1. Introduction
The application of information technology in education has become ubiquitous in modern life [
1,
2,
3,
4,
5]. A computer aided assessment (CAA) is extremely useful in assessing the abilities of students. In recent years, some computer aided assessments of mathematics employ computer algebra system (CAS) in order to evaluate the work of students [
6,
7,
8,
9,
10,
11,
12].
A modern intelligent Web-based mathematics assessment system, called MathPASS [
13], was developed by Lanzhou University (LZU) and Kent State University (KSU). MathPASS, as shown in
Figure 1, is a practical system that has more than 10,000 registered student and teacher users in mathematical courses of KSU. As a part of MathPASS, LZU and KSU are jointly designing and developing a mathematics answer checking protocol (MACP) [
14].
Figure 2 shows the system structure of MACP. MACP is an access protocol for communication between mathematics assessment system server and its client. MACP service is a Web service for checking answers and grading questions to mathematics of middle-school and college. The MACP service aims to grade user answers through verifying the equivalence of expressions and checking the expression forms of the answers. The standard answer could be provided by the CAA system, which is using MACP or automatically generated and computed by the MACP service. The implementation of MACP is based on Representational State Transfer (REST). The request data and service response of MACP are encapsulated into JSON (JavaScript Object Notation) code. In the interior, MACP service uses the computer algebra system (CAS) to verify the equivalence of expressions and compute correct answers. A CAA system could use the MACP service to evaluate the work of students on the Internet. As a simple illustration, imagine a student interacting with a CAA system and, in some way, entering a mathematical expression as an answer to a question. The CAA system could make a primary judgment for the correctness of a student answer by comparing the string of the student answer with the one of standard answer. If the two strings do not match, the CAA sends the two answers to MACP service. The MACP service calls for a CAS to perform a expression subtraction of the student answer from the standard answer. If the result of subtraction is zero, then the system has established an algebraic equivalence between the student answer and the standard answer. Subsequently, the MACP service judges whether the student answer is in a simplest form or a correct form automatically. The checking result of MACP service returns to the CAA in a predefined format. The CAA could use this grade result to make further process.
Our goal is to give accuracy scores for answers that are submitted by students. The algebraic equivalence between two expressions of the student answer and the standard answer is important to evaluate correctness of an student answer. However, different from in research and the engineering area of computer algebra, a mathematical expression may be partially correct as an answer though it is equivalent to the standard answer in the education area. In the paper, we propose a method for calculating the scores of different mathematical expressions. The paper discusses complexity of mathematical expressions and how to apply the complexity on giving partial credit in automatic answer checking for mathematics. In the following,
Section 2 describes the data communication formats of MACP. In
Section 3 and
Section 4, we give and analyze two key problems of automatic answer checking: what kinds of answers are right, wrong, or partially right? Why do we ask students to enter the answer in the simplified form?
Section 5,
Section 6 and
Section 7 present our computation method of complexity of mathematical expressions in detail.
Section 8 gives a method of computing partial credit that is based on the complexity of mathematical expressions.
Section 9 describes the conclusion and future work of the paper.
2. Data Format of MACP
As a communication protocol, MACP uses standard HTTP protocol in order to transfer data between CAA and MACP Web service. This section will introduce the request and response data format of MACP. In MACP, each service request could include multi-questions for checking together. Each question could also contain multi mathematical expressions of the user answer, multi mathematical expressions of the standard answer, and the question itself. The following is the main syntax rules of the request data with JSON encoding.
[{
"name":"<check item name>",
"cmd":"<check command>",
"response":"<response list>",
"exprs":[{
"expr":"<expression name>",
"encoding":"<encoding format>",
"role":"<expression role>",
"value":"<expression itself>",
"form":"<required expression form>",
"op":"<question operation>",
"var":"<variables>"
},…]
},…]
The cmd parameter in the request data is to set answer checking command in each check item. The symbols of =, ~, &, and | could be used in the answer checking command to express the logic relationship of expressions. The following is an example of a check rule command.
(u1=s1 & u2=s2)|(u1=s2 & u2=s1)
In the example u1 and u2 are two expressions of a user answer and s1 and s2 are two expressions of a standard answer. The MACP service verifies the equivalence of the user answer and standard answer under the logical sequence of the check rule command. The check rule command in above example could be used in the questions of solving quadratic equations.
