Evaluation and Balance of Cognitive Friction: Evaluation of Product Target Image Form Combining Entropy and Game Theory
Abstract
:1. Introduction
2. Related Studies
2.1. Kansei Engineering
2.2. Cognitive Friction
2.3. Game Theory
3. Method
3.1. Evaluation of Product form Image
3.2. Evaluation of CF
3.3. Construction of the CF Balance Model
3.4. Model Verification
4. Case Study
4.1. Determination of the Sample and Its Target Image
4.2. Research on CF Evaluation Based on Target Image
4.3. Research on CF Balance
4.4. Result Verification
5. Discussion
5.1. Evaluation of the Paper Results
5.2. Evaluation of the CF
5.3. Cognitive Symmetry
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, W.; Ko, T.; Rhiu, I.; Yun, M.H. Mining affective experience for a kansei design study on a recliner. Appl. Ergon. 2019, 74, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Amiri Aghdaie, S.F.; Shahin, A.; Ansari, A. Investigating the relationship among the Kansei-based design of chocolate packaging, consumer perception, and willingness to buy. J. Mark. Commun. 2019, 1–20. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Wang, Y.; Mo, D.Y.; Tseng, M.M. Mapping customer needs to design parameters in the front end of product design by applying deep learning. CIRP Ann. 2018, 67, 145–148. [Google Scholar] [CrossRef]
- Chen, J.; Luo, N.; Liu, Y.; Liu, L.; Zhang, K.; Kolodziej, J. A hybrid intelligence-aided approach to affect-sensitive e-learning. Computing 2016, 98, 215–233. [Google Scholar] [CrossRef]
- Kapoor, A.; Burleson, W.; Picard, R.W. Automatic prediction of frustration. Int. J. Hum. Comput. Stud. 2007, 65, 724–736. [Google Scholar] [CrossRef]
- Chai, C.; Liao, J.; Zou, N.; Sun, L. A one-to-many conditional generative adversarial network framework for multiple image-to-image translations. Multimed. Tools Appl. 2018, 77, 22339–22366. [Google Scholar] [CrossRef]
- Bertola, P.; Teixeira, J.C. Design as a knowledge agent: How design as a knowledge process is embedded into organizations to foster innovation. Design Stud. 2003, 24, 181–194. [Google Scholar] [CrossRef]
- Feng, Y.X.; Lou, S.H.; Wang, X.P.; Zheng, H.; Gao, Y.C.; Wang, Y.; Tan, J.R. Research on Performance-oriented Perceptual Image Evaluation Method for Cus Tomized Products. J. Mech. Eng. 2020, 56, 181–190. [Google Scholar]
- Ehrensberger, D.M.; O’Brien, S. Ergonomics of the translation workplace: Potential for cognitive friction. Transl. Spaces 2015, 4, 98–118. [Google Scholar] [CrossRef]
- He, C.X. Analysis of Cognitive Friction in Product Design and Use Process. Packag. Eng. 2010, 31, 58–60. [Google Scholar]
- Henson, B.; Barnes, C.; Livesey, R.; Childs, T.; Ewart, K. Affective Consumer Requirements: A Case Study of Moisturizer Packaging. Concurr. Eng. 2006, 14, 187–196. [Google Scholar] [CrossRef]
- Nagamachi, M. Kansei Engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, M.; Su, J.; Yang, W.; Qiu, K. Research on product color design decision driven by brand image. Color Res. Appl. 2020, 1–15. [Google Scholar] [CrossRef]
- Ding, M.; Bai, Z. Product color emotional design adaptive to product shape feature variation. Color Res. Appl. 2019, 44, 811–823. [Google Scholar] [CrossRef]
- Köhler, M.; Falk, B.; Schmitt, R. Applying Eye-Tracking in Kansei Engineering Method for Design Evaluations in Product Development. Int. J. Affect. Eng. 2015, 14, 241–251. [Google Scholar]
- Zhang, X.X.; Yang, M.G. Color image knowledge model construction based on ontology. Color Res. Appl. 2019, 44, 651–662. [Google Scholar] [CrossRef]
- Kristian, P.; Tanel, M.; Andres, K. Considering Emotions in Product Package Design through Combining Conjoint Analysis with Psycho Physiological Measurements. Procedia–Soc. Behav. Sci. 2014, 148, 280–290. [Google Scholar]
