

n ,rP
m ,rL

l )
st

A
(rT

n ,rP
m ,rL

l )
tu

=
(−)NΓ

(
− s

2 − 1
)
Γ
( s

2 + 2
)

Γ
( u

2 + 2− N
)
Γ
(
− u

2 − 1 + N
)

=
sin
(

πu
2
)

sin
(

πs
2
) =

sin(πk2 · k4)

sin(πk1 · k2)
. (A15)

Equation (A15) gives another form of the (s, t) channel amplitude,

A
(rT

n ,rP
m ,rL

l )
st

= B
(
− t

2
− 1,− s

2
− 1
)

∏
n=1

[
−(n− 1)!kT

3

]rT
n

· ∏
m=1

[
−(m− 1)!kP

3

]rP
m

∏
l=1

[
−(l − 1)!kL

3

]rL
l

· F(K)
D

(
− t

2
− 1; RT

n , RP
m, RL

l ;
u
2
+ 2− N; Z̃T

n , Z̃P
m, Z̃L

l

)
(A16)

and similarly the (t, u) channel amplitude

A
(rT

n ,rP
m ,rL

l )
tu

= B
(
− t

2
− 1,−u

2
− 1
)

∏
n=1

[
−(n− 1)!kT

3

]rT
n

· ∏
m=1

[
−(m− 1)!kP

3

]rP
m

∏
l=1

[
−(l − 1)!kL

3

]rL
l

· F(K)
D

(
− t

2
− 1; RT

n , RP
m, RL

l ;
s
2
+ 2− N; ZT

n , ZP
m, ZL

l

)
. (A17)

In Equations (A16) and (A17), we have defined

RX
k ≡

{
−rX

1

}1
, · · · ,

{
−rX

k

}k
with {a}n = a, a, · · · , a︸ ︷︷ ︸

n

, (A18)

and
ZX

k ≡
[
zX

1

]
, · · · ,

[
zX

k

]
with

[
zX

k

]
= zX

k0, · · · , zX
k(k−1) (A19)

where

zX
k =

∣∣∣∣∣∣
(
−

kX
1

kX
3

) 1
k
∣∣∣∣∣∣, zX

kk′ = zX
k e

2πik′
k , z̃X

kk′ ≡ 1− zX
kk′ (A20)

for k′ = 0, · · · , k− 1.
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Finally, by using the notation introduced above, the (s, t) channel amplitude in
Equation (A10) can then be rewritten as

A
(rT

n ,rP
m ,rL

l )
st

= B
(
− t

2
− 1,− s

2
− 1 + N

)
∏
n=1

[
−(n− 1)!kT

3

]rT
n

· ∏
m=1

[
−(m− 1)!kP

3

]rP
m

∏
l=1

[
−(l − 1)!kL

3

]rL
l

· F(K)
D

(
− t

2
− 1; RT

n , RP
m, RL

l ;
s
2
+ 2− N; ZT

n , ZP
m, ZL

l

)
. (A21)
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