MACP service could also convert a mathematical expression among MathML Presentation (
http://www.w3.org/Math (accessed on 24 January 2021)), MathML Content, OpenMath (
http://www.openmath.org/ (accessed on 24 January 2021)), and Standard Infix Format [
15]. The
response parameter lists all of the response data that a client wants to get. It may include MathML, infix, or OpenMath code of any expression. The request data of MACP could contain answer grade rules: the given syntax form or simplest form (see
Section 3 for details). The following is an example of the
response parameter.
s1.mmlp,u2.openmath,q1.answer.mmlc,u1.sim
In the example, the MathML Presentation code of expression s1, the OpenMath code of expression u2, the MathML content code of the answer expression of question q1, and the result of whether u1 being in the simplest form are included in the response data.
When a CAA calls MACP to check an answer, the standard answer may or may not be given as an input to MACP service. If not, then MACP could compute and generate the standard answer automatically. The
op parameter could be written in the request data to specify what types of operations should be implemented in order to generate standard answers.
Table 1 lists a series of operation types in MACP. The following is a real example of MACP request data that is to check user answers
and
of an equation question 2
x2 + 4
x = 8.
Example 1. A real example of MACP request data
checkcmd=’[{
name:c1,
cmd:"[s1,s2]=solve(q1) & ((u1=s1&u2=s2)|(u1=s2&u2=s1))",
response:"s1.mmlp,s2.mmlp",
exprs:[
{expr:u1,encoding:infix,role:usrAnswer,value:"(-4-sqrt(80))/4)"},
{expr:u2,encoding:infix,role:usrAnswer,value:"sqrt(5)-1"},
{expr:q1,encoding:infix,role:Question,value:"2*x^2+4*x=8"}]}]’;
params="checkcmd="+ encodeURIComponent(checkcmd);
send_request(murl,params,prca);
The response data is also encoded in JSON. The following is the main syntax rules for MACP response data. The response parameter lists every value for each request item.
[{
"name":"<check item name>",
"status":"<status>",
"correctness":"<correctness>",
"details":"<details>",
"response":[
{
"rname":"<response item name>",
"value":"<response item value>"
},…]
},…
]
The following is an example of response data in MACP for example 1:
Example 2. A real example of the MACP response data
[{
"name":"c1",
"status":"normal",
"correctness":"90%",
"details":"<u1> is not simplest",
"response":[
{"rname":"s1.mmlp",
"value":"<math><mrow><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mn>5</mn></msqrt>
</mrow></math>"},
{"rname":"s2.mmlp",
"value":"<math><mrow><mo>-</mo><mn>1</mn><mo>+</mo><msqrt><mn>5</mn></msqrt>
</mrow></math>"
}]
}]
In the response data, the standard answers and are given in the format of MathML Presentation.
4. Overview of Simplified Form
The first category of correct answer is to ask the student to enter the answer with a full simplification form. The questions in this category include simplification, calculation, writing the equation of a function, writing the domain of expression, etc. Particularly, students are desired to reduce their answers to the lowest terms. The purpose of this kind of question is not only to assess the ability of calculation, but to also assess the ability of simplifying a mathematical expression. The following gives some examples of this kind of question.
Example 3. Calculate.
- (a)
- (b)
- (c)
Although most teachers want students to write a particular algebraic expression in the simplified possible form, it is difficult to know exactly what means in all cases the simplified form. The concept of simplified form has been mentioned in many earlier papers when they talked about expression simplification [
18,
19,
20,
21,
22]. However, these papers discuss the problem only under the field of general computer algebra systems and not under the field of mathematical assessment or not under the field of answer checking for elementary algebra. Although finding the simplest form of any mathematical expression may be impossible [
19], it is meaningful and feasible to define a method in order to verify simplest form for an expression of elementary algebra, especially for the answer expression of an elementary mathematical question. The paper in the following will give a method of verifying simplest form of a mathematical expression.
Before we go into the details of simplified form, let us first look at one interesting question: why do we ask student to enter the answer in the simplified form? Both Caviness [
19] and Fitch [
20] gave three reasons for algebra simplification in the research field of computer algebra and symbolic computing, including: less store memory, faster processing, and easier to identify. For mathematical answers in the educational field, we also find at least three important reasons to ask student to enter an answer in a simplified form:
To assess the ability of students to simplify a mathematical expression. The process of algebra simplification requires various mathematical knowledge and abilities. Otherwise, for learning, mathematics have the particular serial character, and earlier knowledge is required as a prerequisite for a later one. The implicit aim of expression simplification is to assess the mastery of earlier knowledge.