- Huang, Y.; Chen, C.H.; Wang, I.H.; Khoo, L.P. A product configuration analysis method for emotional design using a personal construct theory. Int. J. Ind. Ergonom. 2014, 44, 120–130. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Yang, M.; Han, D. A Multi-Objective Evolutionary Algorithm Model for Product Form Design Based on Improved SPEA2. Appl. Sci. 2019, 9, 2944. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.S.; Xie, Q.S.; Pan, W.J. Color design based on Kansei engineering and interactive genetic algorithm. AJME Acad. J. Manuf. Eng. 2017, 15, 12–18. [Google Scholar]
- Guo, F.; Li, F.; Nagamachi, M.; Hu, M.; Li, M. Research on color optimization of tricolor product considering color harmony and users’ emotion. Color Res. Appl. 2020, 45, 156–171. [Google Scholar] [CrossRef]
- Ding, L.; Che, J.M.; Dong, X.F. Product Bionics Form Design Based on Users’ Kansei Image. Appl. Mech. Mater. 2010, 37–38, 910–914. [Google Scholar] [CrossRef]
- Ho, C.H.; Lu, Y.N. Can pupil size be measured to assess design products? Int. J. Ind. Ergonom. 2014, 44, 436–441. [Google Scholar] [CrossRef]
- Jiao, Y.; Qu, Q.X. A proposal for Kansei knowledge extraction method based on natural language processing technology and online product reviews. Comput. Ind. 2019, 108, 1–11. [Google Scholar] [CrossRef]
- Chang, Y.M.; Chen, C.W. Kansei assessment of the constituent elements and the overall interrelations in car steering wheel design. Int. J. Ind. Ergonom. 2016, 56, 97–105. [Google Scholar] [CrossRef]
- Zhou, L.; Xue, C.Q.; Tang, W.C.; Li, J.; Niu, Y.F. User Perceptual Prediction Model of Product Information Interface. Comput. Integr. Manuf. Syst. 2014, 20, 544–554. [Google Scholar]
- Zhu, G.N.; Hu, J.; Qi, J.; Gu, C.C.; Peng, Y.H. An Integrated AHP and VIKOR for Design Concept Evaluation Based on Rough Number. Adv. Eng. Inform. 2015, 29, 408–418. [Google Scholar] [CrossRef]
- Quan, H.; Li, S.; Wei, H.; Hu, J. Personalized Product Evaluation Based on GRA-TOPSIS and Kansei Engineering. Symmetry 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Shieh, M.D.; Li, Y.; Yang, C.C. Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design. Adv. Eng. Inform. 2018, 36, 31–42. [Google Scholar] [CrossRef]
- Quan, H.; Li, S.; Hu, J. Product Innovation Design Based on Deep Learning and Kansei Engineering. Appl. Sci. 2018, 8, 2397. [Google Scholar] [CrossRef] [Green Version]
- Lokman, A.M.; Haron, M.B.; Abidin, S.Z.; Abd Khalid, N.E.; Ishihara, S. Prelude to Natphoric Kansei Engineering Framework. J. Softw. Eng. Appl. 2013, 6, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.X.; Zhou, M.Y. A method for product form design of integrating interactive genetic algorithm with the interval hesitation time and user satisfaction. Int. J. Ind. Ergonom. 2020, 76, 102901. [Google Scholar] [CrossRef]
- Deng, L.; Wang, G.H. Application of EEG and Interactive Evolutionary Design Method in Cultural and Creative Product Design. Comput. Intell. Neurosci. 2019, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.F.; Shieh, M.D.; Yang, C.C. A Posterior Preference Articulation Approach to Kansei Engineering System for Product Form Design. Res. Eng. Des. 2019, 30, 3–19. [Google Scholar] [CrossRef]
- Javad, K.; Owain, P. A semantic discontinuity detection (SDD) method for comparing designers’ product expressions with users’ product impressions. Design Stud. 2019, 62, 36–67. [Google Scholar]
- Norman, D.A. The Design of Everyday Things; CITIC Press Group: Beijing, China, 2003; pp. 17–18. [Google Scholar]
- Yang, Y.P.; Liu, Q. Product form design method driven by design intent. Comput. Integr. Manuf. Syst. 2015, 21, 867–874. [Google Scholar]
- Lai, C.; Chen, X.; Chen, X.; Wang, Z.; Wu, X.; Zhao, S. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Nat. Hazards 2015, 77, 1243–1259. [Google Scholar] [CrossRef]
- Liu, T.; Deng, Y.; Chan, F. Evidential Supplier Selection Based on DEMATEL and Game Theory. Int. J. Fuzzy Syst. 2018, 20, 1321–1333. [Google Scholar] [CrossRef]
- Zhou, X.; Deng, X.; Deng, Y.; Mahadevan, S. Dependence assessment in human reliability analysis based on D numbers and AHP. Nucl. Eng. Des. 2017, 313, 243–252. [Google Scholar] [CrossRef]