To put the answer in a form in which it is easier to justify the correctness of the answer. For the simplified form of an answer, it is mostly a canonical form or a simpler form, and it is easy to compare with the standard answer. The amount of possible totally correct answers is less in the simplified form.
In general, a simplified expression is much easier for human beings to understand and more convenient for human beings to process, such as writing it on the paper and communication with other people. One of important purpose of mathematics itself is to use some easy forms to express complicated problems.
5. The Complexity of a Mathematical Expression
The simplified form of a mathematical expression denotes that simplification manipulations have been carried out on the expression. More formally, let be a class of mathematical expressions and let ∼ be an equivalence relation on .
Definition 1. A mathematical expression is the simplified form of a mathematical expression if it meets the following specification: and there does not exist such a that where C is the function to compute the complexity of the mathematical expression.
The complexity of a mathematical expression is a measure that can be used to compare the expression with other mathematical expressions and judge which one is simpler. The problem of what is “simpler” for expressions has been addressed by many literatures. Fenichel [
23] figured that the simplification of an expression is to arrange the expression in an intelligible form. Moses [
22] argued that the simplification form of an expression is a form in which the remaining steps of a computation on the expression can be most efficiently performed. Buchberger [
18] expressed the concept of simplicity by saying: “expression
s is shorter than expression
t”, “
s needs less memory for representation in computer storage than
t”, “the evaluation of
s is less complex than that of
t”, “numerically,
s is more stable than
t”, or “the structure of
s is more intelligible than that of
t”. Jacques gave a definition for simpler in [
21]: an expression
A is simpler than an expression
B if, in all contexts where
A and
B can be used, they mean the same thing, and the length of the description
A is shorter than the length of the description of
B. He put emphasis on the representational complexity of a mathematical expression. Billing [
24] gave a specific value, depending on the type of each symbol of a mathematical expression and reckoned the complexity as the sum of each symbol. Ali computed the complexity of the expression according the number of operands, operators and depth of the expression tree in [
25]. It is worthwhile to mention that what Ali addressed regardinf the complexity of expressions is not only for the equivalent expressions, but also for two arbitrary mathematical expressions that are not equivalence in algebra. From the analysis of the above literatures, we can see that they mainly discuss the complexity of a expression from three views: representational view, computational view, and intelligible view. Indeed, the three views cover most parameters of the complexity of an expression.
One of the main contributions of this paper is to show how to calculate the complexity with different parameters. The complexity of an expression can be evaluated according three parameters: representation complexity, computation complexity, and intelligibility. Formally, the complexity of a mathematical expression
E can be computed as
where
is the representation complexity of
E,
is the computation complexity of
E, and
is the intelligibility of
E. The Formula (
1) gives a general computation method for the complexity of an expression. The complexity computation has a wide application, such as simplification in computer algebra system, answer checking in CAA, indexing expression in mathematics search, and splitting mathematical expressions in systems for visually impaired users, etc. The parameters of
,
, and
in the Formula (
1) can be different for different applications. For example, in a CAS or theorem proving system, the complexity of a mathematical expression may mainly depend on computation and intelligibility. Accordingly, the parameters of
and
will be much greater than
. While, in a speech system for visually impaired users, the parameters of
and
will be much greater than
, since such a system has major emphasis on the complexity of representation and intelligibility. In general, the sum of these three parameters is 1. Here, the intelligibility of an expression mainly depends on the conventional lexicographic ordering, symmetry, and context of the expression. In terms of answer checking, the different lexicographic ordering does not change the result of answer grade. For example, if the standard answer is
, the user answer
will be treated totally right. Although the context of the expression may partially affect answer grading, the parameter is hard to calculate, for it is mainly related with nature language. Thus, in the field of answer checking the
coefficient is set as 0 and the Formula (
1) is changed to
The following sections will introduce the calculation methods of representation complexity and computation complexity.
6. Representation Complexity
In the paper, the calculation method of representation complexity is inspired by theories of Kolmogorov complexity [
26] and binary lambda calculus [
27]. Kolmogorov complexity is a theoretical tool that is used in order to define “simplicity”. Binary lambda calculus can be used as the calculation tool for the length of an expression. The section is organized, as follows: the first subsection will give a quick introduction to Kolmogorov complexity, lambda calculus [
28,
29], De Bruijn notation [
30], and binary lambda calculus. The second subsection will address the calculation method for representation complexity of a mathematical expression.
6.1. Kolmogorov Complexity and Binary Lambda Calculus
Andrei N. Kolmogorov (1965), Ray Solomonoff (1964), and Gregory Chaitin (1966) developed the concept of Kolmogorov complexity independently with different motivation. In computer science, the Kolmogorov complexity of an object is a measure of the computational resources that are needed to specify the object. The Kolmogorov complexity of a string
S is the size of the smallest program of an optimal University Turing Machine
U generating
S, thus
For example, consider the following two strings of length 33, each containing only lowercase letters and numbers:
Kolmogrov complexity deals with randomness and symmetry of information [
31]. Roughly speaking, the symmetry of information states that, for any two strings
x and
y, the information contained in
x about
y is equal to the information that is contained in
y about
x, up to logarithmic factors. In the above examples, the first string possesses symmetry structure of characters and it has a short English-language description, namely “wei 11 times”, which consists of 12 characters. The second one does not possess symmetric feature and it has no obvious simple description other than writing down the string itself, which has 33 characters. In the Kolmogorov complexity, it does not matter which optimal Universal Turing Machine is chosen.
Church (1936) invented a formal system called the lambda calculus and defined the notion of computable function via this system.
Definition 2. The set of-terms
(notation Λ) is built up from an infinite set of variables while using application and (function) abstraction, as following. Thus, are all -terms.
The mathematician De Bruijn invented the
De Bruijn notation [
30] to represent terms in the
calculus with the purpose of eliminating the names of the variable from the notation. Terms that are written using these notations are invariant with respect to
conversion, so the check for
-equivalence is the same as that for syntactic equality. Each De Bruijn notation is a natural number that represents an occurrence of a variable in a
-term, and denotes the number of binders that are in scope between that occurrence and its corresponding binder. The De Bruijn notation of
calculus term
is
.
The binary lambda calculus adopt a standard binary encoding to
calculus term in a de bruijn notation. The code for a term in de Bruijn notation is inductively defined, as follows:
For instance,
is the binary lambda calculus.
6.2. Calculation Method of Representation Complexity
The representation complexityof a mathematical expression E is the shortest length of the computer program s in a specify language that can store and produce this mathematical expression on the Universal Turing Machine and then halt. Intuitively, the representation complexity of an expression is a sense of long or short to the expression for human being feeling. It is mainly related to the syntax and symmetry of the mathematical expression. To compute representation complexity, we must first specify an encoding for Turing machines, where an encoding is a function that associates to each Turing machine M a bit string . If M is a Turing machine, which, on input w outputs string x, then the concatenated string is a description of x. One of the important directions of this calculation method is to crush the expression object into pieces that are as small as possible.
A mathematical expression can be rewritten to the function form. For example, the expression
can be rewritten to
From the view of syntax composition, a mathematical expression could consist of three elements: operators (functions), operands, and combination rules for operators and operands. For example, the expression (
3) contains five operators (
, +, −, /, ⌃), four operands (
x, 3, 2,
) and a combination rule, as shown in the
Figure 3. Thus, the representation complexity of a mathematical expression is calculated as the sum of the storage length of operands, operators and combination rule. In the paper, we use binary as the storage length unit.
There are three types of operands: number, variable, and symbol constant. A number may be an integer, a decimal, or a fraction. From the view of representation, the complexity of a big integer is larger than a small one. For example, the expression 230528 + 34923 is more complex than the expression
. The representation complexity of an integer is the binary length of the integer. Suppose that
I is an integer, the representation complexity of
I is
The representation complexity of a decimal mainly depends on the length of the decimal. Suppose that
D is a decimal,
is the decimal that is obtained by changing the rightmost digit of
D to 5,
is the integral part length of the binary of
,
is the decimal part length of the binary of
, and
is the location where the first one occurs from left to right, and then the representation complexity of
D is
Suppose that
F is a fraction,
is the numerator of
F, and
is the denominator of
F, then the representation complexity of
F is
If there is a negative or positive sign in a number
N, then the representation complexity of
N is
Intuitively, the different variables (x, y, etc.) and symbolic constant (, a, b, , etc.) have the same complexity to a human being and computer. Thus, a constant value 8 (the binary length of ASCII) is predefined for all of the variables and symbolic constant.