- Su, J.N.; Zhang, X.X.; Jing, N.; Chen, X. Research on the entropy evaluation of product styling image under the cognitive difference. J. Mach. Des. 2016, 33, 105–108. [Google Scholar]
- Li, L.H.; Mo, R. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop. PLoS ONE 2015, 10, e0134343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Li, N. Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria Decision Making Approaches from an Extended Sustainability Perspective. Energies 2016, 9, 270. [Google Scholar] [CrossRef]
- Yang, C.C. A Classification-Based Kansei Engineering System for Modeling Consumers’ Affective Responses and Analyzing Product Form Features. Expert Syst. Appl. 2011, 38, 11382–11393. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Mo, X. Study of Users’ Kansei on Commercial Aircraft Cockpit Interior Design. J. Mech. Eng. 2014, 50, 122–126. [Google Scholar] [CrossRef]
- Liu, G.; Hu, F.; Wang, Y.; Wang, H. Assessment of Lexicographic Minimax Allocations of Blue and Green Water Footprints in the Yangtze River Economic Belt Based on Land, Population, and Economy. Int. J. Environ. Res. Public Health 2019, 16, 643. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Lin, L.; Xu, N. User-perceived styling experience of smart vehicles: A method to combine eye tracking with semantic differences. IET Intell. Transp. Syst. 2019, 13, 72–78. [Google Scholar]
- Chen, M. Research of Design Elements Based on Cognitive Friction. Ph.D. Thesis, Southeast University, Nanjing, China, 6 January 2017. [Google Scholar]
Category | Sample | Category | Sample | Category | Sample |
---|---|---|---|---|---|
1 | 12,13*,14 | 5 | 33* | 9 | 30* |
2 | 2,18,19,20, 21*,22,23,34 | 6 | 6* | 10 | 10,29* |
3 | 3*,7,25,26 | 7 | 24,28*,35,36 | 11 | 8,9,16,17*,31 |
4 | 4* | 8 | 32* | 12 | 1*,5,11,15,27 |
Simplicity | Streamlined | Individuality | Holistic | Advanced | Useful | |
---|---|---|---|---|---|---|
S1 | 2.50 | 4.00 | 2.88 | 1.81 | 3.06 | 2.75 |
S2 | 3.38 | 3.13 | 3.56 | 2.69 | 2.50 | 2.69 |
S3 | 3.25 | 2.69 | 2.63 | 2.06 | 2.63 | 3.06 |
S4 | 4.13 | 1.50 | 3.13 | 3.13 | 2.13 | 3.19 |
S5 | 4.19 | 2.38 | 2.00 | 3.69 | 2.31 | 3.81 |
S6 | 3.44 | 1.88 | 2.63 | 3.13 | 2.44 | 3.50 |
S7 | 3.56 | 3.56 | 2.38 | 3.19 | 3.00 | 3.69 |
S8 | 2.19 | 3.75 | 3.81 | 1.63 | 2.63 | 3.00 |
S9 | 2.19 | 3.75 | 3.69 | 1.63 | 2.25 | 2.44 |
S10 | 2.69 | 1.94 | 3.06 | 3.38 | 2.75 | 2.31 |
S11 | 3.69 | 1.81 | 2.38 | 4.19 | 2.94 | 2.94 |
S12 | 4.50 | 1.38 | 3.56 | 4.06 | 3.94 | 4.06 |
Sample | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Au | 2.13 | 2.63 | 2.13 | 3.00 | 3.88 | 3.38 | 3.00 | 2.13 | 1.88 | 3.88 | 4.63 | 4.00 |
Su | 17 | 21 | 17 | 24 | 31 | 27 | 24 | 17 | 15 | 31 | 37 | 32 |
Ad | 1.50 | 2.75 | 2.00 | 3.25 | 3.50 | 2.88 | 3.38 | 1.13 | 1.38 | 2.88 | 3.75 | 4.13 |
Sd | 12 | 22 | 16 | 26 | 28 | 23 | 27 | 9 | 11 | 23 | 30 | 33 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 |
(0.59,0.41) | (0.49,0.51) | (0.52,0.48) | (0.48,0.52) | (0.53,0.47) | (0.54,0.46) |
λ7 | λ8 | λ9 | λ10 | λ11 | λ12 |
(0.47,0.53) | (0.65,0.35) | (0.58,0.42) | (0.57,0.43) | (0.55,0.45) | (0.51,0.49) |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 |
---|---|---|---|---|---|---|---|---|---|---|---|
1.85 | 2.68 | 2.07 | 3.11 | 3.71 | 3.16 | 3.17 | 1.69 | 1.66 | 3.44 | 4.24 | 4.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, K.; Su, J.; Zhang, X.; Yang, W. Evaluation and Balance of Cognitive Friction: Evaluation of Product Target Image Form Combining Entropy and Game Theory. Symmetry 2020, 12, 1398. https://doi.org/10.3390/sym12091398
Qiu K, Su J, Zhang X, Yang W. Evaluation and Balance of Cognitive Friction: Evaluation of Product Target Image Form Combining Entropy and Game Theory. Symmetry. 2020; 12(9):1398. https://doi.org/10.3390/sym12091398
Chicago/Turabian StyleQiu, Kai, Jianning Su, Xinxin Zhang, and Wenjin Yang. 2020. "Evaluation and Balance of Cognitive Friction: Evaluation of Product Target Image Form Combining Entropy and Game Theory" Symmetry 12, no. 9: 1398. https://doi.org/10.3390/sym12091398