In computer, computational symmetry is defined as using computers to model, analyze, synthesize, and manipulate symmetries in digital forms, imagery or otherwise [
32]. Here, we use computational symmetry to simplify the storage length and then give computational complexity of mathematical expressions. In computer, if a number, variable, symbolic constant, or symmetry structure occurs more than once in an expression, then a pointer can be used to reduce the storage length. Correspondingly, the complexity of an expression decreases if less different numbers, variables, symbolic constants, and sub-expressions occur in the expression. For example, a human being will feel that
is more complex than
. Thus, suppose that
O is a number, variable, or symbolic constant, and
O occurs
i times in an expression, the total representation complexity of all
Os in the expression is
where
is the representation complexity of single
O.
To store the combination rule, all of the variables, constants, functions, and sub-expressions in the expression are replaced by type-free symbols.
Figure 4 shows the object after the replacement of the variables, constants, functions, and sub-expressions in
Figure 3. In the lambda calculus, a unitary function can be expressed by
.
, a binary function can be
.
, and an ternary function can be
.
. Thus, the object shown in the
Figure 4 can be written as
Accordingly, the De Bruijn notation of the combination rule for the expression is
Afterwards, it can be converted to the binary lambda calculus as
The length of the binary can be regarded as the representation complexity of the combination rules and operators. Thus, the representation complexity of combination rule of expression (
3) is 67. The representation complexity of the expression (
3) is 93.
7. Computation Complexity
Let
£ is a specified language on the Universal Turing Machine,
U is the set of programs that can manipulate on
E to produce
, let
, thus
where the running time of
P is the shortest in
U, the computational complexity of a mathematical expression
E is the running time of
P. A problem is regarded as inherently difficult if solving the problem requires a large amount of resources, independent of the algorithm used for solving it. Generally speaking, the computation complexity of the expression
is larger than the one of
. However, though the representation complexity of the expression
is much larger than the
, the computation complexity of the first one is much smaller than the later one. When computing or manipulating an expression, there are normally two steps: the first step is to simplify the expression and the second one is to substitute the variables with input values. The simplification process is to execute rewriting and simple numerical computation in order to make the expression into the simplest form. For example, if there is an expression
in a computer program, then the compile program will first optimize the expression to
. Thus, the computational complexity of an expression should contain two parts: the time spent for algebraic simplification and the time spent for further computing. Accordingly, the computation complexity of an expression
E can be represented as
where
is the algebraic simplification complexity and
is the further computation complexity. Next, let us focus on the computational complexity under the condition of equivalent expressions and answer checking.
Theorem 1. Assume that E and are two equivalent expressions (), and then the further computation complexity of E and are same.
The proof is obvious. For
, there must exist
to satisfy
and
, where
is the simplified form for
E and
. The further computation complexity of
E and
are both equal with
.The literature (
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations (accessed on 24 January 2021)) collected the computation complexity of various algorithms for common mathematical operations, which can be used to estimate the further computation complexity of an expression. Because the value of further computation complexity can be eliminated during evaluation the score in answer checking, the paper will not discuss the further computation complexity in detail. To obtain the algebraic simplification complexity of an expression, lots of rewrite rules for expression simplification are defined. All of these rewrite rules can be regarded as an one-hop computation with a predefined computation complexity.
Table 2 lists some common rewrite rules and their computation complexity. In the table, some asterisk wildcards of Mathematics Query Language (MQL), which is a language in an ongoing project named MathSearch (
http://wme.lzu.edu.cn/mathsearch (accessed on 24 January 2021)), are used in order to represent mathematical patterns. In MQL, the
A_ denotes a pattern object that can stand for any algebraic expression with a name
A.
m_
Num can stand for any expression with a qualification of number. The number can be a real, integer, or fraction. The computation complexity of common numeric computation, including addition, subtraction, multiplication, division, exponent, and root, are defined in
Table 3.
By the application of these rewritten rules and numerical computation, an expression can be manipulated into its simpliest form. However, with the application of different rules and orders, the manipulation process may be various for the simplification of one expression. Thus, the algebraic simplification process of an expression E to its simplest form can be considered to be a weighted directed graph, where a vertex denotes a mathematical expression and an edge represents an application of an one-hop rewritten rule or a simple numeric computation. One path from start vertex to end vertex indicates a simplification process for the expression. Because there may exist infinite methods for simplification of a complex mathematical expression, the paths of the graph may be infinite. A constant value is predefined as an upper limit of the numbers of the paths in order to solve the problem. In practice, we found that the simplification methods for most expressions in elementary algebra are not more than 200 by analyzing mathematical expression answers that were submitted by students in MathPASS. Thus usually 200 is the constant value. The symbolic simplification complexity of an expression can be denoted by the shortest path in the weighted directed graph within finite paths.
Formally, let
G be the weighted directed graph from vertex
E to vertex
, where
E is a mathematical expression and
is the simplest form of
E. The length of a path
P from
E to
is the sum of the weights of the edges of
P. Suppose that
P consists of edges
,
, …,
, the length of
P can be defined as
where
is the computation complexity of
. The algebraic simplification complexity of the expression
E can be denoted as
Figure 5 shows an example of the weighted directed-graph for algebraic simplification. The numbers in the figure represent the mathematical expressions that are shown in
Table 4. From
Figure 5, we can see easily that the path ①–④–⑥–⑦–⑬–⑰–⑲, ①–④–⑥–⑦–⑬–⑱–⑲ and ①–④–⑥–⑦–⑭–⑱–⑲ are three shortest paths for the simplification of the expression ① in
Table 4. Thus, the algebraic simplification complexity of the expression is 34, which is the sum of the shortest path length.
8. Answer and Score
Let us first focus on the problem of the standard answer. Does a standard answer exist definitely for any mathematical problems? What is a standard answer and how to get a standard answer? To answer these questions, let us look back into the grade rule which a teacher would adopt. For (b) in Example 3, the standard answer is
, while the teacher may treat it as totally correct when students enter
,
,
as the answer. If a student answer is
, or
, the teacher will argue that the answer is not completely correct and it will give a score of
or
. However, if the student answer is totally same with the question or the student answer is
teachers will mark it as a wrong answer.
A referenced answer of a question is a mathematical expression that satisfies the requirement of a mathematical problem. A referenced answer class of a question is a set that includes all of the referenced answers of a question. An equivalent class of a referenced answer is a class of all expressions that are equivalent to the referenced answer.
Definition 3. Let E be an a-expression of a question T and ξ be the equivalent class of E, a canonical form of E is a computable mapping m from ξ into ξ that satisfies:
,
if , , and
for all and , .
The canonical form of E is the standard answer for the question T. The referenced answer and standard answer can be either entered in the MACP request data or computed in the CAS. The standard answer, which is usually given by teachers or experts, is a better one among the reference answers.
Definition 4. Suppose that T is a mathematical question. The complexity of referenced answer of T, denoted , is the max complexity value in all the referenced answers.
Suppose that the question
T is a mathematical expression and
U is the expression of a user answer. Subsequently, the score for
U can be computed as
The score value can be used to assign the partial grades in automatic correction. Let us substitute the Formula (
2) into the above Formula (
4). Subsequently, we can get
When calculating the score, the computation complexity takes greater effect than the representation complexity. According to the principle of symmetry, if the representation complexity of mathematical expressions is greater, then its computation complexity is also greater. Thus, in practice, we take the value of coefficients
as 0.4 and the value of
as 0.6. Let us look into the example that is shown in
Table 4. If a student enters the expression ⑯ in
Table 4 as an answer, the representation complexity of expression ⑯ in
Table 4 is 94 and the algebraic simplification complexity is 16, and he/she gets a score 69%. The expression ⑨ in
Table 4 gets 20%, expression ⑥ in
Table 4 gets 27%, and expression ⑱ in
Table 4 gets 70%.
The score presented in Formula (
5) is obtained under the condition where the question is provided in the MACP request data. However, if the question
T is not entered in the request data, we can not get the
value. Accordingly, in such a case, the MACP service can only give the “full right” or “full wrong” result instead of partial score.